Identification of Key Prognostic Alternative Splicing Events of Costimulatory Molecule-Related Genes in Colon Cancer
- Authors: Ding H.1, Shi H.2, Chen W.3, Liu Z.4, Yang Z.5, Li X.6, Qiu Z.7, Zhuo H.8
-
Affiliations:
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University
- Department of General Surgery, No. 971 Hospital of PLA Navy
- Department of Oncology, Huangdao District Hospital of Traditional Chinese Medicine
- Department of General Surgery, Affiliated Qingdao Hiser Hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine)
- The IVD Medical Marketing Department, 3D Medicines Inc.
- Department of General Surgery, Qingdao Municipal Hospital
- Department of Oncology, Shunde Hospital, Guangzhou University of Chinese Medicine
- Department of Gastrointestinal Surgery, Provincial Hospital Affiliated to Shandong First Medical University
- Issue: Vol 27, No 13 (2024)
- Pages: 1900-1912
- Section: Chemistry
- URL: https://kazanmedjournal.ru/1386-2073/article/view/645258
- DOI: https://doi.org/10.2174/0113862073249972231026060301
- ID: 645258
Cite item
Full Text
Abstract
Objective:This study aimed to explore the key alternative splicing events in costimulatory molecule-related genes in colon cancer and to determine their correlation with prognosis.
Methods:Gene expression RNA-sequencing data, clinical data, and SpliceSeq data of colon cancer were obtained from The Cancer Genome Atlas. Differentially expressed alternative splicing events in genes were identified, Followed by correlation analysis of genes corresponding to differentially expressed alternative splicing events with costimulatory molecule-related genes. Survival analysis was conducted using differentially expressed alternative splicing events in these genes and a prognostic model was constructed. Functional enrichment, proteinprotein interaction network, and splicing factor analyses were performed.
Results:In total, 6504 differentially expressed alternative splicing events in 3949 genes were identified between tumor and normal tissues. Correlation analysis revealed 3499 differentially expressed alternative splicing events in 2168 costimulatory molecule-related genes. Moreover, 328 differentially expressed alternative splicing events in 288 costimulatory molecule-related genes were associated with overall survival. The prognostic models constructed using these showed considerable power in predicting survival. The ubiquitin A-52 residue ribosomal protein fusion product 1 and ribosomal protein S9 were the hub nodes in the protein-protein interaction network. Furthermore, one splicing factor, splicing factor proline and glutamine-rich, was significantly associated with patient prognosis. Four splicing factor-alternative splicing pairs were obtained from four alternative splicing events in three genes: TBC1 domain family member 8 B, complement factor H, and mitochondrial fission 1.
Conclusion:The identified differentially expressed alternative splicing events of costimulatory molecule-related genes may be used to predict patient prognosis and immunotherapy responses in colon cancer.
About the authors
Hao Ding
Department of General Surgery, Huadong Hospital Affiliated to Fudan University
Email: info@benthamscience.net
Huiwen Shi
Department of General Surgery, No. 971 Hospital of PLA Navy
Email: info@benthamscience.net
Weifeng Chen
Department of Oncology, Huangdao District Hospital of Traditional Chinese Medicine
Email: info@benthamscience.net
Zhisheng Liu
Department of General Surgery, Affiliated Qingdao Hiser Hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine)
Email: info@benthamscience.net
Zhi Yang
The IVD Medical Marketing Department, 3D Medicines Inc.
Email: info@benthamscience.net
Xiaochuan Li
Department of General Surgery, Qingdao Municipal Hospital
Email: info@benthamscience.net
Zhichao Qiu
Department of Oncology, Shunde Hospital, Guangzhou University of Chinese Medicine
Author for correspondence.
Email: info@benthamscience.net
Hongqing Zhuo
Department of Gastrointestinal Surgery, Provincial Hospital Affiliated to Shandong First Medical University
Author for correspondence.
Email: info@benthamscience.net
References
- Tolba, M.F. Revolutionizing the landscape of colorectal cancer treatment: The potential role of immune checkpoint inhibitors. Int. J. Cancer, 2020, 147(11), 2996-3006. doi: 10.1002/ijc.33056 PMID: 32415713
- Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut, 2017, 66(4), 683-691. doi: 10.1136/gutjnl-2015-310912 PMID: 26818619
- Guo, T.; Liu, D.F.; Peng, S.H.; Xu, A.M. ALKBH5 promotes colon cancer progression by decreasing methylation of the lncRNA NEAT1. Am. J. Transl. Res., 2020, 12(8), 4542-4549. PMID: 32913527
- Azvolinsky, A. Colorectal cancer: To stack or sequence therapy? J. Natl. Cancer Inst., 2015, 107(5), djv138. doi: 10.1093/jnci/djv138 PMID: 25957442
- van de Donk, P.P.; Kist de Ruijter, L.; Lub-de Hooge, M.N.; Brouwers, A.H.; van der Wekken, A.J.; Oosting, S.F.; Fehrmann, R.S.N.; de Groot, D.J.A.; de Vries, E.G.E. Molecular imaging biomarkers for immune checkpoint inhibitor therapy. Theranostics, 2020, 10(4), 1708-1718. doi: 10.7150/thno.38339 PMID: 32042331
- Sahin, I.; George, A.; Zhang, S.; Huntington, K.E.; Ordulu, Z.; Zhou, L.; El-Deiry, W.S. Hyperprogression of a mismatch repair-deficient colon cancer in a humanized mouse model following administration of immune checkpoint inhibitor pembrolizumab. Oncotarget, 2021, 12(21), 2131-2146. doi: 10.18632/oncotarget.28086 PMID: 34676046
- Sahin, I.H.; Akce, M.; Alese, O.; Shaib, W.; Lesinski, G.B.; El-Rayes, B.; Wu, C. Immune checkpoint inhibitors for the treatment of MSI-H/MMR-D colorectal cancer and a perspective on resistance mechanisms. Br. J. Cancer, 2019, 121(10), 809-818. doi: 10.1038/s41416-019-0599-y PMID: 31607751
- Emambux, S.; Tachon, G.; Junca, A.; Tougeron, D. Results and challenges of immune checkpoint inhibitors in colorectal cancer. Expert Opin. Biol. Ther., 2018, 18(5), 561-573. doi: 10.1080/14712598.2018.1445222 PMID: 29471676
- Morse, M.A.; Hochster, H.; Benson, A. Perspectives on treatment of metastatic colorectal cancer with immune checkpoint inhibitor therapy. Oncologist, 2020, 25(1), 33-45. doi: 10.1634/theoncologist.2019-0176 PMID: 31383813
- Croft, M.; Benedict, C.A.; Ware, C.F. Clinical targeting of the TNF and TNFR superfamilies. Nat. Rev. Drug Discov., 2013, 12(2), 147-168. doi: 10.1038/nrd3930 PMID: 23334208
- Schildberg, F.A.; Klein, S.R.; Freeman, G.J.; Sharpe, A.H. Coinhibitory pathways in the B7-CD28 ligand-receptor family. Immunity, 2016, 44(5), 955-972. doi: 10.1016/j.immuni.2016.05.002 PMID: 27192563
- Zhang, C.; Zhang, Z.; Sun, N.; Zhang, Z.; Zhang, G.; Wang, F.; Luo, Y.; Che, Y.; He, J. Identification of a costimulatory molecule-based signature for predicting prognosis risk and immunotherapy response in patients with lung adenocarcinoma. OncoImmunology, 2020, 9(1), 1824641. doi: 10.1080/2162402X.2020.1824641 PMID: 33457102
- Wei, S.C.; Duffy, C.R.; Allison, J.P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov., 2018, 8(9), 1069-1086. doi: 10.1158/2159-8290.CD-18-0367 PMID: 30115704
- Huang, W.; Su, D.; Liao, X.; Yang, T.; Lu, Y.; Zhang, Z. Prognostic costimulatory molecule-related signature risk model correlates with immunotherapy response in colon cancer. Sci. Rep., 2023, 13(1), 789. doi: 10.1038/s41598-023-27826-7 PMID: 36646765
- Punzo, P.; Grillo, S.; Batelli, G. Alternative splicing in plant abiotic stress responses. Biochem. Soc. Trans., 2020, 48(5), 2117-2126. doi: 10.1042/BST20200281 PMID: 32869832
- Sciarrillo, R.; Wojtuszkiewicz, A.; Assaraf, Y.G.; Jansen, G.; Kaspers, G.J.L.; Giovannetti, E.; Cloos, J. The role of alternative splicing in cancer: From oncogenesis to drug resistance. Drug Resist. Updat., 2020, 53(100728), 100728. doi: 10.1016/j.drup.2020.100728 PMID: 33070093
- Bonnal, S.C.; López-Oreja, I.; Valcárcel, J. Roles and mechanisms of alternative splicing in cancer-implications for care. Nat. Rev. Clin. Oncol., 2020, 17(8), 457-474. doi: 10.1038/s41571-020-0350-x PMID: 32303702
- Cherry, S.; Lynch, K.W. Alternative splicing and cancer: Insights, opportunities, and challenges from an expanding view of the transcriptome. Genes Dev., 2020, 34(15-16), 1005-1016. doi: 10.1101/gad.338962.120 PMID: 32747477
- Zhao, D.; Zhang, C.; Jiang, M.; Wang, Y.; Liang, Y.; Wang, L.; Qin, K.; Rehman, F.U.L.; Zhang, X. Survival-associated alternative splicing signatures in non-small cell lung cancer. Aging, 2020, 12(7), 5878-5893. doi: 10.18632/aging.102983 PMID: 32282333
- Martinez-Montiel, N.; Rosas-Murrieta, N.; Anaya Ruiz, M.; Monjaraz-Guzman, E.; Martinez-Contreras, R. Alternative splicing as a target for cancer treatment. Int. J. Mol. Sci., 2018, 19(2), 545. doi: 10.3390/ijms19020545 PMID: 29439487
- Bessa, C.; Matos, P.; Jordan, P.; Gonçalves, V. Alternative splicing: Expanding the landscape of cancer biomarkers and therapeutics. Int. J. Mol. Sci., 2020, 21(23), 9032. doi: 10.3390/ijms21239032 PMID: 33261131
- Liu, J.; Li, H.; Shen, S.; Sun, L.; Yuan, Y.; Xing, C. Alternative splicing events implicated in carcinogenesis and prognosis of colorectal cancer. J. Cancer, 2018, 9(10), 1754-1764. doi: 10.7150/jca.24569 PMID: 29805701
- Qu, Y.; Chen, Y.; Zhang, L.; Tian, L. Construction of prognostic predictor by comprehensive analyzing alternative splicing events for colon adenocarcinoma. World J. Surg. Oncol., 2020, 18(1), 236. doi: 10.1186/s12957-020-02010-7 PMID: 32883335
- Zhang, Z.; Feng, Q.; Jia, C.; Zheng, P.; Lv, Y.; Mao, Y.; Xu, Y.; He, G.; Xu, J. Analysis of relapse-associated alternative mRNA splicing and construction of a prognostic signature predicting relapse in IIII colon cancer. Genomics, 2020, 112(6), 4032-4040. doi: 10.1016/j.ygeno.2020.07.002 PMID: 32645524
- Hamdollah Zadeh, M.A.; Amin, E.M.; Hoareau-Aveilla, C.; Domingo, E.; Symonds, K.E.; Ye, X.; Heesom, K.J.; Salmon, A.; DSilva, O.; Betteridge, K.B.; Williams, A.C.; Kerr, D.J.; Salmon, A.H.J.; Oltean, S.; Midgley, R.S.; Ladomery, M.R.; Harper, S.J.; Varey, A.H.R.; Bates, D.O. Alternative splicing of TIA‐1 in human colon cancer regulates VEGF isoform expression, angiogenesis, tumour growth and bevacizumab resistance. Mol. Oncol., 2015, 9(1), 167-178. doi: 10.1016/j.molonc.2014.07.017 PMID: 25224594
- Goldman, M.J.; Craft, B.; Hastie, M. Repečka, K.; McDade, F.; Kamath, A.; Banerjee, A.; Luo, Y.; Rogers, D.; Brooks, A.N.; Zhu, J.; Haussler, D. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol., 2020, 38(6), 675-678. doi: 10.1038/s41587-020-0546-8 PMID: 32444850
- Ryan, M.; Wong, W.C.; Brown, R.; Akbani, R.; Su, X.; Broom, B.; Melott, J.; Weinstein, J. TCGASpliceSeq a compendium of alternative mRNA splicing in cancer. Nucleic Acids Res., 2016, 44(D1), D1018-D1022. doi: 10.1093/nar/gkv1288 PMID: 26602693
- Song, J.; Liu, Y.D.; Su, J.; Yuan, D.; Sun, F.; Zhu, J. Systematic analysis of alternative splicing signature unveils prognostic predictor for kidney renal clear cell carcinoma. J. Cell. Physiol., 2019, 234(12), 22753-22764. doi: 10.1002/jcp.28840 PMID: 31140607
- Xiong, Y.; Deng, Y.; Wang, K.; Zhou, H.; Zheng, X.; Si, L.; Fu, Z. Profiles of alternative splicing in colorectal cancer and their clinical significance: A study based on large-scale sequencing data. EBioMedicine, 2018, 36, 183-195. doi: 10.1016/j.ebiom.2018.09.021 PMID: 30243491
- Haynes, W. Benjaminihochberg method. Encycloped. Syst. Biol., 2013, 78.
- The Gene Ontology Resource. 20 years and still going strong. Nucleic Acids Res., 2019, 47(D1), D330-D338. doi: 10.1093/nar/gky1055 PMID: 30395331
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 2000, 28(1), 27-30. doi: 10.1093/nar/28.1.27 PMID: 10592173
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287. doi: 10.1089/omi.2011.0118 PMID: 22455463
- Hao, T.; Peng, W.; Wang, Q.; Wang, B.; Sun, J. Reconstruction and application of proteinprotein interaction network. Int. J. Mol. Sci., 2016, 17(6), 907. doi: 10.3390/ijms17060907 PMID: 27338356
- Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; Kuhn, M.; Bork, P.; Jensen, L.J.; von Mering, C. STRING v10: Proteinprotein interaction networks, integrated over the tree of life. Nucleic Acids Res., 2015, 43(D1), D447-D452. doi: 10.1093/nar/gku1003 PMID: 25352553
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504. doi: 10.1101/gr.1239303 PMID: 14597658
- Smyth, G.K. Limma: linear models for microarray data.Bioinformatics and computational biology solutions using R and Bioconductor; Springer, 2005, pp. 397-420. doi: 10.1007/0-387-29362-0_23
- van den Bulk, J.; Verdegaal, E.M.E.; de Miranda, N.F.C.C. Cancer immunotherapy: Broadening the scope of targetable tumours. Open Biol., 2018, 8(6), 180037. doi: 10.1098/rsob.180037 PMID: 29875199
- Tintelnot, J.; Stein, A. Immunotherapy in colorectal cancer: Available clinical evidence, challenges and novel approaches. World J. Gastroenterol., 2019, 25(29), 3920-3928. doi: 10.3748/wjg.v25.i29.3920 PMID: 31413527
- Hua, X.; Ge, S.; Zhang, J.; Xiao, H.; Tai, S.; Yang, C.; Zhang, L.; Liang, C. A costimulatory molecule-related signature in regard to evaluation of prognosis and immune features for clear cell renal cell carcinoma. Cell Death Discov., 2021, 7(1), 021-00646. doi: 10.1038/s41420-021-00646-2
- Loos, M.; Giese, N.A.; Kleeff, J.; Giese, T.; Gaida, M.M.; Bergmann, F.; Laschinger, M.W.; Büchler, M.; Friess, H. Clinical significance and regulation of the costimulatory molecule B7-H1 in pancreatic cancer. Cancer Lett., 2008, 268(1), 98-109. doi: 10.1016/j.canlet.2008.03.056 PMID: 18486325
- Geng, Y.; Wang, H.; Lu, C.; Li, Q.; Xu, B.; Jiang, J.; Wu, C. Expression of costimulatory molecules B7-H1, B7-H4 and Foxp3+ Tregs in gastric cancer and its clinical significance. Int. J. Clin. Oncol., 2015, 20(2), 273-281. doi: 10.1007/s10147-014-0701-7 PMID: 24804867
- Edner, N.M.; Carlesso, G.; Rush, J.S.; Walker, L.S.K. Targeting co-stimulatory molecules in autoimmune disease. Nat. Rev. Drug Discov., 2020, 19(12), 860-883. doi: 10.1038/s41573-020-0081-9 PMID: 32939077
- Kelemen, O.; Convertini, P.; Zhang, Z.; Wen, Y.; Shen, M.; Falaleeva, M.; Stamm, S. Function of alternative splicing. Gene, 2013, 514(1), 1-30. doi: 10.1016/j.gene.2012.07.083 PMID: 22909801
- Wang, Z.; Yang, X.; Liu, C.; Li, X.; Zhang, B.; Wang, B.; Zhang, Y.; Song, C.; Zhang, T.; Liu, M.; Liu, B.; Ren, M.; Jiang, H.; Zou, J.; Liu, X.; Zhang, H.; Zhu, W.G.; Yin, Y.; Zhang, Z.; Gu, W.; Luo, J. Acetylation of PHF5A modulates stress responses and colorectal carcinogenesis through alternative splicing-mediated upregulation of KDM3A. Mol. Cell, 2019, 74(6), 1250-1263.e6. doi: 10.1016/j.molcel.2019.04.009 PMID: 31054974
- Blencowe, B.J. Alternative splicing: New insights from global analyses. Cell, 2006, 126(1), 37-47. doi: 10.1016/j.cell.2006.06.023 PMID: 16839875
- Zhou, Q.; Hou, Z.; Zuo, S.; Zhou, X.; Feng, Y.; Sun, Y.; Yuan, X. LUCAT1 promotes colorectal cancer tumorigenesis by targeting the ribosomal protein L40‐ MDM 2‐p53 pathway through binding withUBA 52. Cancer Sci., 2019, 110(4), 1194-1207. doi: 10.1111/cas.13951 PMID: 30690837
- Wang, F.; Chen, X.; Yu, X.; Lin, Q. Degradation of CCNB1 mediated by APC11 through UBA52 ubiquitination promotes cell cycle progression and proliferation of non-small cell lung cancer cells. Am. J. Transl. Res., 2019, 11(11), 7166-7185. PMID: 31814919
- Lindström, M.S.; Nistér, M. Silencing of ribosomal protein S9 elicits a multitude of cellular responses inhibiting the growth of cancer cells subsequent to p53 activation. PLoS One, 2010, 5(3), e9578. doi: 10.1371/journal.pone.0009578 PMID: 20221446
- Cheng, D.; Zhu, B.; Li, S.; Yuan, T.; Yang, Q.; Fan, C. Down-regulation of RPS9 inhibits osteosarcoma cell growth through inactivation of MAPK signaling pathway. J. Cancer, 2017, 8(14), 2720-2728. doi: 10.7150/jca.19130 PMID: 28928861
- Yu, C.; Hong, H.; Zhang, S.; Zong, Y.; Ma, J.; Lu, A.; Sun, J.; Zheng, M. Identification of key genes and pathways involved in microsatellite instability in colorectal cancer. Mol. Med. Rep., 2019, 19(3), 2065-2076. doi: 10.3892/mmr.2019.9849 PMID: 30664178
- Jyotsana, N.; Heuser, M. Exploiting differential RNA splicing patterns: A potential new group of therapeutic targets in cancer. Expert Opin. Ther. Targets, 2018, 22(2), 107-121. doi: 10.1080/14728222.2018.1417390 PMID: 29235382
- Pellarin, I.; DallAcqua, A.; Gambelli, A.; Pellizzari, I.; DAndrea, S.; Sonego, M.; Lorenzon, I.; Schiappacassi, M.; Belletti, B.; Baldassarre, G. Splicing factor proline- and glutamine-rich (SFPQ) protein regulates platinum response in ovarian cancer-modulating SRSF2 activity. Oncogene, 2020, 39(22), 4390-4403. doi: 10.1038/s41388-020-1292-6 PMID: 32332923
- Klotz-Noack, K.; Klinger, B.; Rivera, M.; Bublitz, N.; Uhlitz, F.; Riemer, P.; Lüthen, M.; Sell, T.; Kasack, K.; Gastl, B.; Ispasanie, S.S.S.; Simon, T.; Janssen, N.; Schwab, M.; Zuber, J.; Horst, D.; Blüthgen, N.; Schäfer, R.; Morkel, M.; Sers, C. SFPQ depletion is synthetically lethal with BRAFV600E in colorectal cancer cells. Cell Rep., 2020, 32(12), 108184. doi: 10.1016/j.celrep.2020.108184 PMID: 32966782
- Yoon, Y.H.; Hwang, H.J.; Sung, H.J.; Heo, S.H.; Kim, D.S.; Hong, S.H.; Lee, K.H.; Cho, J.Y. Upregulation of complement factor H by SOCS-1/3STAT4 in lung cancer. Cancers, 2019, 11(4), 471. doi: 10.3390/cancers11040471 PMID: 30987235
- Zhou, J.; Shi, M.; Li, M.; Cheng, L.; Yang, J.; Huang, X. RETRACTED ARTICLE: Sirtuin 3 inhibition induces mitochondrial stress in tongue cancer by targeting mitochondrial fission and the JNK-Fis1 biological axis. Cell Stress Chaperones, 2019, 24(2), 369-383. doi: 10.1007/s12192-019-00970-8 PMID: 30656603
- Jin, Z.; Yao, J.; Xie, N.; Cai, L.; Qi, S.; Zhang, Z.; Li, B. Melittin constrains the expression of identified key genes associated with bladder cancer. J. Immunol. Res., 2018, 2018(5038172), 1-16. doi: 10.1155/2018/5038172 PMID: 29854840
Supplementary files
