Exploring the Potential Mechanisms of Action of Gentiana Veitchiorum Hemsl. Extract in the Treatment of Cholestasis using UPLC-MS/MS, Systematic Network Pharmacology, and Molecular Docking
- Авторы: Wang Y.1, Tan N.1, Su R.1, Liu Z.1, Hu N.2, Dong Q.2
-
Учреждения:
- , Medical College of Qinghai University
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology
- Выпуск: Том 27, № 13 (2024)
- Страницы: 1948-1968
- Раздел: Chemistry
- URL: https://kazanmedjournal.ru/1386-2073/article/view/645263
- DOI: https://doi.org/10.2174/0113862073275657231210055250
- ID: 645263
Цитировать
Полный текст
Аннотация
Introduction:Gentiana veitchiorum Hemsl. (GV) has a long history in Tibetan medicine for treating hepatobiliary disease cholestasis. However, the mechanisms mediating its efficacy in treating cholestasis have yet to be determined.
Aim:To elucidate the mechanisms of action of GV in the treatment of cholestasis, an integrated approach combining ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis with network pharmacology was established.
Materials and Methods:A comprehensive analysis of the chemical composition of GV was achieved by UPLC-MS/MS. Subsequently, a network pharmacology method that integrated target prediction, a protein-protein interaction (PPI) network, gene set enrichment analysis, and a component- target-pathway network was established, and finally, molecular docking and experiments in vitro were conducted to verify the predicted results.
Results:Twenty compounds that were extracted from GV were identified by UPLC-MS/MS analysis. Core proteins such as AKT1, TNF, and IL6 were obtained through screening in the Network pharmacology PPI network. The Kyoto Encyclopedia of the Genome (KEGG) pathway predicted that GV could treat cholestasis by acting on signaling pathways such as TNF/IL-17 / PI3K-Akt. Network pharmacology suggested that GV might exert a therapeutic effect on cholestasis by regulating the expression levels of inflammatory mediators, and the results were further confirmed by the subsequent construction of an LPS-induced RAW 264.7 cell model.
Conclusions:In this study, UPLC-MS/MS analysis, network pharmacology, and experiment validation were used to explore potential mechanisms of action of GV in the treatment of cholestasis.
Ключевые слова
Об авторах
Yue Wang
, Medical College of Qinghai University
Email: info@benthamscience.net
Nixia Tan
, Medical College of Qinghai University
Email: info@benthamscience.net
Rong Su
, Medical College of Qinghai University
Email: info@benthamscience.net
Zhenhua Liu
, Medical College of Qinghai University
Email: info@benthamscience.net
Na Hu
Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology
Email: info@benthamscience.net
Qi Dong
Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Wu, Q.Y.; Wong, Z.C.F.; Wang, C.; Fung, A.H.Y.; Wong, E.O.Y.; Chan, G.K.L.; Dong, T.T.X.; Chen, Y.; Tsim, K.W.K. Isoorientin derived from Gentiana veitchiorum Hemsl. flowers inhibits melanogenesis by down-regulating MITF-induced tyrosinase expression. Phytomedicine, 2019, 57, 129-136. doi: 10.1016/j.phymed.2018.12.006 PMID: 30668315
- Li, S.; Wan, C.; He, L.; Yan, Z.; Wang, K.; Yuan, M.; Zhang, Z. Rapid identification and quantitative analysis of chemical constituents of Gentiana veitchiorum by UHPLC-PDA-QTOF-MS. Rev. Bras. Farmacogn., 2017, 27(2), 188-194. doi: 10.1016/j.bjp.2016.10.003
- Li, S.; Wan, C.; Yuan, M.; Liu, X.; Zhao, Y.; Zhang, Z. Study on flavonoid glycosides from Gentiana veitchiorum. Chin. Tradit. Herbal Drugs, 2016, 47(15), 2597-2600.
- Zhang, Z.F.; Liu, Y.; Lu, L.Y.; Luo, P. Hepatoprotective activity of Gentiana veitchiorum Hemsl. against carbon tetrachloride-induced hepatotoxicity in mice. Chin. J. Nat. Med., 2014, 12(7), 488-494. doi: 10.1016/S1875-5364(14)60076-5 PMID: 25053546
- Liang, X.; Tian, Q.; Wei, Z.; Liu, F.; Chen, J.; Zhao, Y.; Qu, P.; Huang, X.; Zhou, X.; Liu, N.; Tian, F.; Tie, R.; Liu, L.; Yu, J. Effect of Feining on bleomycin-induced pulmonary injuries in rats. J. Ethnopharmacol., 2011, 134(3), 971-976. doi: 10.1016/j.jep.2011.02.008 PMID: 21333727
- Li, S. Chemical Constituents from Gentiana veitchiorum; Southwest University for Nationalities P.R. China, 2017.
- Hou, Y.; Cao, W.; Li, T. Therapeutic effect of Gentiana veitchiorum particles on chronic bronchitis in mice. J. Four. Milit. Med. Uni., 2008, 29(14), 1331-1333.
- Li, P.; Tang, J.; Li, A. Experimental Study of Gentiana veitchiorum on DMN-induced Early Liver Fibrosis in Rats. Lishizhen Med. Mat. Med. Res., 2008, 19(07), 1565-1567.
- Jansen, P.L.M.; Ghallab, A.; Vartak, N.; Reif, R.; Schaap, F.G.; Hampe, J.; Hengstler, J.G. The ascending pathophysiology of cholestatic liver disease. Hepatology, 2017, 65(2), 722-738. doi: 10.1002/hep.28965 PMID: 27981592
- Yang, F.; Wang, Y.; Li, G.; Xue, J.; Chen, Z.L.; Jin, F.; Luo, L.; Zhou, X.; Ma, Q.; Cai, X.; Li, H.R.; Zhao, L. Effects of corilagin on alleviating cholestasis via farnesoid X receptor‐associated pathways in vitro and in vivo. Br. J. Pharmacol., 2018, 175(5), 810-829. doi: 10.1111/bph.14126 PMID: 29235094
- Chinese consensus on the diagnosis and management of autoimmune hepatitis (2015). J. Dig. Dis., 2017, 18(5), 247-264. doi: 10.1111/1751-2980.12479 PMID: 28449401
- Wagner, M.; Fickert, P. Drug Therapies for Chronic Cholestatic Liver Diseases. Annu. Rev. Pharmacol. Toxicol., 2020, 60(1), 503-527. doi: 10.1146/annurev-pharmtox-010818-021059 PMID: 31506007
- Phaw, N.A.; Leighton, J.; Dyson, J.K.; Jones, D.E. Managing cognitive symptoms and fatigue in cholestatic liver disease. Expert Rev. Gastroenterol. Hepatol., 2021, 15(3), 235-241. doi: 10.1080/17474124.2021.1844565 PMID: 33131347
- Floreani, A.; Mangini, C. Primary biliary cholangitis: Old and novel therapy. Eur. J. Intern. Med., 2018, 47, 1-5. doi: 10.1016/j.ejim.2017.06.020 PMID: 28669591
- Kowdley, K.V.; Luketic, V.; Chapman, R.; Hirschfield, G.M.; Poupon, R.; Schramm, C.; Vincent, C.; Rust, C.; Parés, A.; Mason, A.; Marschall, H.U.; Shapiro, D.; Adorini, L.; Sciacca, C.; Beecher-Jones, T.; Böhm, O.; Pencek, R.; Jones, D.; Obeticholic Acid, P.B.C.M.S.G. A randomized trial of obeticholic acid monotherapy in patients with primary biliary cholangitis. Hepatology, 2018, 67(5), 1890-1902. doi: 10.1002/hep.29569 PMID: 29023915
- Wang, X.; Wang, Z.Y.; Zheng, J.H.; Li, S. TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches. Chin. J. Nat. Med., 2021, 19(1), 1-11. doi: 10.1016/S1875-5364(21)60001-8 PMID: 33516447
- Li, S.; Zhang, B. Traditional Chinese medicine network pharmacology: Theory, methodology and application. Chin. J. Nat. Med., 2013, 11(2), 110-120. doi: 10.1016/S1875-5364(13)60037-0 PMID: 23787177
- Liang, X.; Li, H.; Li, S. A novel network pharmacology approach to analyse traditional herbal formulae: The Liu-Wei-Di-Huang pill as a case study. Mol. Biosyst., 2014, 10(5), 1014-1022. doi: 10.1039/C3MB70507B PMID: 24492828
- Lai, X.; Wang, X.; Hu, Y.; Su, S.; Li, W.; Li, S. Editorial: Network pharmacology and traditional medicine. Front. Pharmacol., 2020, 11, 1194. doi: 10.3389/fphar.2020.01194 PMID: 32848794
- Zhu, N.; Hou, J. Molecular mechanism of the anti-inflammatory effects of Sophorae Flavescentis Aiton identified by network pharmacology. Sci. Rep., 2021, 11(1), 1005. doi: 10.1038/s41598-020-80297-y PMID: 33441867
- Taciak, B. Białasek, M.; Braniewska, A.; Sas, Z.; Sawicka, P.; Kiraga, Ł.; Rygiel, T.; Król, M.; Król, M. Evaluation of phenotypic and functional stability of RAW 264.7 cell line through serial passages. PLoS One, 2018, 13(6), e0198943. doi: 10.1371/journal.pone.0198943 PMID: 29889899
- Romerio, A.; Peri, F. Increasing the chemical variety of small-molecule-based TLR4 Modulators: An overview. Front. Immunol., 2020, 11, 1210. doi: 10.3389/fimmu.2020.01210 PMID: 32765484
- Martinez, F.O. Regulators of macrophage activation. Eur. J. Immunol., 2011, 41(6), 1531-1534. doi: 10.1002/eji.201141670 PMID: 21607943
- Gilbert, F.B.; Cunha, P.; Jensen, K.; Glass, E.J.; Foucras, G.; Robert-Granié, C.; Rupp, R.; Rainard, P. Differential response of bovine mammary epithelial cells to Staphylococcus aureus or Escherichia coli agonists of the innate immune system. Vet. Res., 2013, 44(1), 40. doi: 10.1186/1297-9716-44-40 PMID: 23758654
- Komazin, G.; Maybin, M.; Woodard, R.W.; Scior, T.; Schwudke, D.; Schombel, U.; Gisch, N.; Mamat, U.; Meredith, T.C. Substrate structure-activity relationship reveals a limited lipopolysaccharide chemotype range for intestinal alkaline phosphatase. J. Biol. Chem., 2019, 294(50), 19405-19423. doi: 10.1074/jbc.RA119.010836 PMID: 31704704
- Stifano, G.; Affandi, A.J.; Mathes, A.L.; Rice, L.M.; Nakerakanti, S.; Nazari, B.; Lee, J.; Christmann, R.B.; Lafyatis, R. Chronic Toll-like receptor 4 stimulation in skin induces inflammation, macrophage activation, transforming growth factor beta signature gene expression, and fibrosis. Arthritis Res. Ther., 2014, 16(4), R136. doi: 10.1186/ar4598 PMID: 24984848
- Wang, M.; Liu, F.; Yao, Y.; Zhang, Q.; Lu, Z.; Zhang, R.; Liu, C.; Lin, C.; Zhu, C. Network pharmacology-based mechanism prediction and pharmacological validation of Xiaoyan Lidan formula on attenuating alpha-naphthylisothiocyanate induced cholestatic hepatic injury in rats. J. Ethnopharmacol., 2021, 270, 113816. doi: 10.1016/j.jep.2021.113816 PMID: 33444723
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461. doi: 10.1002/jcc.21334 PMID: 19499576
- Yuan, H-Y.; Kwaku, O.R.; Pan, H.; Han, J-X.; Yang, C-R.; Xu, M.J.N.P.C. Iridoid glycosides from the genus gentiana (Gentianaceae) and their chemotaxonomic sense. Nat. Prod. Commun., 2017, 12(10), 1663-1670.
- Liang, X.; Ji, S.; Du, S.; Dong, Z.; Chen, X. Analysis of chemical constituents in different parts of gentiana straminea based on UPLC-Q-TOF-MS/MS. Chi. J. Exper. Trad. Med. For., 2022, 28(08), 139-148.
- Suryawanshi, S.; Mehrotra, N.; Asthana, R.K.; Gupta, R.C. Liquid chromatography/tandem mass spectrometric study and analysis of xanthone and secoiridoid glycoside composition of Swertia chirata, a potent antidiabetic. Rapid Commun. Mass Spectrom., 2006, 20(24), 3761-3768. doi: 10.1002/rcm.2795 PMID: 17120271
- Bianco, A.; Passacantilli, P.; Polidori, G. 8-epiloganic acid and 7-beta-hydroxy-8-epiiridodial glucoside. Planta Med., 1982, 46(9), 38-41. doi: 10.1055/s-2007-970014 PMID: 17396936
- Olennikov, D.N.; Chirikova, N.K. Algidisides I and II, New Iridoid Glycosides from Gentiana algida. Chem. Nat. Compd., 2016, 52(4), 637-641. doi: 10.1007/s10600-016-1728-y
- Kikuchi, M.; Kakuda, R.; Kikuchi, M.; Yaoita, Y. Secoiridoid Glycosides from Gentiana scabra. J. Nat. Prod., 2005, 68(5), 751-753. doi: 10.1021/np058017o PMID: 15921422
- Tan, P.; Liu, Y.; Hou, C. Structure of purplish bitter glycosides in purple red swertia. Yao Xue Xue Bao, 1997, (07), 522-525.
- Andrzejewska-Golec, E. Ofterdinger-Daegel, S.; Calis, I.; Światek, L. Chemotaxonomic aspects of iridoids occurring inPlantago subg. Psyllium (Plantaginaceae). Plant Syst. Evol., 1993, 185(1-2), 85-89. doi: 10.1007/BF00937721
- Wu, X.; Du, M. Rule of ESIMS-MS on C-glycosy flavonnes. Nat. Prod. Res. Devel., 2011, 23(06), 1085-1087.
- Sasaki, N.; Nishizaki, Y.; Yamada, E.; Tatsuzawa, F.; Nakatsuka, T.; Takahashi, H.; Nishihara, M. Identification of the glucosyltransferase that mediates direct flavone C ‐glucosylation in Gentiana triflora. FEBS Lett., 2015, 589(1), 182-187. doi: 10.1016/j.febslet.2014.11.045 PMID: 25479084
- Schaufelberger, D.; Hostettmann, K. High-performance liquid chromatographic analysis of secoiridoid flavone glycosides in closely related Gentiana species. J. Chromatogr. A, 1987, 389, 450-455. doi: 10.1016/S0021-9673(01)94458-9
- Huang, M.; Zhang, Y.; Xu, S.; Xu, W.; Chu, K.; Xu, W.; Zhao, H.; Lu, J. Identification and quantification of phenolic compounds in Vitex negundo L. var. cannabifolia (Siebold et Zucc.) Hand.-Mazz. using liquid chromatography combined with quadrupole time-of-flight and triple quadrupole mass spectrometers. J. Pharm. Biomed. Anal., 2015, 108, 11-20. doi: 10.1016/j.jpba.2015.01.049 PMID: 25703235
- Bergeron, C.; Marston, A.; Gauthier, R.; Hostettmann, K. Iridoids and secoiridoids from Gentiana linearis. Phytochemistry, 1997, 44(4), 633-637. doi: 10.1016/S0031-9422(96)00636-X
- Pasdaran, A.; Butovska, D.; Kerr, P.; Naychov, Z.; Aneva, I.; Kozuharova, E. Gentians, natural remedies for future of visceral pain control; an ethnopharmacological review with an in silico approach. Biologia Futura, 2022, 73(2), 219-227. doi: 10.1007/s42977-022-00114-7 PMID: 35318616
- Xu, H.; Liu, T.; Wang, W.; Su, N.; Yang, L.; Yang, Z.; Dou, F.; Cui, J.; Fei, F.; Ma, J.; Wen, A.; Ding, Y. Proteomic analysis of hydroxysafflor yellow a against cerebral ischemia/reperfusion injury in rats. Rejuvenation Res., 2019, 22(6), 503-512. doi: 10.1089/rej.2018.2145 PMID: 30712471
- Schmidt, S.; Gonzalez, D.; Derendorf, H. Significance of protein binding in pharmacokinetics and pharmacodynamics. J. Pharm. Sci., 2010, 99(3), 1107-1122. doi: 10.1002/jps.21916 PMID: 19852037
- van Golen, R.F.; Olthof, P.B.; de Haan, L.R.; Coelen, R.J.; Pechlivanis, A.; de Keijzer, M.J.; Weijer, R.; de Waart, D.R.; van Kuilenburg, A.B.P.; Roelofsen, J.; Gilijamse, P.W.; Maas, M.A.; Lewis, M.R.; Nicholson, J.K.; Verheij, J.; Heger, M. The pathophysiology of human obstructive cholestasis is mimicked in cholestatic Gold Syrian hamsters. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(3), 942-951. doi: 10.1016/j.bbadis.2017.11.022 PMID: 29196240
- Mariotti, V.; Strazzabosco, M.; Fabris, L.; Calvisi, D.F. Animal models of biliary injury and altered bile acid metabolism. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(4)(4 Pt B), 1254-1261. doi: 10.1016/j.bbadis.2017.06.027 PMID: 28709963
- Ghonem, N.S.; Assis, D.N.; Boyer, J.L. Fibrates and cholestasis. Hepatology, 2015, 62(2), 635-643. doi: 10.1002/hep.27744 PMID: 25678132
- Dou, X.; Zhou, Z.; Ren, R.; Xu, M. Apigenin, flavonoid component isolated from Gentiana veitchiorum flower suppresses the oxidative stress through LDLR-LCAT signaling pathway. Biomed. Pharmacother., 2020, 128, 110298. doi: 10.1016/j.biopha.2020.110298 PMID: 32504920
- Yang, H.P.; Que, S.; Wu, X.D.; Shi, Y.P. Studies on glycosides from Gentiana veitchiorum. Zhongguo Zhongyao Zazhi, 2008, 33(21), 2505-2507. PMID: 19149260
- Cui, X-R.; Zheng, G-H.; Nan, J-X. Protective effects of Gentiana manshurica on liver injury. J. Med. Sci. Yanb. Uni., 2004, 27(03), 170-172.
- Jiang, W-X.; Xue, B-Y. Hepatoprotective effects of Gentiana scabra on the acute liver injuries in mice. Zhongguo Zhongyao Zazhi, 2005, 30(14), 1105-1107. PMID: 16161450
- Zhao, J.; Xu, J.; Xu, Y.; Chen, S.; Guo, Y.; Gao, Q.; Sun, G. High-throughput metabolomics method for discovering metabolic biomarkers and pathways to reveal effects and molecular mechanism of ethanol extract from epimedium against osteoporosis. Front. Pharmacol., 2020, 11, 1318. doi: 10.3389/fphar.2020.01318 PMID: 32973531
- Li, S.; Zhao, Y.; Liu, Y.; Zhang, Z. Separation and preparation of three compounds from Gentiana veitchiorum by high-speed counter-current chromatography (HSCCC). J. South. Uni. Nat., 2016, 42(06), 660-664.
- Zou, Q.; Liang, J.; Liao, X.; Peng, S.; Ding, L. Chemical constituents from the whole plants of Gentiana veitchiorum. West Chi. J. Pharma. Sci., 2010, 25(02), 512-514.
- Cao, H.; Zhao, Z.; Ga, W. Research progress of Tibetan medicine Gentiana veitchiorum. West Chi. J. Pharma. Sci., 2014, 37(06), 1087-1093.
- Ma, X.; Jiang, Y.; Zhang, W.; Wang, J.; Wang, R.; Wang, L.; Wei, S.; Wen, J.; Li, H.; Zhao, Y. Natural products for the prevention and treatment of cholestasis: A review. Phytother. Res., 2020, 34(6), 1291-1309. doi: 10.1002/ptr.6621 PMID: 32026542
- Han, H.; Xu, L.; Xiong, K.; Zhang, T.; Wang, Z. Exploration of Hepatoprotective Effect of Gentiopicroside on Alpha-Naphthylisothiocyanate-Induced Cholestatic Liver Injury in Rats by Comprehensive Proteomic and Metabolomic Signatures. Cell. Physiol. Biochem., 2018, 49(4), 1304-1319. doi: 10.1159/000493409 PMID: 30223280
- Qi, M.; Liu, K.; He, J. Alleviation effect of ginsenoside Rg1 in rats with cholestasis by sirt5 pathway. China Pharmacist., 2022, 25(10), 1718-1723.
- Shi, M.; Tang, J.; Zhang, T.; Han, H. Swertiamarin, an active iridoid glycoside from Swertia pseudochinensis H. Hara, protects against alpha-naphthylisothiocyanate-induced cholestasis by activating the farnesoid X receptor and bile acid excretion pathway. J. Ethnopharmacol., 2022, 291, 115164. doi: 10.1016/j.jep.2022.115164 PMID: 35278607
- Wang, L.; Wu, G.; Wu, F.; Jiang, N.; Lin, Y. Geniposide attenuates ANIT-induced cholestasis through regulation of transporters and enzymes involved in bile acids homeostasis in rats. J. Ethnopharmacol., 2017, 196, 178-185. doi: 10.1016/j.jep.2016.12.022 PMID: 27988401
- Xiang, J.; Yang, G.; Ma, C.; Wei, L.; Wu, H.; Zhang, W.; Tao, X.; Jiang, L.; Liang, Z.; Kang, L.; Yang, S. Tectorigenin alleviates intrahepatic cholestasis by inhibiting hepatic inflammation and bile accumulation via activation of PPARγ. Br. J. Pharmacol., 2021, 178(12), 2443-2460. doi: 10.1111/bph.15429 PMID: 33661551
- Zhang, G.; Sun, X.; Wen, Y.; Shi, A.; Zhang, J.; Wei, Y.; Wu, X. Hesperidin alleviates cholestasis via activation of the farnesoid X receptor in vitro and in vivo. Eur. J. Pharmacol., 2020, 885, 173498. doi: 10.1016/j.ejphar.2020.173498 PMID: 32841642
- Li, S.; Wang, R.; Wu, B.; Wang, Y.; Song, F.; Gu, Y.; Yuan, Y. Salvianolic acid B protects against ANIT-induced cholestatic liver injury through regulating bile acid transporters and enzymes, and NF-κB/IκB and MAPK pathways. Naunyn Schmiedebergs Arch. Pharmacol., 2019, 392(9), 1169-1180. doi: 10.1007/s00210-019-01657-8 PMID: 31098695
- Facchin, B.M.; dos Reis, G.O.; Vieira, G.N.; Mohr, E.T.B.; da Rosa, J.S.; Kretzer, I.F.; Demarchi, I.G.; Dalmarco, E.M. Inflammatory biomarkers on an LPS-induced RAW 264.7 cell model: A systematic review and meta-analysis. Inflamm. Res., 2022, 71(7-8), 741-758. doi: 10.1007/s00011-022-01584-0 PMID: 35612604
- Elisia, I.; Pae, H.B.; Lam, V.; Cederberg, R.; Hofs, E.; Krystal, G. Comparison of RAW264.7, human whole blood and PBMC assays to screen for immunomodulators. J. Immunol. Methods, 2018, 452, 26-31. doi: 10.1016/j.jim.2017.10.004 PMID: 29042255
- Dhingra, S.; Sharma, A.K.; Singla, D.K.; Singal, P.K. p38 and ERK1/2 MAPKs mediate the interplay of TNF-α and IL-10 in regulating oxidative stress and cardiac myocyte apoptosis. Am. J. Physiol. Heart Circ. Physiol., 2007, 293(6), H3524-H3531. doi: 10.1152/ajpheart.00919.2007 PMID: 17906102
- Yang, X.; Feng, Y.; Liu, Y.; Ye, X.; Ji, X.; Sun, L.; Gao, F.; Zhang, Q.; Li, Y.; Zhu, B.; Wang, X. Fuzheng Jiedu Xiaoji formulation inhibits hepatocellular carcinoma progression in patients by targeting the AKT/CyclinD1/p21/p27 pathway. Phytomedicine, 2021, 87, 153575. doi: 10.1016/j.phymed.2021.153575 PMID: 33984593
- Kassouf, T.; Sumara, G. Impact of conventional and atypical MAPKs on the development of metabolic diseases. Biomolecules, 2020, 10(9), 1256. doi: 10.3390/biom10091256 PMID: 32872540
- You, L.P.; Wang, K.X.; Lin, J.C.; Ren, X.Y.; Wei, Y.; Li, W.X.; Gao, Y.Q.; Kong, X.N.; Sun, X.H. Yin-chen Wu-ling powder alleviate cholestatic liver disease: Network pharmacological analysis and experimental validation. Gene, 2023, 851, 146973. doi: 10.1016/j.gene.2022.146973 PMID: 36306943
- Wang, J.; Wen, J.; Ma, X.; Yang, J.; Zhang, Z.; Xie, S.; Wei, S.; Jing, M.; Li, H.; Lang, L.; Zhou, X.; Zhao, Y. Validation of MAPK signalling pathway as a key role of paeoniflorin in the treatment of intrahepatic cholestasis of pregnancy based on network pharmacology and metabolomics. Eur. J. Pharmacol., 2022, 935, 175331. doi: 10.1016/j.ejphar.2022.175331 PMID: 36273619
- Ma, X.; Zhao, Y.L.; Zhu, Y.; Chen, Z.; Wang, J.B.; Li, R.Y.; Chen, C.; Wei, S.Z.; Li, J.Y.; Liu, B.; Wang, R.L.; Li, Y.G.; Wang, L.F.; Xiao, X.H. Paeonia lactiflora Pall. Protects against ANIT-induced cholestasis by activating Nrf2 via PI3K/Akt signaling pathway. Drug Des. Devel. Ther., 2015, 9, 5061-5074. PMID: 26366057
- Ma, X.; Wen, J.X.; Gao, S.J.; He, X.; Li, P.Y.; Yang, Y.X.; Wei, S.; Zhao, Y.L.; Xiao, X.H. Paeonia lactiflora Pall. Regulates the NF-κB-NLRP3 inflammasome pathway to alleviate cholestasis in rats. J. Pharm. Pharmacol., 2018, 70(12), 1675-1687. doi: 10.1111/jphp.13008 PMID: 30277564
- Yao, H. Protective effects and mechanisms of dioscin on liver injury; Dalian Medical University, 2017. doi: 10.26994/d.cnki.gdlyu.2017.000294
- Yang, R. Effect of Pes1 on mice with cholestatic liver disease via PI3K/AKT/GSK-3β signaling pathway. Anhui Med. Uni., 2019, 54(10), 1511-1515.
- Hua, W.; Zhang, S.; Lu, Q.; Sun, Y.; Tan, S.; Chen, F.; Tang, L. Protective effects of n-Butanol extract and iridoid glycosides of Veronica ciliata Fisch. Against ANIT-induced cholestatic liver injury in mice. J. Ethnopharmacol., 2021, 266, 113432. doi: 10.1016/j.jep.2020.113432 PMID: 33011367
- Nabih, E.S.; El-kharashi, O.A. Targeting HMGB1/TLR4 axis and miR-21 by rosuvastatin: role in alleviating cholestatic liver injury in a rat model of bile duct ligation. Naunyn Schmiedebergs Arch. Pharmacol., 2019, 392(1), 37-43. doi: 10.1007/s00210-018-1560-y PMID: 30203151
- Liu, B.; Zhang, J.; Shao, L.; Yao, J. Network pharmacology analysis and molecular docking to unveil the potential mechanisms of San-Huang-Chai-Zhu formula treating cholestasis. PLoS One, 2022, 17(2), e0264398. doi: 10.1371/journal.pone.0264398 PMID: 35196362
- Cuadrado, A.; Nebreda, A.R. Mechanisms and functions of p38 MAPK signalling. Biochem. J., 2010, 429(3), 403-417. doi: 10.1042/BJ20100323 PMID: 20626350
- Tomida, T.; Takekawa, M.; Saito, H. Oscillation of p38 activity controls efficient pro-inflammatory gene expression. Nat. Commun., 2015, 6(1), 8350. doi: 10.1038/ncomms9350 PMID: 26399197
- Yang, Q.; Yang, F.; Gong, J.; Tang, X.; Wang, G.; Wang, Z.; Yang, L. Sweroside ameliorates α-naphthylisothiocyanate-induced cholestatic liver injury in mice by regulating bile acids and suppressing pro-inflammatory responses. Acta Pharmacol. Sin., 2016, 37(9), 1218-1228. doi: 10.1038/aps.2016.86 PMID: 27498779
- Liu, S.; Zhang, X.; Wang, J. Isovitexin protects against cisplatin-induced kidney injury in mice through inhibiting inflammatory and oxidative responses. Int. Immunopharmacol., 2020, 83, 106437. doi: 10.1016/j.intimp.2020.106437 PMID: 32222637
- Wan, Z.; Li, H.; Wu, X.; Zhao, H.; Wang, R.; Li, M.; Liu, J.; Liu, Q.; Wang, R.; Li, X. Hepatoprotective effect of gentiopicroside in combination with leflunomide and/or methotrexate in arthritic rats. Life Sci., 2021, 265, 118689. doi: 10.1016/j.lfs.2020.118689 PMID: 33130083
- Wei, X.; Fan, X.; Feng, Z.; Ma, Y.; Lan, X.; Chen, M. Ethyl acetate extract of herpetospermum pedunculosum alleviates α-naphthylisothiocyanate-induced cholestasis by activating the farnesoid x receptor and suppressing oxidative stress and inflammation in rats. Phytomedicine, 2020, 76, 153257. doi: 10.1016/j.phymed.2020.153257 PMID: 32534360
- Yan, M.; Guo, L.; Yang, Y.; Zhang, B.; Hou, Z.; Gao, Y.; Gu, H.; Gong, H. Glycyrrhetinic acid protects α-naphthylisothiocyanate- induced cholestasis through regulating transporters, inflammation and apoptosis. Front. Pharmacol., 2021, 12, 701240. doi: 10.3389/fphar.2021.701240 PMID: 34630081
- Wang, Y.; Fang, J.; Liu, B.; Shao, C.; Shi, Y. Reciprocal regulation of mesenchymal stem cells and immune responses. Cell Stem Cell, 2022, 29(11), 1515-1530. doi: 10.1016/j.stem.2022.10.001 PMID: 36332569
- Appleton, I.; Tomlinson, A.; Willoughby, D.A. Induction of Cyclo-oxygenase and Nitric Oxide Synthase in Inflammation. Adv. Pharmacl., 1996, 35, 27-78. doi: 10.1016/S1054-3589(08)60274-4
- Hamza, A.R.; Krasniqi, A.S.; Srinivasan, P.K.; Afify, M.; Bleilevens, C.; Klinge, U.; Tolba, R.H. Gut-liver axis improves with meloxicam treatment after cirrhotic liver resection. World J. Gastroenterol., 2014, 20(40), 14841-14854. doi: 10.3748/wjg.v20.i40.14841 PMID: 25356044
- Cao, F.; Liu, P.; Zhang, X.; Hu, Y.; Dong, X.; Bao, H.; Kong, L.; Wang, L.; Gong, P. Shenqi fuzheng injection impairs bile duct ligation-induced cholestatic liver injury in vivo. Biosci. Rep., 2019, 39(1), BSR20180787. doi: 10.1042/BSR20180787 PMID: 30610157
- Kim, S.M.; Park, K.C.; Kim, H.G.; Han, S.J. Effect of selective cyclooxygenase‐2 inhibitor meloxicam on liver fibrosis in rats with ligated common bile ducts. Hepatol. Res., 2008, 38(8), 800-809. doi: 10.1111/j.1872-034X.2008.00339.x PMID: 18462380
- Luan, X.; Chen, P.; Li, Y.; Yuan, X.; Miao, L.; Zhang, P.; Cao, Q.; Song, X.; Di, G. TNF-α/IL-1β-licensed hADSCs alleviate cholestatic liver injury and fibrosis in mice via COX-2/PGE2 pathway. Stem Cell Res. Ther., 2023, 14(1), 100. doi: 10.1186/s13287-023-03342-3 PMID: 37095581
- Voo, K.S.; Wang, Y.H.; Santori, F.R.; Boggiano, C.; Wang, Y.H.; Arima, K.; Bover, L.; Hanabuchi, S.; Khalili, J.; Marinova, E.; Zheng, B.; Littman, D.R.; Liu, Y.J. Identification of IL-17-producing FOXP3 + regulatory T cells in humans. Proc. Natl. Acad. Sci., 2009, 106(12), 4793-4798. doi: 10.1073/pnas.0900408106 PMID: 19273860
- Tan, Z.; Qian, X.; Jiang, R.; Liu, Q.; Wang, Y.; Chen, C.; Wang, X.; Ryffel, B.; Sun, B. IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation. J. Immunol., 2013, 191(4), 1835-1844. doi: 10.4049/jimmunol.1203013 PMID: 23842754
- Meng, F.; Wang, K.; Aoyama, T.; Grivennikov, S.I.; Paik, Y.; Scholten, D.; Cong, M.; Iwaisako, K.; Liu, X.; Zhang, M.; Österreicher, C.H.; Stickel, F.; Ley, K.; Brenner, D.A.; Kisseleva, T. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology, 2012, 143(3), 765-776.e3. doi: 10.1053/j.gastro.2012.05.049 PMID: 22687286
- Qian, C.; Jiang, T.; Zhang, W.; Ren, C.; Wang, Q.; Qin, Q.; Chen, J.; Deng, A.; Zhong, R. Increased IL-23 and IL-17 expression by peripheral blood cells of patients with primary biliary cirrhosis. Cytokine, 2013, 64(1), 172-180. doi: 10.1016/j.cyto.2013.07.005 PMID: 23910013
- OBrien, K.M.; Allen, K.M.; Rockwell, C.E.; Towery, K.; Luyendyk, J.P.; Copple, B.L. IL-17A synergistically enhances bile acid-induced inflammation during obstructive cholestasis. Am. J. Pathol., 2013, 183(5), 1498-1507. doi: 10.1016/j.ajpath.2013.07.019 PMID: 24012680
- Zhang, S.; Huang, D.; Weng, J.; Huang, Y.; Liu, S.; Zhang, Q.; Li, N.; Wen, M.; Zhu, G.; Lin, F.; Gu, W. Neutralization of interleukin‐17 attenuates cholestatic liver fibrosis in mice. Scand. J. Immunol., 2016, 83(2), 102-108. doi: 10.1111/sji.12395 PMID: 26484852
Дополнительные файлы
