FTIR, 1H, and 13C NMR Characterization and Antibacterial Activity of the Combination of Euphorbia Honey and Potato Starch


Цитировать

Полный текст

Аннотация

Aim and Objective:In recent years, natural biopolymer (potato starch) hydrogels have been widely used in the field of wound dressing material. This study aimed to develop and characterize a novel antibacterial hydrogel made from potato starch and natural honey.

Methods:The structure of the composite films was evaluated by Fourier transform infrared (FTIR) and 1H,13C nuclear magnetic resonance (NMR) spectroscopy, and the antibacterial activities were tested by agar diffusion method. FTIR analysis showed chemical interaction between the components of Euphorbia honey (EH) and potato starch hydrogel (PSH).

Results:The 1H–13C NMR and FTIR analyses of EH/PSH confirmed their structure and showed the presence of glucose and hydrocarbon derivatives. After 24 h of incubation, the EH/PSH hydrogel showed good antibacterial activity against three bacterial strains (K.pneumonia, P.mirabilis, and P. aeruginosa) by producing clear inhibition zones of 12.33±1.88 mm, 15.33±0.94, and 10±0 mm, respectively. In addition, K. pneumonia, P. mirabilis, and P. aeruginosa were sensitive to the EH/SPH with a minimum inhibitory concentration (MIC) of 1 %.

Conclusion:These results suggest that EH–PS has potential as an alternative candidate to conventional antibiotics.

Об авторах

Moussa Ahmed

Institute of Veterinary Sciences, Ibn-Khaldoun of Tiaret University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Mokhtar Amirat

Institute of Veterinary Sciences, Ibn-Khaldoun of Tiaret University

Email: info@benthamscience.net

Список литературы

  1. Zhang, O.L.; Niu, J.Y.; Yu, O.Y.; Mei, M.L.; Jakubovics, N.S.; Chu, C.H. Peptide designs for use in caries management: A systematic review. Int. J. Mol. Sci., 2023, 24(4), 4247. doi: 10.3390/ijms24044247 PMID: 36835657
  2. Kurek-Górecka, A.; Górecki, M.; Rzepecka-Stojko, A.; Balwierz, R.; Stojko, J. Bee products in dermatology and skin care. Molecules, 2020, 25(3), 556. doi: 10.3390/molecules25030556 PMID: 32012913
  3. Tedesco, R.; Scalabrin, E.; Malagnini, V.; Strojnik, L.; Ogrinc, N.; Capodaglio, G. Characterization of botanical origin of italian honey by carbohydrate composition and volatile organic compounds (VOCs). Foods, 2022, 11(16), 2441. doi: 10.3390/foods11162441 PMID: 36010441
  4. Sakač M.B.; Jovanov, P.T.; Marić A.Z.; Pezo, L.L.; Kevrešan, Ž.S.; Novaković A.R.; Nedeljković N.M. Physicochemical properties and mineral content of honey samples from Vojvodina (Republic of Serbia). Food Chem., 2019, 276, 15-21. doi: 10.1016/j.foodchem.2018.09.149 PMID: 30409578
  5. Islam, S.; Pramanik, M.J.; Biswas, S.; Moniruzzaman, M.; Biswas, J.; Akhtar-E-Ekram, M.; Zaman, S.; Uddin, M.S.; Saleh, M.A.; Hassan, S. Biological efficacy of compounds from stingless honey and sting honey against two pathogenic bacteria: An in vitro and in silico study. Molecules, 2022, 27(19), 6536. doi: 10.3390/molecules27196536 PMID: 36235073
  6. Molan, P. Why honey is effective as a medicine. Bee World, 2001, 82(1), 22-40. doi: 10.1080/0005772X.2001.11099498
  7. Ndlovu, S.P.; Ngece, K.; Alven, S.; Aderibigbe, B.A. Gelatin-based hybrid scaffolds: Promising wound dressings. Polymers, 2021, 13(17), 2959. doi: 10.3390/polym13172959 PMID: 34502997
  8. De Luca, I.; Pedram, P.; Moeini, A.; Cerruti, P.; Peluso, G.; Di Salle, A.; Germann, N. Nanotechnology development for formulating essential oils in wound dressing materials to promote the wound-healing process: A review. Appl. Sci., 2021, 11(4), 1713. doi: 10.3390/app11041713
  9. Torres, F.G.; Commeaux, S.; Troncoso, O.P. Starch‐based biomaterials for wound‐dressing applications. Stärke, 2013, 65(7-8), 543-551. doi: 10.1002/star.201200259
  10. Gavan, A.; Colobatiu, L.; Hanganu, D.; Bogdan, C.; Olah, N.; Achim, M.; Mirel, S. Development and evaluation of hydrogel wound dressings loaded with herbal extracts. Processes, 2022, 10(2), 242. doi: 10.3390/pr10020242
  11. Naseri, E.; Ahmadi, A. A review on wound dressings: Antimicrobial agents, biomaterials, fabrication techniques, and stimuli-responsive drug release. Eur. Polym. J., 2022, 173(4), 111293-111298. doi: 10.1016/j.eurpolymj.2022.111293
  12. Li, C.; Luo, X. Carboxymethyl chitosan-based electrospun nanofibers with high citral-loading for potential anti-infection wound dressings. Int. J. Biol. Macromol., 2022, 209(Pt A), 344-355. doi: 10.1016/j.ijbiomac.2022.04.025
  13. Ahmed, A.; Niazi, M.B.K.; Jahan, Z.; Ahmad, T.; Hussain, A.; Pervaiz, E.; Janjua, H.A.; Hussain, Z. In-vitro and in-vivo study of superabsorbent PVA/Starch/g-C3N4/Ag@TiO2 NPs hydrogel membranes for wound dressing. Eur. Polym. J., 2020, 130, 109650. doi: 10.1016/j.eurpolymj.2020.109650
  14. Waghmare, V.S.; Wadke, P.R.; Dyawanapelly, S.; Deshpande, A.; Jain, R.; Dandekar, P. Starch based nanofibrous scaffolds for wound healing applications. Bioact. Mater., 2018, 3(3), 255-266. doi: 10.1016/j.bioactmat.2017.11.006 PMID: 29744465
  15. Ji, N.; Qin, Y.; Xi, T.; Xiong, L.; Sun, Q. Effect of chitosan on the antibacterial and physical properties of corn starch nanocomposite films. Stärke, 2017, 69(1-2), 1600114. doi: 10.1002/star.201600114
  16. Abd Rashid, N.; Mohammed, S.N.F.; Syed Abd Halim, S.A.; Ghafar, N.A.; Abdul Jalil, N.A. Therapeutic potential of honey and propolis on ocular disease. Pharmaceuticals, 2022, 15(11), 1419. doi: 10.3390/ph15111419 PMID: 36422549
  17. Peláez-Acero, A.; Garrido-Islas, D.B.; Campos-Montiel, R.G.; González-Montiel, L.; Medina-Pérez, G.; Luna-Rodríguez, L.; González-Lemus, U.; Cenobio-Galindo, A.J. The application of ultrasound in honey: Antioxidant activity, inhibitory effect on α-amylase and α-glucosidase, and in vitro digestibility assessment. Molecules, 2022, 27(18), 5825. doi: 10.3390/molecules27185825 PMID: 36144558
  18. Khiati, B.; Bacha, S.; Aissat, S.; Ahmed, M. The use of Algerian honey on cutaneous wound healing: A case report and review of the literature. Asian Pac. J. Trop. Dis., 2014, 4, S867-S869. doi: 10.1016/S2222-1808(14)60748-9
  19. Abedi, E.; Sayadi, M.; Pourmohammadi, K. Effect of freezing-thawing pre-treatment on enzymatic modification of corn and potato starch treated with activated α-amylase: Investigation of functional properties. Food Hydrocoll., 2022, 129, 107676. doi: 10.1016/j.foodhyd.2022.107676
  20. Yang, L.; Xie, M.; Fang, J.; Zhang, T.; Wang, X.; Chen, L. Effect of additives on properties of cross‐linked carboxymethyl starch/polyvinyl alcohol composite films. J. Appl. Polym. Sci., 2022, 139(4), 51546. doi: 10.1002/app.51546
  21. Ahmed, M.; Djebli, N.; Aissat, S.; Khiati, B.; Meslem, A.; Bacha, S. In vitro activity of natural honey alone and in combination with curcuma starch against Rhodotorula mucilaginosa in correlation with bioactive compounds and diastase activity. Asian Pac. J. Trop. Biomed., 2013, 3(10), 816-821. doi: 10.1016/S2221-1691(13)60161-6 PMID: 24075348
  22. Stuart, B.H. Biological Applications of Infrared Spectroscopy; Ando, D.J; Series, A.C.O.L., Ed.; Wiley: Chichester, UK, 1997.
  23. Gok, S.; Severcan, M.; Goormaghtigh, E.; Kandemir, I.; Severcan, F. Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis. Food Chem., 2015, 170, 234-240. doi: 10.1016/j.foodchem.2014.08.040 PMID: 25306340
  24. Vandamme, L.; Heyneman, A.; Hoeksema, H.; Verbelen, J.; Monstrey, S. Honey in modern wound care: A systematic review. Burns, 2013, 39(8), 1514-1525. doi: 10.1016/j.burns.2013.06.014 PMID: 23896128
  25. Nikhat, S.; Fazil, M. History, phytochemistry, experimental pharmacology and clinical uses of honey: A comprehensive review with special reference to Unani medicine. J. Ethnopharmacol., 2022, 282, 114614. doi: 10.1016/j.jep.2021.114614 PMID: 34508800
  26. Ahmed, M.; Amirat, M.; Aissat, S.; Aissa, M.A.; Khiati, B. FTIR characterization of Sahara honey and propolis and evaluation of its anticandidal potentials. Acta Sci. Nat., 2020, 7(3), 46-57. doi: 10.2478/asn-2020-0032
  27. Hamdi, M.; Khiati, B.; Ahmed, M. Improved antibacterial activity of honey, propolis and beeswax-sodium carboxymethyl cellulose composite hydrogel. Indian J. Nov. Drug Deliv., 2020, 12(4), 217-221.
  28. Ahmed, M.; Aissat, S.; Djebli, N. Effect of heat treatment on antimycotic activity of sahara honey. J. Coast. Life Med., 2014, 2(11), 876-881.
  29. Nezhad-Mokhtari, P.; Javanbakht, S.; Asadi, N.; Ghorbani, M.; Milani, M.; Hanifehpour, Y.; Gholizadeh, P.; Akbarzadeh, A. Recent advances in honey-based hydrogels for wound healing applications: Towards natural therapeutics. J. Drug Deliv. Sci. Technol., 2021, 66, 102789. doi: 10.1016/j.jddst.2021.102789
  30. Delavari, M.M.; Stiharu, I. Preparing and characterizing novel biodegradable starch/PVA-based films with nano-sized zinc-oxide particles for wound-dressing applications. Appl. Sci., 2022, 12(8), 4001. doi: 10.3390/app12084001
  31. Al-Sayaghi, A.M.; Al-Kabsi, A.M.; Abduh, M.S.; Saghir, S.A.M.; Alshawsh, M.A. Antibacterial mechanism of action of two types of honey against escherichia coli through interfering with bacterial membrane permeability, inhibiting proteins, and inducing bacterial DNA damage. Antibiotics, 2022, 11(9), 1182. doi: 10.3390/antibiotics11091182 PMID: 36139961
  32. Yupanqui Mieles, J.; Vyas, C.; Aslan, E.; Humphreys, G.; Diver, C.; Bartolo, P. Honey: An advanced antimicrobial and wound healing biomaterial for tissue engineering applications. Pharmaceutics, 2022, 14(8), 1663. doi: 10.3390/pharmaceutics14081663 PMID: 36015289
  33. Hossain, M.L.; Lim, L.Y.; Hammer, K.; Hettiarachchi, D.; Locher, C. A review of commonly used methodologies for assessing the antibacterial activity of honey and honey products. Antibiotics, 2022, 11(7), 975. doi: 10.3390/antibiotics11070975 PMID: 35884229
  34. Moussa, A.; Noureddine, D.; Mohamed, H.S.; Abdelmelek, M.; Saad, A. Antibacterial activity of various honey types of Algeria against Staphylococcus aureus and Streptococcus pyogenes. Asian Pac. J. Trop. Med., 2012, 5(10), 773-776. doi: 10.1016/S1995-7645(12)60141-2 PMID: 23043914
  35. Moussa, A.; Noureddine, D.; Saad, A.; Abdelmelek, M.; Abdelkader, B. Antifungal activity of four honeys of different types from Algeria against pathogenic yeast: Candida albicans and Rhodotorula sp. Asian Pac. J. Trop. Biomed., 2012, 2(7), 554-557. doi: 10.1016/S2221-1691(12)60096-3 PMID: 23569970
  36. Saraiva, M.M.; Campelo, M.S.; Câmara Neto, J.F.; Lima, A.B.N.; Silva, G.A.; Dias, A.T.F.F.; Ricardo, N.M.P.S.; Kaplan, D.L.; Ribeiro, M.E.N.P. Alginate/polyvinyl alcohol films for wound healing: Advantages and challenges. J. Biomed. Mater. Res. B Appl. Biomater., 2023, 111(1), 220-233. doi: 10.1002/jbm.b.35146 PMID: 35959858
  37. Abdollahi, Z.; Zare, E.N.; Salimi, F.; Goudarzi, I.; Tay, F.R.; Makvandi, P. Bioactive carboxymethyl starch-based hydrogels decorated with CuO nanoparticles: Antioxidant and antimicrobial properties and accelerated wound healing in vivo. Int. J. Mol. Sci., 2021, 22(5), 2531. doi: 10.3390/ijms22052531 PMID: 33802469
  38. Aliabadi, M.; Chee, B.S.; Matos, M.; Cortese, Y.J.; Nugent, M.J.D.; de Lima, T.A.M.; Magalhães, W.L.E.; de Lima, G.G. Yerba mate extract in microfibrillated cellulose and corn starch films as a potential wound healing bandage. Polymers, 2020, 12(12), 2807. doi: 10.3390/polym12122807 PMID: 33260883
  39. Zhang, R.; Wang, X.; Cheng, M. Preparation and characterization of potato starch film with various size of nano-SiON. Polymers, 2018, 10(10), 1172. doi: 10.3390/polym10101172 PMID: 30961097
  40. Suriyatem, R.; Auras, R.; Rachtanapun, C.; Rachtanapun, P. Biodegradable rice starch/carboxymethyl chitosan films with added propolis extract for potential use as active food packaging. Polymers, 2018, 10(9), 954. doi: 10.3390/polym10090954 PMID: 30960879
  41. Syafiq, R.; Sapuan, S.M.; Zuhri, M.Y.M.; Ilyas, R.A.; Nazrin, A.; Sherwani, S.F.K.; Khalina, A. Antimicrobial activities of starchbased biopolymers and iocomposites incorporated with plant essential oils: A review. Polymers, 2020, 12(10), 2403. doi: 10.3390/polym12102403 PMID: 33086533
  42. Garavand, Y.; Taheri-Garavand, A.; Garavand, F.; Shahbazi, F.; Khodaei, D.; Cacciotti, I. Starch-polyvinyl alcohol-based films reinforced with chitosan nanoparticles: physical, mechanical, structural, thermal and antimicrobial properties. Appl. Sci., 2022, 12(3), 1111. doi: 10.3390/app12031111
  43. Oliveira, T.V.; Freitas, P.A.V.; Pola, C.C.; Terra, L.R.; Silva, J.O.R.; Badaró, A.T.; Junior, N.S.; Oliveira, M.M.; Silva, R.R.A.; Soares, N.F.F. The influence of intermolecular interactions between maleic anhydride, cellulose nanocrystal, and nisin-Z on the structural, thermal, and antimicrobial properties of starch-PV Aplasticized matrix. Polysaccharides, 2021, 2(3), 661-676. doi: 10.3390/polysaccharides2030040
  44. Ahmed, M.; Djebli, N.; Aissat, S.; Bacha, S.; Meslem, A.; Khiati, B. Synergistic inhibition of natural honey and potato starch and their correlation with diastase number and sugar content against Klebsiella pneumoniae ATCC 27736. Nat. Prod. Chem. Res., 2012, 1, 102.
  45. Ortega, O.; Bolívar-Prados, M.; Arreola, V.; Nascimento, W.V.; Tomsen, N.; Gallegos, C.; Brito-de La Fuente, E.; Clavé, P. Therapeutic effect, rheological properties and α-amylase resistance of a new mixed starch and xanthan gum thickener on four different phenotypes of patients with oropharyngeal dysphagia. Nutrients, 2020, 12(6), 1873. doi: 10.3390/nu12061873 PMID: 32585942
  46. Wang, J.; Zhang, L.; Wang, P.; Lei, J.; Zhong, L.; Zhan, L.; Ye, X.; Huang, Y.; Luo, X.; Cui, Z.; Li, Z. Identification and characterization of novel malto-oligosaccharide-forming amylase amycf from cystobacter sp. Strain CF23. Foods, 2023, 12(18), 3487. doi: 10.3390/foods12183487 PMID: 37761198
  47. Zhang, Q.; Pritchard, J.; Mieog, J.; Byrne, K.; Colgrave, M.L.; Wang, J.R.; Ral, J.P.F. Over-expression of a wheat late maturity alpha-amylase type 1 impact on starch properties during grain development and germination. Front. Plant Sci., 2022, 13, 811728. doi: 10.3389/fpls.2022.811728 PMID: 35422830
  48. Shao, Y.; Wang, W.; Hu, Y.; Gänzle, M.G. Characterization of the glucan-branching enzyme GlgB gene from swine intestinal bacteria. Molecules, 2023, 28(4), 1881. doi: 10.3390/molecules28041881 PMID: 36838868
  49. Baks, T.; Bruins, M.E.; Matser, A.M.; Janssen, A.E.M.; Boom, R.M. Effect of gelatinization and hydrolysis conditions on the selectivity of starch hydrolysis with α-amylase from Bacillus licheniformis. J. Agric. Food Chem., 2008, 56(2), 488-495. doi: 10.1021/jf072217j PMID: 18095648

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024