Electrochemical Sensors for Detection of Phytomolecules: A Mechanistic Approach
- Авторы: Katiyar D.1, Manish 2, Saxena Pal R.3, Bansal P.4, Kumar A.5, Prakash S.1
-
Учреждения:
- KIET School of Pharmacy, KIET Group of Institutions
- Department of Electronics and Communication Engineering, ABES Engineering College
- Department of Pharmacy (Pharmacognosy), Lovely Professional University
- KIET SCHOOL OF PHARMACY, KIET Group of Institutions
- Department of Pharmaceutical Sciences, KIET Group of Institutions
- Выпуск: Том 27, № 13 (2024)
- Страницы: 1887-1899
- Раздел: Chemistry
- URL: https://kazanmedjournal.ru/1386-2073/article/view/645257
- DOI: https://doi.org/10.2174/0113862073282883231218145941
- ID: 645257
Цитировать
Полный текст
Аннотация
High demand and ongoing technological advancements have created a market for sensors that is both varied and rapidly evolving. Bioactive compounds are separated systematically to conduct an in-depth investigation, allowing for the profiling or fingerprinting of different Plantae kingdoms. The profiling field is significant in elucidating the complex interplay of plant traits, attributes, and environmental factors. Flexible technology advancements have enabled the creation of highly sensitive sensors for the non-destructive detection of molecules. Additionally, very specialized integrated systems that will allow multiplexed detection by integrating many hybrid approaches have been developed, but these systems are highly laborious and expensive. Electrochemical sensors, on the other hand, are a viable option because of their ability to accomplish exact compound detection via efficient signal transduction. However, this has not been investigated because of some obstacles to learning minimum metabolites' fundamentals and nonredox properties. This article reviews the electrochemical basis of plants, contrasting it with more conventional techniques and offering both positive and negative perspectives on the topic. Because few studies have been devoted to the concept of merging the domains, we've expanded the scope of this work by including pertinent non-phytochemical reports for better report comparison.
Ключевые слова
Об авторах
Deepti Katiyar
KIET School of Pharmacy, KIET Group of Institutions
Автор, ответственный за переписку.
Email: info@benthamscience.net
Manish
Department of Electronics and Communication Engineering, ABES Engineering College
Email: info@benthamscience.net
Rashmi Saxena Pal
Department of Pharmacy (Pharmacognosy), Lovely Professional University
Email: info@benthamscience.net
Priya Bansal
KIET SCHOOL OF PHARMACY, KIET Group of Institutions
Email: info@benthamscience.net
Abhishek Kumar
Department of Pharmaceutical Sciences, KIET Group of Institutions
Email: info@benthamscience.net
Surya Prakash
KIET School of Pharmacy, KIET Group of Institutions
Email: info@benthamscience.net
Список литературы
- Lin, J.; Wang, M.; Zhang, M.; Zhang, Y.; Chen, L. Electrochemical sensors for soil nutrient detection: Opportunity and challenge. International Federation for Information Processing, 2008, 259, 1349-1353. doi: 10.1007/978-0-387-77253-0_77
- Pujol, L.; Evrard, D.; Groenen-Serrano, K.; Freyssinier, M.; Ruffien-Cizsak, A.; Gros, P. Electrochemical sensors and devices for heavy metals assay in water: The French groups contribution. Front Chem., 2014, 2, 19. doi: 10.3389/fchem.2014.00019 PMID: 24818124
- Ludvík, J.; Riedl, F.; Lika, F.; Zuman, P. Electrochemical reduction of metribuzin. Electroanalysis, 1998, 10(13), 869-876. doi: 10.1002/(SICI)1521-4109(199810)10:133.0.CO;2-Y
- Vafaee-Shahi, S.; Shishehbore, M.R.; Sheibani, A.; Tabatabaee, M. Electrochemical sensing of folic acid in presence of ascorbic acid using carbon paste nano composite modified electrode. Anal. Bioanal. Chem. Res., 2021, 8, 261-274.
- Naik, G.P.; Poonia, A.K.; Chaudhari, P.K. Pretreatment of lignocellulosic agricultural waste for delignification, rapid hydrolysis, and enhanced biogas production: A review. J. Indian Chem. Soc., 2021, 98(10), 100147. doi: 10.1016/j.jics.2021.100147
- Chiavari, G.; Concialini, V.; Galletti, G.C.; Bologna, U.; Selmi, V.; Galletti, G.C. Electrochemical detection in the high-performance liquid chromatographic analysis of plant phenolics. Analyst, 1988, 113(1), 91-94. doi: 10.1039/an9881300091 PMID: 3358526
- Baezzat, M.R.; Tavakkoli, N.; Zamani, H. Construction of a new electrochemical sensor based on mos 2 nanosheets modified graphite screen printed electrode for simultaneous determination of diclofenac. Anal. Bioanal. Chem. Res., 2022, 9, 153-162.
- Amreen, K.; Sujatha, M. Nanomaterial assisted electrochemical detection of isolated piperine. A Anal. Bioanal. Chem. Res., 2021, 8, 209-217.
- Pandey, R.; Teig-Sussholz, O.; Schuster, S.; Avni, A.; Shacham-Diamand, Y. Integrated electrochemical Chip-on-Plant functional sensor for monitoring gene expression under stress. Biosens. Bioelectron., 2018, 117, 493-500. doi: 10.1016/j.bios.2018.06.045 PMID: 29982119
- Shrivastava, S.; Trung, T.Q.; Lee, N.E. Recent progress, challenges, and prospects of fully integrated mobile and wearable point-of-care testing systems for self-testing. Chem. Soc. Rev., 2020, 49(6), 1812-1866. doi: 10.1039/C9CS00319C PMID: 32100760
- Nguyen, H.H.; Lee, S.H.; Lee, U.J.; Fermin, C.D.; Kim, M. Immobilized enzymes in biosensor applications. Materials, 2019, 12(1), 121. doi: 10.3390/ma12010121 PMID: 30609693
- Mehrotra, P. Biosensors and their applications A review. J. Oral Biol. Craniofac. Res., 2016, 6(2), 153-159. doi: 10.1016/j.jobcr.2015.12.002 PMID: 27195214
- Bobrinetskiy, I.I.; Knezevic, N.Z. Graphene-based biosensors for on-site detection of contaminants in food. Anal. Methods, 2018, 10(42), 5061-5070. doi: 10.1039/C8AY01913D
- Gan, T.; Shi, Z.; Sun, J.; Liu, Y. Simple and novel electrochemical sensor for the determination of tetracycline based on iron/zinc cationsexchanged montmorillonite catalyst. Talanta, 2014, 121, 187-193. doi: 10.1016/j.talanta.2014.01.002 PMID: 24607125
- González-Fernández, E.; Avlonitis, N.; Murray, A.F.; Mount, A.R.; Bradley, M. Methylene blue not ferrocene: Optimal reporters for electrochemical detection of protease activity. Biosens. Bioelectron., 2016, 84, 82-88. doi: 10.1016/j.bios.2015.11.088 PMID: 26684247
- Liu, X.; Lillehoj, P.B. Embroidered electrochemical sensors for biomolecular detection. Lab Chip, 2016, 16(11), 2093-2098. doi: 10.1039/C6LC00307A PMID: 27156700
- Maduraiveeran, G.; Jin, W. Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications. Trends Environ. Analy. Chem., 2017, 13, 10-23. doi: 10.1016/j.teac.2017.02.001
- Motia, S.; Tudor, I.A.; Ribeiro, P.A.; Raposo, M.; Bouchikhi, B.; El Bari, N. Electrochemical sensor based on molecularly imprinted polymer for sensitive triclosan detection in wastewater and mineral water. Sci. Total Environ., 2019, 664, 647-658. doi: 10.1016/j.scitotenv.2019.01.331 PMID: 30763845
- Sánchez, A.; Villalonga, A.; Martínez-García, G.; Parrado, C.; Villalonga, R. Dendrimers as soft nanomaterials for electrochemical immunosensors. Nanomaterials, 2019, 9(12), 1745. doi: 10.3390/nano9121745 PMID: 31817938
- Bhat, V.S. S, S.; Hegde, G. Reviewbiomass derived carbon materials for electrochemical sensors. J. Electrochem. Soc., 2020, 167(3), 037526. doi: 10.1149/2.0262003JES
- Berkov, S.; Osorio, E.; Viladomat, F. Chemodiversity, Chemotaxonomy and Chemoecology of Amaryllidaceae Alkaloids, 1st ed; ElsevierInc.: Amsterdam, The Netherlands, 2020, p. 83. doi: 10.1016/bs.alkal.2019.10.002
- Doménech-Carbó, A.; Ibars, A.M.; Prieto-Mossi, J.; Estrelles, E.; Scholz, F.; Cebrián-Torrejón, G.; Martini, M. Electrochemistry-based chemotaxonomy in plants using the voltammetry of microparticles methodology. New J. Chem., 2015, 39(9), 7421-7428. doi: 10.1039/C5NJ01233C
- Umoh, O.T. Chemotaxonomy: The role of phytochemicals in chemotaxonomic delineation of taxa. Asian Plant Res. J., 2020, 5, 43-52. doi: 10.9734/aprj/2020/v5i130100
- Rivière, C.; Pawlus, A.D.; Mérillon, J.M. Natural stilbenoids: Distribution in the plant kingdom and chemotaxonomic interest in Vitaceae. Nat. Prod. Rep., 2012, 29(11), 1317-1333. doi: 10.1039/c2np20049j PMID: 23014926
- Lanfer-Marquez, U.M.; Barros, R.M.C.; Sinnecker, P. Antioxidant activity of chlorophylls and their derivatives. Food Res. Int., 2005, 38(8-9), 885-891. doi: 10.1016/j.foodres.2005.02.012
- Wei, F.; Lillehoj, P.B.; Ho, C.M. DNA diagnostics: Nanotechnology-enhanced electrochemical detection of nucleic acids. Pediatr. Res., 2010, 67(5), 458-468. doi: 10.1203/PDR.0b013e3181d361c3 PMID: 20075759
- Ferdosian, F.; Ebadi, M.; Mehrabian, R.Z.; Golsefidi, M.A.; Moradi, A.V. Application of electrochemical techniques for determining and extracting natural product (egcg) by the synthesized conductive polymer electrode (Ppy/Pan/rGO) impregnated with nano-particles of TiO2. Sci. Rep., 2019, 9(1), 3940. doi: 10.1038/s41598-019-39952-2 PMID: 30850628
- Samoticha, J.; Jara-Palacios, M.J.; Hernández-Hierro, J.M.; Heredia, F.J. Wojdyło, A.; Aneta, J.H. Phenolic compounds and antioxidant activity of twelve grape cultivars measured by chemical and electrochemical methods. Eur. Food Res. Technol., 2018, 244(11), 1933-1943. doi: 10.1007/s00217-018-3105-5
- Arroyo-Currás, N.; Rosas-García, V.; Videa, M. Substituent inductive effects on the electrochemical oxidation of flavonoids studied by square wave voltammetry and ab initio calculations. Molecules, 2016, 21(11), 1422. doi: 10.3390/molecules21111422 PMID: 27801813
- eruga, M.; Tomac, I. Influence of chemical structure of some flavonols on their electrochemical behaviour. Int. J. Electrochem. Sci., 2017, 12(8), 7616-7637. doi: 10.20964/2017.08.79
- Mateo, E.M.; Gómez, J.V.; Montoya, N.; Mateo-Castro, R.; Gimeno-Adelantado, J.V.; Jiménez, M.; Doménech-Carbó, A. Electrochemical identification of toxigenic fungal species using solid-state voltammetry strategies. Food Chem., 2018, 267, 91-100. doi: 10.1016/j.foodchem.2017.02.033 PMID: 29934194
- Bavishi, K.; Laursen, T.; Martinez, K.L.; Møller, B.L.; Della Pia, E.A. Application of nanodisc technology for direct electrochemical investigation of plant cytochrome P450s and their NADPH P450 oxidoreductase. Sci. Rep., 2016, 6(1), 29459. doi: 10.1038/srep29459 PMID: 27386958
- Udit, A.K.; Hill, M.G.; Gray, H.B. Electrochemistry of cytochrome P450 BM3 in sodium dodecyl sulfate films. Langmuir, 2006, 22(25), 10854-10857. doi: 10.1021/la061162x PMID: 17129070
- Nurmi, T.; Adlercreutz, H. Sensitive high-performance liquid chromatographic method for profiling phytoestrogens using coulometric electrode array detection: application to plasma analysis. Anal. Biochem., 1999, 274(1), 110-117. doi: 10.1006/abio.1999.4247 PMID: 10527503
- Gil, E.S.; Couto, R.O. Flavonoid electrochemistry: A review on the electroanalytical applications. Rev. Bras. Farmacogn., 2013, 23(3), 542-558. doi: 10.1590/S0102-695X2013005000031
- Fu, Y.; You, Z.; Xiao, A.; Liu, L.; Zhou, W. Electrochemical evaluation of the antioxidant capacity of natural compounds on glassy carbon electrode modified with guanine-, polythionine-, and nitrogen-doped graphene. Open Chem., 2020, 18(1), 1054-1063. doi: 10.1515/chem-2020-0157
- Della Pelle, F.; Compagnone, D. Nanomaterial-based sensing and biosensing of phenolic compounds and related antioxidant capacity in food. Sensors, 2018, 18(2), 462. doi: 10.3390/s18020462 PMID: 29401719
- Munteanu, I.G.; Apetrei, C. Electrochemical determination of chlorogenic acid in nutraceuticals using voltammetric sensors based on screen-printed carbon electrode modified with graphene and gold nanoparticles. Int. J. Mol. Sci., 2021, 22(16), 8897. doi: 10.3390/ijms22168897 PMID: 34445600
- Garkani Nejad, F.; Tajik, S.; Beitollahi, H.; Sheikhshoaie, I. Magnetic nanomaterials based electrochemical (bio)sensors for food analysis. Talanta, 2021, 228, 122075. doi: 10.1016/j.talanta.2020.122075 PMID: 33773704
- Ziyatdinova, G.; Guss, E.; Yakupova, E. Electrochemical sensors based on the electropolymerized natural phenolic antioxidants and their analytical application. Sensors, 2021, 21(24), 8385. doi: 10.3390/s21248385 PMID: 34960482
- Brainina, K.; Stozhko, N.; Bukharinova, M.; Vikulova, E. Nanomaterials: Electrochemical properties and application in sensors; Phys Sci Rev, 2018, p. 3.
- Bertel, L.; Miranda, D.A.; García-Martín, J.M. Nanostructured titanium dioxide surfaces for electrochemical biosensing. Sensors, 2021, 21(18), 6167. doi: 10.3390/s21186167 PMID: 34577374
- Avelino, K.Y.P.S.; dos Santos, G.S.; Frías, I.A.M.; Silva-Junior, A.G.; Pereira, M.C.; Pitta, M.G.R.; de Araújo, B.C.; Errachid, A.; Oliveira, M.D.L.; Andrade, C.A.S. Nanostructured sensor platform based on organic polymer conjugated to metallic nanoparticle for the impedimetric detection of SARS-CoV-2 at various stages of viral infection. J. Pharm. Biomed. Anal., 2021, 206, 114392. doi: 10.1016/j.jpba.2021.114392 PMID: 34607201
- Li, J.; Liu, Z.X.; Li, Y.X.; Shu, G.; Zhang, X.J.; Marks, R.S.; Shan, D. 2‐Methylimidazole‐assisted morphology modulation of a copper‐based metal‐organic framework transducer for enhanced electrochemical peroxidase‐like activity. Electroanalysis, 2023, 35(1), e202100423. doi: 10.1002/elan.202100423
- Beduk, T.; de Oliveira Filho, J.I.; Ait Lahcen, A.; Mani, V.; Salama, K.N. Inherent surface activation of laser-scribed graphene decorated with au and ag nanoparticles: Simultaneous electrochemical behavior toward uric acid and dopamine. Langmuir, 2021, 37(47), 13890-13902. doi: 10.1021/acs.langmuir.1c02379 PMID: 34787434
- Vinothkumar, V.; Koventhan, C.; Chen, S.M.; Abinaya, M.; Kesavan, G.; Sengottuvelan, N. Preparation of three dimensional flower-like cobalt phosphateas dual functional electrocatalyst for flavonoids sensing and supercapacitor applications. Ceram. Int., 2021, 47(1), 29688-29706.
- Lima, A.P.; dos Santos, W.T.P.; Nossol, E.; Richter, E.M.; Munoz, R.A.A. Critical evaluation of voltammetric techniques for antioxidant capacity and activity: Presence of alumina on glassy-carbon electrodes alters the results. Electrochim. Acta, 2020, 358, 136925. doi: 10.1016/j.electacta.2020.136925
- Abou Samra, M.; Chedea, V.S.; Economou, A.; Calokerinos, A.; Kefalas, P. Antioxidant/prooxidant properties of model phenolic compounds: Part I. Studies on equimolar mixtures by chemiluminescence and cyclic voltammetry. Food Chem., 2011, 125(2), 622-629. doi: 10.1016/j.foodchem.2010.08.076
- Ricci, A.; Parpinello, G.P. Teslić N.; Kilmartin, P.A.; Versari, A. Suitability of the cyclic voltammetry measurements and dpph spectrophotometric assay to determine the antioxidant capacity of food-grade oenological tannins. Molecules, 2019, 24(16), 2925. doi: 10.3390/molecules24162925 PMID: 31412565
- Photinon, K.; Chalermchart, Y.; Khanongnuch, C.; Wang, S.H.; Liu, C.C. A thick-film sensor as a novel device for determination of polyphenols and their antioxidant capacity in white wine. Sensors, 2010, 10(3), 1670-1678. doi: 10.3390/s100301670 PMID: 22294893
- Firuzi, O.; Lacanna, A.; Petrucci, R.; Marrosu, G.; Saso, L. Evaluation of the antioxidant activity of flavonoids by "ferric reducing antioxidant power" assay and cyclic voltammetry. Biochim. Biophys. Acta, Gen. Subj., 2005, 1721(1-3), 174-184. doi: 10.1016/j.bbagen.2004.11.001 PMID: 15652192
- Giné Bordonaba, J.; Terry, L.A. Electrochemical behaviour of polyphenol rich fruit juices using disposable screen-printed carbon electrodes: Towards a rapid sensor for antioxidant capacity and individual antioxidants. Talanta, 2012, 90, 38-45. doi: 10.1016/j.talanta.2011.12.058 PMID: 22340113
- Petković B.B.; Stanković D.; Milčić M.; Sovilj, S.P.; Manojlović D. Dinuclear copper(II) octaazamacrocyclic complex in a PVC coated GCE and graphite as a voltammetric sensor for determination of gallic acid and antioxidant capacity of wine samples. Talanta, 2015, 132, 513-519. doi: 10.1016/j.talanta.2014.09.025 PMID: 25476338
- Gualandi, I.; Ferraro, L.; Matteucci, P.; Tonelli, D. Assessment of the antioxidant capacity of standard compounds and fruit juices by a newly developed electrochemical method: comparative study with results from other analytical methods. Electroanalysis, 2015, 27(8), 1906-1914. doi: 10.1002/elan.201500076
- Souza, L.P.; Calegari, F.; Zarbin, A.J.G.; Marcolino-Júnior, L.H.; Bergamini, M.F. Voltammetric determination of the antioxidant capacity in wine samples using a carbon nanotube modified electrode. J. Agric. Food Chem., 2011, 59(14), 7620-7625. doi: 10.1021/jf2005589 PMID: 21692474
- David, M. Şerban, A.; Popa, C.; Florescu, M. A nanoparticlebased label-free sensor for screening the relative antioxidant capacity of hydrosoluble plant extracts. Sensors, 2019, 19(3), 590. doi: 10.3390/s19030590 PMID: 30704125
- Congming, Li. Zhou, Y.; Ye, B.; Xu, M. Sensitive voltammetric sensor for evaluation of trans-resveratrol levels in wines based on Poly(L-lysine) modified electrode. J. Anal. Chem., 2020, 75(1), 111-118. doi: 10.1134/S1061934820010098
- Banica, F.; Bungau, S.; Tit, D.M.; Behl, T.; Otrisal, P.; Nechifor, A.C.; Gitea, D.; Pavel, F.M.; Nemeth, S. Determination of the total polyphenols content and antioxidant activity of echinacea purpurea extracts using newly manufactured glassy carbon electrodes modified with carbon nanotubes. Processes, 2020, 8(7), 833. doi: 10.3390/pr8070833
- Koc, T.B.; Kuyumcu Savan, E.; Karabulut, I. Determination of antioxidant properties and β-carotene in orange fruits and vegetables by an oxidation voltammetric assay. Anal. Lett., 2022, 55(6), 891-903. doi: 10.1080/00032719.2021.1971686
- Rivas Romero, M.P.; Estévez Brito, R.; Rodríguez Mellado, J.M.; González-Rodríguez, J.; Ruiz Montoya, M.; Rodríguez-Amaro, R. Exploring the relation between composition of extracts of healthy foods and their antioxidant capacities determined by electrochemical and spectrophotometrical methods. Lebensm. Wiss. Technol., 2018, 95, 157-166. doi: 10.1016/j.lwt.2018.04.079
- Ye, Y.; Ji, J.; Sun, Z.; Shen, P.; Sun, X. Recent advances in electrochemical biosensors for antioxidant analysis in foodstuff. Trends Analyt. Chem., 2020, 122, 115718. doi: 10.1016/j.trac.2019.115718
- Wongkaew, N.; Simsek, M.; Griesche, C.; Baeumner, A.J. Functional nanomaterials and nanostructures enhancing electrochemical biosensors and lab-on-a-chip performances: Recent progress, applications, and future perspective. Chem. Rev., 2019, 119(1), 120-194. doi: 10.1021/acs.chemrev.8b00172 PMID: 30247026
- Shao, J.; Wang, C.; Shen, Y.; Shi, J.; Ding, D. Electrochemical sensors and biosensors for the analysis of tea components: A bibliometric review. Front Chem., 2022, 9, 818461. doi: 10.3389/fchem.2021.818461 PMID: 35096777
- Cesewski, E.; Johnson, B.N. Electrochemical biosensors for pathogen detection. Biosens. Bioelectron., 2020, 159, 112214. doi: 10.1016/j.bios.2020.112214 PMID: 32364936
- Serra, B.; Reviejo, Á.J.; Pingarrón, J.M. Application of electrochemical enzyme biosensors for food quality control. In: Comprehensive Analytical Chemistry; Alegret, S.; Merkoçi, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Vol. 49, pp. 255-298.
- de Macêdo, I.Y.L.; Garcia, L.F.; Oliveira Neto, J.R.; de Siqueira Leite, K.C.; Ferreira, V.S.; Ghedini, P.C.; de Souza Gil, E. Electroanalytical tools for antioxidant evaluation of red fruits dry extracts. Food Chem., 2017, 217, 326-331. doi: 10.1016/j.foodchem.2016.08.082 PMID: 27664641
- Cetó, X.; Céspedes, F.; Pividori, M.I.; Gutiérrez, J.M.; del Valle, M. Resolution of phenolic antioxidant mixtures employing a voltammetric bio-electronic tongue. Analyst (Lond.), 2012, 137(2), 349-356. doi: 10.1039/C1AN15456G PMID: 22102984
- Wee, Y.; Park, S.; Kwon, Y.H.; Ju, Y.; Yeon, K.M.; Kim, J. Tyrosinase-immobilized CNT based biosensor for highly-sensitive detection of phenolic compounds. Biosens. Bioelectron., 2019, 132, 279-285. doi: 10.1016/j.bios.2019.03.008 PMID: 30884314
- Stasyuk, N.; Gayda, G.; Zakalskiy, A.; Zakalska, O.; Serkiz, R.; Gonchar, M. Amperometric biosensors based on oxidases and PtRu nanoparticles as artificial peroxidase. Food Chem., 2019, 285, 213-220. doi: 10.1016/j.foodchem.2019.01.117 PMID: 30797337
- Zhang, Z.; Liu, J.; Fan, J.; Wang, Z.; Li, L. Detection of catechol using an electrochemical biosensor based on engineered Escherichia coli cells that surface-display laccase. Anal. Chim., 2018, 65-72.
- Agarwal, P.; Gupta, R.; Agarwal, N. A review on enzymatic treatment of phenols in wastewater. J. Biotechnol. Biomater., 2016, 6(4), 4. doi: 10.4172/2155-952X.1000249
- Nejadmansouri, M.; Majdinasab, M.; Nunes, G.S.; Marty, J.L. An overview of optical and electrochemical sensors and biosensors for analysis of antioxidants in food during the last 5 years. Sensors, 2021, 21(4), 1176. doi: 10.3390/s21041176 PMID: 33562374
- Sýs, M.; Pekec, B.; Kalcher, K. Vytřas, K. Amperometric enzyme carbon paste-based biosensor for quantification of hydroquinone and polyphenolic antioxidant capacity. Int. J. Electrochem. Sci., 2013, 8(7), 9030-9040. doi: 10.1016/S1452-3981(23)12947-6
- Abosadeh, D.J.; Kashanian, S.; Nazari, M.; Parnianchi, F. Fabrication of a novel phenolic compound biosensor using laccase enzyme and metal-organic coordination polymers. Anal. Bioanal. Chem. Res., 2021, 8, 467-480.
- Bounegru, A.V.; Apetrei, C. Laccase and Tyrosinase Biosensors Used in the Determination of Hydroxycinnamic Acids. Int. J. Mol. Sci., 2021, 22(9), 4811. doi: 10.3390/ijms22094811 PMID: 34062799
- García-Guzmán, J.J.; López-Iglesias, D.; Marin, M.; Lete, C.; Lupu, S.; Palacios-Santander, J.M.; Cubillana-Aguilera, L. Electrochemical biosensors for antioxidants. In: Advanced Biosensors for Health Care Applications; Inamuddin, K.R.; Mohammad, A.; Asiri, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 105-146. doi: 10.1016/B978-0-12-815743-5.00004-4
- Zrinski, I.; Pungjunun, K.; Martinez, S.; Zavanik, J. Stanković D.; Kalcher, K.; Mehmeti, E. Evaluation of phenolic antioxidant capacity in beverages based on laccase immobilized on screen-printed carbon electrode modified with graphene nanoplatelets and gold nanoparticles. Microchem. J., 2020, 152, 104282. doi: 10.1016/j.microc.2019.104282
- ElKaoutit, M.; Naranjo-Rodriguez, I.; Temsamani, K.R.; de la Vega, M.D.; de Cisneros, J.L.H.H. Dual laccase-tyrosinase based Sonogel-Carbon biosensor for monitoring polyphenols in beers. J. Agric. Food Chem., 2007, 55(20), 8011-8018. doi: 10.1021/jf0711136 PMID: 17848081
- Montereali, M.R.; Seta, L.D.; Vastarella, W.; Pilloton, R. A disposable LaccaseTyrosinase based biosensor for amperometric detection of phenolic compounds in must and wine. J. Mol. Catal., B Enzym., 2010, 64(3-4), 189-194. doi: 10.1016/j.molcatb.2009.07.014
- Steevensz, A.; Cordova Villegas, L.G.; Feng, W.; Taylor, K.E.; Bewtra, J.K.; Biswas, N. Soybean peroxidase for industrial wastewater treatment: A mini review. J. Environ. Eng. Sci., 2014, 9(3), 181-186. doi: 10.1680/jees.13.00013
- Mello, L.D.; Sotomayor, M.D.P.T.; Kubota, L.T. HRP-based amperometric biosensor for the polyphenols determination in vegetables extract. Sens. Actuators B Chem., 2003, 96(3), 636-645. doi: 10.1016/j.snb.2003.07.008
- Mello, L.D.; Alves, A.A.; Macedo, D.V.; Kubota, L.T. Peroxidase-based biosensor as a tool for a fast evaluation of antioxidant capacity of tea. Food Chem., 2005, 92(3), 515-519. doi: 10.1016/j.foodchem.2004.08.019
- Mello, L.D.; Kubota, L.T. Antioxidant capacity of Ilex paraguariensis extracts by using HRP-based biosensor. Lat. Am. Appl. Res., 2014, 44(4), 325-329. doi: 10.52292/j.laar.2014.461
- Thapa, K.; Liu, W.; Wang, R. Nucleic acid‐based electrochemical biosensor: Recent advances in probe immobilization and signal amplification strategies. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2022, 14(1), e1765. doi: 10.1002/wnan.1765 PMID: 34734485
- Tandon, A.; Park, S.H. DNA structures embedded with functionalized nanomaterials for biophysical applications. J. Korean Phys. Soc., 2021, 78(5), 449-460. doi: 10.1007/s40042-020-00053-3
- Bagheri Hashkavayi, A.; Hashemnia, S.; Osfouri, S. Investigations of antioxidant potential and protective effect of Acanthophora algae on DNA damage: An electrochemical approach. Microchem. J., 2020, 159, 105455. doi: 10.1016/j.microc.2020.105455
- Tao, S.S.; Wu, G.C.; Zhang, Q.; Zhang, T.P.; Leng, R.X.; Pan, H.F.; Ye, D.Q. TREX1 as a potential therapeutic target for autoimmune and inflammatory diseases. Curr. Pharm. Des., 2019, 25(30), 3239-3247. doi: 10.2174/1381612825666190902113218 PMID: 31475890
- Ligaj, M.; Kobus-Cisowska, J.; Szczepaniak, O.; Szulc, P.; Kikut-Ligaj, D. Mikołajczak-Ratajczak, A.; Bykowski, P.; Szymanowska, D.; Przeor, M.; Polewski, K.; Jarzębski, M. Electrochemical screening of genoprotective and antioxidative effectiveness of Origanum vulgare L. and its functionality in the prevention of neurodegenerative disorders. Talanta, 2021, 223(Pt 2), 121749. doi: 10.1016/j.talanta.2020.121749 PMID: 33298273
- Barroso, M.F.; Delerue-Matos, C.; Oliveira, M.B.P.P. Electrochemical evaluation of total antioxidant capacity of beverages using a purine-biosensor. Food Chem., 2012, 132(2), 1055-1062. doi: 10.1016/j.foodchem.2011.10.072
- Yue, Y.; Zhihong, B.; Sanming, L.; Kun, Z. Electrochemical evaluation of antioxidant capacity in pharmaceutical antioxidant excipient of drugs on guanine-based modified electrode. J. Electroanal. Chem., 2016, 772, 58-65. doi: 10.1016/j.jelechem.2016.03.008
- Kamel, A.H.; Moreira, F.T.C.; Delerue-Matos, C.; Sales, M.G.F. Electrochemical determination of antioxidant capacities in flavored waters by guanine and adenine biosensors. Biosens. Bioelectron., 2008, 24(4), 591-599. doi: 10.1016/j.bios.2008.06.007 PMID: 18640022
- Barroso, M.F.; Delerue-Matos, C.; Oliveira, M.B.P.P. Electrochemical DNA-sensor for evaluation of total antioxidant capacity of flavours and flavoured waters using superoxide radical damage. Biosens. Bioelectron., 2011, 26(9), 3748-3754. doi: 10.1016/j.bios.2011.02.015 PMID: 21474298
- Bucková, M.; Labuda, J.; Sandula, J.; Krizková, L.; Stepánek, I.; Duracková, Z. Detection of damage to DNA and antioxidative activity of yeast polysaccharides at the DNA-modified screen-printed electrode. Talanta, 2002, 56(5), 939-947. doi: 10.1016/S0039-9140(01)00654-3 PMID: 18968573
- Labuda, J. Bučková, M.; Heilerová, L.; Čaniová-iaková, A.; Brandteterová, E.; Mattusch, J.; Wennrich, R. Detection of antioxidative activity of plant extracts at the dna-modified screen-printed electrode. Sensors, 2002, 2(1), 1-10. doi: 10.3390/s20100001
- Labuda, J. Bučková, M.; Heilerová, Ľ.; ilhár, S.; tepánek, I. Evaluation of the redox properties and anti/pro-oxidant effects of selected flavonoids by means of a DNA-based electrochemical biosensor. Anal. Bioanal. Chem., 2003, 376(2), 168-173. doi: 10.1007/s00216-003-1884-3 PMID: 12712310
- Oliveira-Brett, A.M.; Diculescu, V.C. Electrochemical study of quercetinDNA interactions. Bioelectrochemistry, 2004, 64(2), 143-150. doi: 10.1016/j.bioelechem.2004.05.002 PMID: 15296787
- Ensafi, A.A.; Kazemnadi, N.; Amini, M.; Rezaei, B. Impedimetric DNA-biosensor for the study of dopamine induces DNA damage and investigation of inhibitory and repair effects of some antioxidants. Bioelectrochemistry, 2015, 104, 71-78. doi: 10.1016/j.bioelechem.2015.03.008 PMID: 25866909
- Tsai, T.H.; Lin, K.C.; Chen, S.M. Electrochemical synthesis of Poly(3,4-ethylenedioxythiophene) and gold nanocomposite and its application for hypochlorite sensor. Int. J. Electrochem. Sci., 2011, 6(7), 2672-2687. doi: 10.1016/S1452-3981(23)18209-5
- Wang, X.; Jiao, C.; Yu, Z. Electrochemical biosensor for assessment of the total antioxidant capacity of orange juice beverage based on the immobilizing DNA on a poly l-glutamic acid doped silver hybridized membrane. Sens. Actuators B Chem., 2014, 192, 628-633. doi: 10.1016/j.snb.2013.11.025
- Li, G.; Yuan, B.; Zhao, L.; Gao, W.; Xu, C.; Liu, G. Fouling-resistant electrode for electrochemical sensing based on covalent-organic frameworks TpPA-1 dispersed cabon nanotubes. Talanta, 2024, 267, 125162. doi: 10.1016/j.talanta.2023.125162 PMID: 37688894
- Kumaran, A.; Jude Serpes, N.; Gupta, T.; James, A.; Sharma, A.; Kumar, D.; Nagraik, R.; Kumar, V.; Pandey, S. Advancements in CRISPR-based biosensing for next-gen point of care diagnostic application. Biosensors, 2023, 13(2), 202. doi: 10.3390/bios13020202 PMID: 36831968
- Cho, S.; Shin, J.; Cho, B.K. Applications of CRISPR/cas system to bacterial metabolic engineering. Int. J. Mol. Sci., 2018, 19(4), 1089. doi: 10.3390/ijms19041089 PMID: 29621180
- Konieczyński, P. Electrochemical fingerprint studies of selected medicinal plants rich in flavonoids. Acta Pol. Pharm., 2015, 72(4), 655-661. PMID: 26647621
- Amidi, S.; Mojab, F.; Bayandori Moghaddam, A.; Tabib, K.; Kobarfard, F. A simple electrochemical method for the rapid estimation of antioxidant potentials of some selected medicinal plants. Iran. J. Pharm. Res., 2012, 11(1), 117-121. PMID: 25317192
- Shen, Y.; Li, X.; Chen, W.; Cheng, F.; Song, F. Electrochemical determination of indole butyric acid by differential pulse voltammetry on hanging mercury drops electrode. J. Plant Biochem. Biotechnol., 2013, 22(3), 319-323. doi: 10.1007/s13562-012-0162-x
- Fang, Y.; Umasankar, Y.; Ramasamy, R.P. A novel bi-enzyme electrochemical biosensor for selective and sensitive determination of methyl salicylate. Biosens. Bioelectron., 2016, 81, 39-45. doi: 10.1016/j.bios.2016.01.095 PMID: 26918616
- Volkov, A.G.; Collins, D.J.; Mwesigwa, J. Plant electrophysiology: Pentachlorophenol induces fast action potentials in soybean. Plant Sci., 2000, 153(2), 185-190. doi: 10.1016/S0168-9452(99)00271-X PMID: 10717325
- Rodríguez-Sevilla, E.; Ramírez-Silva, M.T.; Romero-Romo, M.; Ibarra-Escutia, P.; Palomar-Pardavé, M. Electrochemical quantification of the antioxidant capacity of medicinal plants using biosensors. Sensors, 2014, 14(8), 14423-14439. doi: 10.3390/s140814423 PMID: 25111237
- Olkov, A.G.V.; Abady, A.L.; Homas, D.J.T.; Hvetsova, T.S. Green plants as environmental biosensors: electrochemical effects of carbonyl cyanide 3-chlorophenylhydrazone on soybean. Anal. Chem., 2001, 17, 359-362.
- Oliveira-Neto, J.R.; Rezende, S.G.; de Fátima Reis, C.; Benjamin, S.R.; Rocha, M.L.; de Souza Gil, E. Electrochemical behavior and determination of major phenolic antioxidants in selected coffee samples. Food Chem., 2016, 190, 506-512. doi: 10.1016/j.foodchem.2015.05.104 PMID: 26213003
- Aguirre, M.J.; Chen, Y.Y.; Isaacs, M.; Matsuhiro, B.; Mendoza, L.; Torres, S. Electrochemical behaviour and antioxidant capacity of anthocyanins from Chilean red wine, grape and raspberry. Food Chem., 2010, 121(1), 44-48. doi: 10.1016/j.foodchem.2009.11.088
- Airado-Rodríguez, D.; Galeano-Díaz, T.; Durán-Merás, I. Determination of trans-resveratrol in red wine by adsorptive stripping square-wave voltammetry with medium exchange. Food Chem., 2010, 122(4), 1320-1326. doi: 10.1016/j.foodchem.2010.03.098
- Gandhi, M.; Rajagopal, D.; Parthasarathy, S.; Raja, S.; Huang, S.T.; Senthil Kumar, A. In Situ immobilized sesamol-quinone/carbon nanoblack-based electrochemical redox platform for efficient bioelectrocatalytic and immunosensor applications. ACS Omega, 2018, 3(9), 10823-10835. doi: 10.1021/acsomega.8b01296 PMID: 30320253
- Piovesan, J.V.; Jost, C.L.; Spinelli, A. Electroanalytical determination of total phenolic compounds by square-wave voltammetry using a poly(vinylpyrrolidone)-modified carbon-paste electrode. Sens. Actuators B Chem., 2015, 216, 192-197. doi: 10.1016/j.snb.2015.04.031
- Yang, Y.; Zhou, J.; Zhang, H.; Gai, P.; Zhang, X.; Chen, J. Electrochemical evaluation of total antioxidant capacities in fruit juice based on the guanine/graphene nanoribbon/glassy carbon electrode. Talanta, 2013, 106, 206-211. doi: 10.1016/j.talanta.2012.12.030 PMID: 23598118
- Głód, B.K.; Kiersztyn, I.; Piszcz, P. Total antioxidant potential assay with cyclic voltammetry and/or differential pulse voltammetry measurements. J. Electroanal. Chem., 2014, 719, 24-29. doi: 10.1016/j.jelechem.2014.02.004
- Lino, F.M.A.; de Sá, L.Z.; Torres, I.M.S.; Rocha, M.L.; Dinis, T.C.P.; Ghedini, P.C.; Somerset, V.S.; Gil, E.S. Voltammetric and spectrometric determination of antioxidant capacity of selected wines. Electrochim. Acta, 2014, 128, 25-31. doi: 10.1016/j.electacta.2013.08.109
Дополнительные файлы
