Shikonin Suppresses Cell Tumorigenesis in Gastric Cancer Associated with the Inhibition of c-Myc and Yap-1
- Авторы: Zhang F.1, Chu M.1, Liu J.2, Zhao Q.3, Zhu Y.1, Wu X.4
-
Учреждения:
- The First Clinical Medical College, Guizhou University of Traditional Chinese Medicine
- Department of Endoscopy, Guizhou Provincial People's Hospital
- The Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine
- Department of Pathology, Guizhou Provincial People's Hospital
- Выпуск: Том 27, № 13 (2024)
- Страницы: 1919-1929
- Раздел: Chemistry
- URL: https://kazanmedjournal.ru/1386-2073/article/view/645260
- DOI: https://doi.org/10.2174/0113862073254088231020082912
- ID: 645260
Цитировать
Полный текст
Аннотация
aims:To explore the potential roles and mechanisms of shikonin in gastric cancer by network pharmacology and biological experiments.
background:Gastric cancer is one of the most common and deadly cancers in the world. Although the survival rate of gastric cancer has improved worldwide for many years, it is difficult to treat due to its high tumor recurrence and easy resistance to chemotherapeutic drugs.Recently studies showed that traditional Chinese medicine Shikonin had anti-cancer effects with their unique advantages of high efficiency and small side effect.
objective:To study the potential roles and mechanisms of shikonin in gastric cancer by network pharmacology and biological experiments.
method:The key genes and targets of shikonin in gastric cancer were predicted by network pharmacology and molecular docking study. The effect of shikonin on the proliferation, migration and invasion of gastric cancer cells was detected by the CCK8 method, Wound healing and Transwell assays. The expression levels of c-Myc and Yap-1 protein in gastric cancer cells after shikonin intervention were detected by western blotting.
result:The study of network pharmacology found that the key target genes of shikonin on gastric cancer cells were c-Myc, Yap-1, AKT1,etc. GO and KEGG analysis showed regulation of cell migration, proliferation, adhesion and other biological processes; PI3K-Akt signaling pathway, HIF-1 signaling pathway, necroptosis and other cancer pathways. Molecular docking showed that shikonin was most closely combined with protooncogene c-Myc and Yap-1. In vitro experiments showed that the proliferation rate, migration and invasion ability of gastric cancer cell group decreased significantly after shikonin intervention for 24h, and it was concentration-dependent. The expression levels of c-Myc and Yap-1 in gastric cancer cells were significantly decreased after shikonin intervention.
conclusion:This study showed that protooncogene c-Myc and Yap-1 were the core target genes of shikonin on gastric cancer cells. Shikonin may suppress gastric cancer cells by inhibiting the protooncogene c-Myc and Yap-1. It suggested shikonin maybe a good candidate for the treatment of gastric cancer.
Ключевые слова
Об авторах
Fei Zhang
The First Clinical Medical College, Guizhou University of Traditional Chinese Medicine
Email: info@benthamscience.net
Mingliang Chu
The First Clinical Medical College, Guizhou University of Traditional Chinese Medicine
Автор, ответственный за переписку.
Email: info@benthamscience.net
Jiemin Liu
Department of Endoscopy, Guizhou Provincial People's Hospital
Автор, ответственный за переписку.
Email: info@benthamscience.net
Qi Zhao
The Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine
Автор, ответственный за переписку.
Email: info@benthamscience.net
Yanqiu Zhu
The First Clinical Medical College, Guizhou University of Traditional Chinese Medicine
Email: info@benthamscience.net
Xuefang Wu
Department of Pathology, Guizhou Provincial People's Hospital
Email: info@benthamscience.net
Список литературы
- Donida, B.M.; Tomasello, G.; Ghidini, M.; Buffoli, F.; Grassi, M.; Liguigli, W.; Maglietta, G.; Pergola, L.; Ratti, M.; Sabadini, G.; Toppo, L.; Ungari, M.; Passalacqua, R. Epidemiological, clinical and pathological characteristics of gastric neoplasms in the province of Cremona: the experience of the first population-based specialized gastric cancer registry in Italy. BMC Cancer, 2019, 19(1), 212. doi: 10.1186/s12885-019-5366-1 PMID: 30849945
- Rawla, P.; Barsouk, A. Epidemiology of gastric cancer: Global trends, risk factors and prevention. Prz. Gastroenterol., 2019, 14(1), 26-38. doi: 10.5114/pg.2018.80001 PMID: 30944675
- Weng, J.; Wu, A.; Ying, J. Chemosensitivity of gastric cancer: analysis of key pathogenic transcription factors. J. Gastrointest. Oncol., 2022, 13(3), 977-984. doi: 10.21037/jgo-22-274 PMID: 35837191
- Xiong, J.; Zhang, T.; Lan, P.; Zhang, S.; Fu, L. Insight into the molecular mechanisms of gastric cancer stem cell in drug resistance of gastric cancer. Cancer Drug Resist., 2022, 5(3), 794-813. doi: 10.20517/cdr.2022.11 PMID: 36176765
- Chen, Z-S.; Lin, L-Z.; Zhang, S-X.; Liu, W.; Ai, B.; Sun, L-L. Current Advances and Outlook in Gastric Cancer Chemoresistance: A Review. Recent Patents Anticancer Drug Discov., 2022, 17(1), 26-41. doi: 10.2174/1574892816666210929165729 PMID: 34587888
- Zhou, K.; Guo, H.; Zhang, J.; Zhao, D.; Zhou, Y.; Zheng, Z.; Xu, Y.; Li, Y.; Wang, D. Potential role of TET2 in gastric cancer cisplatin resistance. Pathol. Res. Pract., 2019, 215(11), 152637. doi: 10.1016/j.prp.2019.152637 PMID: 31570278
- Luo, Y.J.; Huang, Q.M.; Ren, Y.; Liu, Z.L.; Xu, C.F.; Wang, H.; Xiao, J.W. Non-coding RNA in drug resistance of gastric cancer. World J. Gastrointest. Oncol., 2019, 11(11), 957-970. doi: 10.4251/wjgo.v11.i11.957 PMID: 31798777
- Ke, G.; Zhang, J.; Gao, W.; Chen, J.; Liu, L.; Wang, S.; Zhang, H.; Yan, G. Application of advanced technology in traditional Chinese medicine for cancer therapy. Front. Pharmacol., 2022, 13, 1038063. doi: 10.3389/fphar.2022.1038063 PMID: 36313284
- Liu, Y.; Yang, S.; Wang, K.; Lu, J.; Bao, X.; Wang, R.; Qiu, Y.; Wang, T.; Yu, H. Cellular senescence and cancer: Focusing on traditional Chinese medicine and natural products. Cell Prolif., 2020, 53(10), e12894. doi: 10.1111/cpr.12894 PMID: 32881115
- Luo, H.; Vong, C.T.; Chen, H.; Gao, Y.; Lyu, P.; Qiu, L.; Zhao, M.; Liu, Q.; Cheng, Z.; Zou, J.; Yao, P.; Gao, C.; Wei, J.; Ung, C.O.L.; Wang, S.; Zhong, Z.; Wang, Y. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin. Med., 2019, 14(1), 48. doi: 10.1186/s13020-019-0270-9 PMID: 31719837
- Zhao, N.; Wang, W.; Jiang, H.; Qiao, Z.; Sun, S.; Wei, Y.; Xie, X.; Li, H.; Bi, X.; Yang, Z. Natural products and gastric cancer: Cellular mechanisms and effects to change cancer progression. Anticancer. Agents Med. Chem., 2023, 23(13), 1506-1518. doi: 10.2174/1871520623666230407082955 PMID: 37026490
- Samarghandian, S.; Alavi Dana, S.M.M.; Farkhondeh, T.; Aschner, M.; Darroudi, M.; Samini, H. Chrysin effect against gastric cancer: Focus on its molecular mechanisms. Curr. Mol. Pharmacol., 2023, 16(7), e030123212340. doi: 10.2174/1874467216666230103105725 PMID: 36597606
- Treasure, J. Herbal medicine and cancer: an introductory overview. Semin. Oncol. Nurs., 2005, 21(3), 177-183. doi: 10.1016/j.soncn.2005.04.006 PMID: 16092805
- Vidoni, C.; Ferraresi, A.; Secomandi, E.; Vallino, L.; Dhanasekaran, D.N.; Isidoro, C. Epigenetic targeting of autophagy for cancer prevention and treatment by natural compounds. Semin. Cancer Biol., 2020, 66, 34-44. doi: 10.1016/j.semcancer.2019.04.006 PMID: 31054926
- Widyananda, M.H.; Wicaksono, S.T.; Rahmawati, K.; Puspitarini, S.; Ulfa, S.M.; Jatmiko, Y.D.; Masruri, M.; Widodo, N. A potential anticancer mechanism of finger root (Boesenbergia rotunda) extracts against a breast cancer cell line. Scientifica (Cairo), 2022, 2022, 1-17. doi: 10.1155/2022/9130252 PMID: 36106139
- Yadav, S.; Sharma, A.; Nayik, G.A.; Cooper, R.; Bhardwaj, G.; Sohal, H.S.; Mutreja, V.; Kaur, R.; Areche, F.O.; AlOudat, M.; Shaikh, A.M.; Kovács, B.; Mohamed Ahmed, A.E. Review of Shikonin and derivatives: Isolation, chemistry, biosynthesis, pharmacology and toxicology. Front. Pharmacol., 2022, 13, 905755. doi: 10.3389/fphar.2022.905755 PMID: 35847041
- Guo, C.; He, J.; Song, X.; Tan, L.; Wang, M.; Jiang, P.; Li, Y.; Cao, Z.; Peng, C. Pharmacological properties and derivatives of shikoninA review in recent years. Pharmacol. Res., 2019, 149, 104463. doi: 10.1016/j.phrs.2019.104463 PMID: 31553936
- Hou, Y.; Bi, X.; Xu, J.; Liu, X.; Xia, X.; Li, N. Shikonin induces apoptosis in the human gastric cancer cells HGC-27 through mitochondria-mediated pathway. Pharmacogn. Mag., 2015, 11(42), 250-256. doi: 10.4103/0973-1296.153074 PMID: 25829762
- Liang, W.; Cai, A.; Chen, G.; Xi, H.; Wu, X.; Cui, J.; Zhang, K.; Zhao, X.; Yu, J.; Wei, B.; Chen, L. Shikonin induces mitochondria-mediated apoptosis and enhances chemotherapeutic sensitivity of gastric cancer through reactive oxygen species. Sci. Rep., 2016, 6(1), 38267. doi: 10.1038/srep38267 PMID: 27905569
- Liu, X.; Yang, Y.; Tang, X.; Guo, L.; Tang, X.; Zhu, T.; Zhao, T.; Zhang, W.; Zhang, P. Shikonin mediates apoptosis through g protein-coupled estrogen receptor of ovarian cancer cells. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-18. doi: 10.1155/2022/6517732 PMID: 36248433
- Ma, X.; Yu, M.; Hao, C.; Yang, W. Shikonin induces tumor apoptosis in glioma cells via endoplasmic reticulum stress, and Bax/Bak mediated mitochondrial outer membrane permeability. J. Ethnopharmacol., 2020, 263, 113059. doi: 10.1016/j.jep.2020.113059 PMID: 32663591
- Ni, F.; Huang, X.; Chen, Z.; Qian, W.; Tong, X. Shikonin exerts antitumor activity in Burkitts lymphoma by inhibiting C-MYC and PI3K/AKT/mTOR pathway and acts synergistically with doxorubicin. Sci. Rep., 2018, 8(1), 3317. doi: 10.1038/s41598-018-21570-z PMID: 29463831
- Shan, Z.L.; Zhong, L.; Xiao, C.L.; Gan, L.G.; Xu, T.; Song, H.; Yang, R.; Li, L.; Liu, B.Z. Shikonin suppresses proliferation and induces apoptosis in human leukemia NB4 cells through modulation of MAPKs and c-Myc. Mol. Med. Rep., 2017, 16(3), 3055-3060. doi: 10.3892/mmr.2017.6965 PMID: 28713949
- Sun, Q.; Gong, T.; Liu, M.; Ren, S.; Yang, H.; Zeng, S.; Zhao, H.; Chen, L.; Ming, T.; Meng, X.; Xu, H. Shikonin, a naphthalene ingredient: Therapeutic actions, pharmacokinetics, toxicology, clinical trials and pharmaceutical researches. Phytomedicine, 2022, 94, 153805. doi: 10.1016/j.phymed.2021.153805 PMID: 34749177
- Vali, K. Talacko, P.; Grobárová, V.; Černý, J.; Novák, P. Shikonin regulates C-MYC and GLUT1 expression through the MST1-YAP1-TEAD1 axis. Exp. Cell Res., 2016, 349(2), 273-281. doi: 10.1016/j.yexcr.2016.10.018 PMID: 27793648
- Song, P.; Duan, D.; Guo, W.; Wang, Z.; Cui, Q.; Shi, L.; Zhang, M. Network pharmacology-based prediction and verification of shikonin for treating colorectal cancer. Recent Patents Anticancer Drug Discov., 2022, 17(3), 297-311. doi: 10.2174/1574892817666211224142100 PMID: 34951580
- Zhao, Q.; Assimopoulou, A.N.; Klauck, S.M.; Damianakos, H.; Chinou, I.; Kretschmer, N.; Rios, J.L.; Papageorgiou, V.P.; Bauer, R.; Efferth, T. Inhibition of c-MYC with involvement of ERK/JNK/MAPK and AKT pathways as a novel mechanism for shikonin and its derivatives in killing leukemia cells. Oncotarget, 2015, 6(36), 38934-38951. doi: 10.18632/oncotarget.5380 PMID: 26472107
- Zhao, X.; Zhu, Y.; Hu, J.; Jiang, L.; Li, L.; Jia, S.; Zen, K. Shikonin inhibits tumor growth in mice by suppressing pyruvate kinase M2-mediated Aerobic Glycolysis. Sci. Rep., 2018, 8(1), 14517. doi: 10.1038/s41598-018-31615-y PMID: 30266938
- Zhu, J.; Zhao, L.; Luo, B.; Sheng, W. Shikonin regulates invasion and autophagy of cultured colon cancer cells by inhibiting yes associated protein. Oncol. Lett., 2019, 18(6), 6117-6125. doi: 10.3892/ol.2019.10980 PMID: 31788086
- Papageorgiou, V.; Assimopoulou, A.; Ballis, A. Alkannins and shikonins: a new class of wound healing agents. Curr. Med. Chem., 2008, 15(30), 3248-3267. doi: 10.2174/092986708786848532 PMID: 19075667
- Bedi, N.; Kaur, K.; Singh, A.; Sharma, H.; Punj, S. Formulation strategies and therapeutic applications of shikonin and related derivatives. Recent Adv. Drug Deliv. Formul., 2022, 16(1), 55-67. doi: 10.2174/2667387816666220302112201 PMID: 35236278
- Andújar, I.; Recio, M.; Giner, R.; Ríos, J. Traditional chinese medicine remedy to jury: the pharmacological basis for the use of shikonin as an anticancer therapy. Curr. Med. Chem., 2013, 20(23), 2892-2898. doi: 10.2174/09298673113209990008 PMID: 23651309
- Zhang, X.; Cui, J.H.; Meng, Q.Q.; Li, S.S.; Zhou, W.; Xiao, S. Advance in Anti-tumor Mechanisms of Shikonin, Alkannin and their Derivatives. Mini Rev. Med. Chem., 2018, 18(2), 164-172. doi: 10.2174/1389557517666170228114809 PMID: 28245783
- Lohberger, B.; Glänzer, D.; Kaltenegger, H.; Eck, N.; Leithner, A.; Bauer, R.; Kretschmer, N.; Steinecker-Frohnwieser, B. Shikonin derivatives cause apoptosis and cell cycle arrest in human chondrosarcoma cells via death receptors and MAPK regulation. BMC Cancer, 2022, 22(1), 758. doi: 10.1186/s12885-022-09857-x PMID: 35820864
- Qi, H.; Zhang, X.; Liu, H.; Han, M.; Tang, X.; Qu, S.; Wang, X.; Yang, Y. Shikonin induced apoptosis mediated by endoplasmic reticulum stress in colorectal cancer cells. J. Cancer, 2022, 13(1), 243-252. doi: 10.7150/jca.65297 PMID: 34976186
- Zhang, J.; Shang, L.; Jiang, W.; Wu, W. Shikonin induces apoptosis and autophagy via downregulation of pyrroline-5-carboxylate reductase1 in hepatocellular carcinoma cells. Bioengineered, 2022, 13(3), 7904-7918. doi: 10.1080/21655979.2022.2052673 PMID: 35293266
- Wang, F.; Mayca Pozo, F.; Tian, D.; Geng, X.; Yao, X.; Zhang, Y.; Tang, J. Shikonin inhibits cancer through P21 upregulation and apoptosis induction. Front. Pharmacol., 2020, 11, 861. doi: 10.3389/fphar.2020.00861 PMID: 32581812
- Shahsavari, Z.; Karami-Tehrani, F.; Salami, S. Targeting cell necroptosis and apoptosis induced by shikonin via receptor interacting protein kinases in estrogen receptor positive breast cancer cell line, MCF-7. Anticancer. Agents Med. Chem., 2018, 18(2), 245-254. doi: 10.2174/1871520617666170919164055 PMID: 28933271
- Cui, J.; Zhou, X.; Huang, J.; Cui, J.; Chen, J. Selective antitumor effect of shikonin derived dmako-20 on melanoma through CYP1B1. Curr. Cancer Drug Targets, 2021, 21(3), 223-231. doi: 10.2174/1568009620666201116112937 PMID: 33200710
- Chen, Q.; Han, H.; Lin, F.; Yang, L.; Feng, L.; Lai, X.; Wen, Z.; Yang, M.; Wang, C.; Ma, Y.; Yin, T.; Lu, G.; Lin, H.; Qi, J.; Yang, Y. Novel shikonin derivatives suppress cell proliferation, migration and induce apoptosis in human triple-negative breast cancer cells via regulating PDK1/PDHC axis. Life Sci., 2022, 310, 121077. doi: 10.1016/j.lfs.2022.121077 PMID: 36244412
- Cox, J.L.; Ahmad, H.; Crotts, M.S.; Jacobs, J.C.; Baer, R.W. Shikonin causes non-apoptotic cell death in B16F10 melanoma. Anticancer. Agents Med. Chem., 2023, 23(16), 1880-1887. doi: 10.2174/1871520623666230701000338 PMID: 37393553
- Liu, M.; Yao, B.; Gui, T.; Guo, C.; Wu, X.; Li, J.; Ma, L.; Deng, Y.; Xu, P.; Wang, Y.; Yang, D.; Li, Q.; Zeng, X.; Li, X.; Hu, R.; Ge, J.; Yu, Z.; Chen, Y.; Chen, B.; Ju, J.; Zhao, Q. PRMT5-dependent transcriptional repression of c-Myc target genes promotes gastric cancer progression. Theranostics, 2020, 10(10), 4437-4452. doi: 10.7150/thno.42047 PMID: 32292506
- Wang, C.; Zhang, J.; Yin, J.; Gan, Y.; Xu, S.; Gu, Y.; Huang, W. Alternative approaches to target Myc for cancer treatment. Signal Transduct. Target. Ther., 2021, 6(1), 117. doi: 10.1038/s41392-021-00500-y PMID: 33692331
- Huang, H.; Weng, H.; Zhou, H.; Qu, L. Attacking c-Myc: targeted and combined therapies for cancer. Curr. Pharm. Des., 2014, 20(42), 6543-6554. doi: 10.2174/1381612820666140826153203 PMID: 25341931
- Ashrafizadeh, M.; Zarabi, A.; Hushmandi, K.; Moghadam, E.R.; Hashemi, F.; Daneshi, S.; Hashemi, F.; Tavakol, S.; Mohammadinejad, R.; Najafi, M.; Dudha, N.; Garg, M. C-Myc signaling pathway in treatment and prevention of brain tumors. Curr. Cancer Drug Targets, 2021, 21(1), 2-20. doi: 10.2174/1568009620666201016121005 PMID: 33069197
- Hermeking, H. The MYC oncogene as a cancer drug target. Curr. Cancer Drug Targets, 2003, 3(3), 163-175. doi: 10.2174/1568009033481949 PMID: 12769686
- Zhang, Y.; Huang, H.; Kong, Y.; Xu, C.; Dai, L.; Geng, X.; Deng, Y.; Wang, Y.; Liu, Y.; Meng, C.; Zhang, X.; Li, J.; Qin, J.; Feng, B.; Mak, K.K.; Wang, L.; Huang, Y.; Wang, W.; Lan, H.Y.; Yang, B.; Lu, H.A.J.; Xia, Y. Kidney tubular transcription co-activator, Yes-associated protein 1 (YAP), controls the expression of collecting duct aquaporins and water homeostasis. Kidney Int., 2023, 103(3), 501-513. doi: 10.1016/j.kint.2022.10.007 PMID: 36328098
- Zanconato, F.; Cordenonsi, M.; Piccolo, S. YAP/TAZ at the roots of cancer. Cancer Cell, 2016, 29(6), 783-803. doi: 10.1016/j.ccell.2016.05.005 PMID: 27300434
- Li, Y.W.; Guo, J.; Shen, H.; Li, J.; Yang, N.; Frangou, C.; Wilson, K.E.; Zhang, Y.; Mussell, A.L.; Sudol, M.; Farooq, A.; Qu, J.; Zhang, J. Phosphorylation of Tyr188 in the WW domain of YAP1 plays an essential role in YAP1-induced cellular transformation. Cell Cycle, 2016, 15(18), 2497-2505. doi: 10.1080/15384101.2016.1207836 PMID: 27428284
- Zhang, J.; Zhou, Y.; Tang, P.; Cheng, A.; Yu, J.; To, K.; Kang, W. Mechanotransduction and cytoskeleton remodeling shaping yap1 in gastric tumorigenesis. Int. J. Mol. Sci., 2019, 20(7), 1576. doi: 10.3390/ijms20071576 PMID: 30934860
- Hao, D.C.; Xiao, P.G. Network pharmacology: a Rosetta Stone for traditional Chinese medicine. Drug Dev. Res., 2014, 75(5), 299-312. doi: 10.1002/ddr.21214 PMID: 25160070
- Zhou, Y.; Chu, Y.; Shi, J.; Hu, Y. Analysis of the Molecular Mechanism of Huangqi Herb Treating COVID- 19 with Myocardial Injury by Pharmacological Tools, Programming Software and Molecular Docking. Comb. Chem. High Throughput Screen., 2023, 26(5), 1015-1029. doi: 10.2174/1386207325666220713092756 PMID: 35838222
- Jiang, Z.; Wang, W.; Li, M.; Si, H. Network pharmacology and integrated molecular docking study on the mechanism of the therapeutic effect of fangfeng decoction in osteoarthritis. Curr. Pharm. Des., 2023, 29(5), 379-392. doi: 10.2174/1381612829666230216095659 PMID: 36803762
- Zhang, Y.; Weng, Q.; Hu, T.; Shen, X.; Han, J. Prediction of rhizoma drynariae targets in the treatment of osteonecrosis of the femoral head based on network pharmacology and experimental verification. Curr. Computeraided Drug Des., 2023, 19(1), 13-23. doi: 10.2174/1573409918666221006122426 PMID: 36201277
- Lin, Z.; Wang, S.; Liu, Z.; Liu, B.; Xie, L.; Zhou, J. Exploring anti-osteoporosis medicinal herbs using cheminformatics and deep learning approaches. Comb. Chem. High Throughput Screen., 2023, 26(9), 1802-1811. doi: 10.2174/1386207325666220905155923 PMID: 36065918
- Wu, H.; Wang, T.; Li, X.; Tian, Y. Network pharmacology and molecular docking to unveil the mechanism of shudihuang against amyotrophic lateral sclerosis. Curr. Pharm. Des., 2023, 29(19), 1535-1545. doi: 10.2174/1381612829666230621105552 PMID: 37345246
- Hu, Z.; Yang, M.; Zhang, L.; Yue, R. Effects and mechanisms of Ban-Xia Xie-Xin decoction on type 2 diabetes mellitus: Network pharmacology analysis and experimental evidence. Endocr. Metab. Immune Disord. Drug Targets, 2023, 23(7), 947-963. doi: 10.2174/1871530323666221220141716 PMID: 36545745
- Zhang, Y.C.; Gao, W.C.; Chen, W.J.; Pang, D.X.; Mo, D.Y.; Yang, M. Network pharmacology and molecular docking analysis on molecular targets and mechanisms of Fei Jin Sheng formula in the treatment of lung cancer. Curr. Pharm. Des., 2023, 29(14), 1121-1134. doi: 10.2174/1381612829666230503164755 PMID: 37138492
- Lin, Y.; Xiang, L.; Li, X.; Tang, Q.; Meng, F.; Chen, W. Exploring the mechanism of Yi-Jing decoction in treating polycystic ovary syndrome by using network pharmacology. Curr. Med. Chem., 2023, 30(21), 2463-2474. doi: 10.2174/0929867329666220508180611 PMID: 35532255
- Zhang, H.; Jiang, H.; Zhao, M.; Xu, Y.; Liang, J.; Ye, Y.; Chen, H. Treatment of gout with TCM using turmeric and corn silk: a concise review article and pharmacology network analysis. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-18. doi: 10.1155/2022/3143733 PMID: 36276864
- Huang, Q.; Zhang, C.; Tang, S.; Wu, X.; Peng, X. Network pharmacology analyses of the pharmacological targets and therapeutic mechanisms of salvianolic acid A in myocardial infarction. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-14. doi: 10.1155/2022/8954035 PMID: 36248430
- Vijh, D.; Imam, M.A.; Haque, M.M.U.; Das, S.; Islam, A.; Malik, M.Z. Network pharmacology and bioinformatics approach reveals the therapeutic mechanism of action of curcumin in Alzheimer disease. Metab. Brain Dis., 2023, 38(4), 1205-1220. doi: 10.1007/s11011-023-01160-3 PMID: 36652025
- Yang, Z.; Wang, Z.; Li, J.; Long, J.; Peng, C.; Yan, D. Network pharmacology‐based dissection of the underlying mechanisms of dyspnoea induced by zedoary turmeric oil. Basic Clin. Pharmacol. Toxicol., 2022, 130(5), 606-617. doi: 10.1111/bcpt.13722 PMID: 35318816
- Jin, J.; Chen, B.; Zhan, X.; Zhou, Z.; Liu, H.; Dong, Y. Network pharmacology and molecular docking study on the mechanism of colorectal cancer treatment using Xiao-Chai-Hu-Tang. PLoS One, 2021, 16(6), e0252508. doi: 10.1371/journal.pone.0252508 PMID: 34125845
- Riihimäki, M.; Hemminki, A.; Sundquist, K.; Sundquist, J.; Hemminki, K. Metastatic spread in patients with gastric cancer. Oncotarget, 2016, 7(32), 52307-52316. doi: 10.18632/oncotarget.10740 PMID: 27447571
- Lin, K.H.; Huang, M.Y.; Cheng, W.C.; Wang, S.C.; Fang, S.H.; Tu, H.P.; Su, C.C.; Hung, Y.L.; Liu, P.L.; Chen, C.S.; Wang, Y.T.; Li, C.Y. RNA-seq transcriptome analysis of breast cancer cell lines under shikonin treatment. Sci. Rep., 2018, 8(1), 2672. doi: 10.1038/s41598-018-21065-x PMID: 29422643
- Duffy, M.J.; OGrady, S.; Tang, M.; Crown, J. MYC as a target for cancer treatment. Cancer Treat. Rev., 2021, 94, 102154. doi: 10.1016/j.ctrv.2021.102154 PMID: 33524794
- La Rosa, S.; Bernasconi, B.; Vanoli, A.; Sciarra, A.; Notohara, K.; Albarello, L.; Casnedi, S.; Billo, P.; Zhang, L.; Tibiletti, M.G.; Sessa, F. c-MYC amplification and c-myc protein expression in pancreatic acinar cell carcinomas. New insights into the molecular signature of these rare cancers. Virchows Arch., 2018, 473(4), 435-441. doi: 10.1007/s00428-018-2366-5 PMID: 29721608
- Peterson, C.; Hicks, J.L.; De Marzo, A.M.; Campbell, A.A.; Eberhart, C.G.; Dubielzig, R.R.; Teixeira, L.B. Upregulated MYC expression and p53 mutations may contribute to the oncogenesis of canine Meibomian gland carcinomas. Vet. Pathol., 2023, 60(2), 185-189. doi: 10.1177/03009858221143400 PMID: 36541627
- Liu, X.M.; Xia, S.Y.; Long, W.; Li, H.J.; Yang, G.Q.; Sun, W.; Li, S.Y.; Du, X.H. Potent bromodomain and extraterminal domain inhibitor JAB-8263 suppresses MYC expression and exerts anti-tumor activity in colorectal cancer models. World J. Gastrointest. Oncol., 2023, 15(2), 332-342. doi: 10.4251/wjgo.v15.i2.332 PMID: 36908321
- Ding, Y.; Lu, Y.; Xie, X.; Cao, L.; Zheng, S. Ring finger protein 180 suppresses cell proliferation and energy metabolism of non-small cell lung cancer through downregulating C-myc. World J. Surg. Oncol., 2022, 20(1), 162. doi: 10.1186/s12957-022-02599-x PMID: 35598017
- Zhang, F.; Li, K.; Yao, X.; Wang, H.; Li, W.; Wu, J.; Li, M.; Zhou, R.; Xu, L.; Zhao, L. A miR-567-PIK3AP1-PI3K/AKT-c-Myc feedback loop regulates tumour growth and chemoresistance in gastric cancer. EBioMedicine, 2019, 44, 311-321. doi: 10.1016/j.ebiom.2019.05.003 PMID: 31078520
- Yong, J.; Li, Y.; Lin, S.; Wang, Z.; Xu, Y. Inhibitors targeting YAP in gastric cancer: Current status and future perspectives. Drug Des. Devel. Ther., 2021, 15, 2445-2456. doi: 10.2147/DDDT.S308377 PMID: 34140763
- Yoo, W.; Lee, J.; Jun, E.; Noh, K.H.; Lee, S.; Jung, D.; Jung, K.H.; Kim, J.S.; Park, Y.Y.; Kim, S.C.; Kim, S. The YAP1NMU axis is associated with pancreatic cancer progression and poor outcome: Identification of a novel diagnostic biomarker and therapeutic target. Cancers (Basel), 2019, 11(10), 1477. doi: 10.3390/cancers11101477 PMID: 31575084
- Cho, Y.; Park, M.J.; Kim, K.; Kim, S.W.; Kim, W.; Oh, S.; Lee, J.H. Reactive oxygen species-induced activation of Yes-associated protein-1 through the c-Myc pathway is a therapeutic target in hepatocellular carcinoma. World J. Gastroenterol., 2020, 26(42), 6599-6613. doi: 10.3748/wjg.v26.i42.6599 PMID: 33268949
Дополнительные файлы
