Electrochemical Sensors for Detection of Phytomolecules: A Mechanistic Approach


Цитировать

Полный текст

Аннотация

High demand and ongoing technological advancements have created a market for sensors that is both varied and rapidly evolving. Bioactive compounds are separated systematically to conduct an in-depth investigation, allowing for the profiling or fingerprinting of different Plantae kingdoms. The profiling field is significant in elucidating the complex interplay of plant traits, attributes, and environmental factors. Flexible technology advancements have enabled the creation of highly sensitive sensors for the non-destructive detection of molecules. Additionally, very specialized integrated systems that will allow multiplexed detection by integrating many hybrid approaches have been developed, but these systems are highly laborious and expensive. Electrochemical sensors, on the other hand, are a viable option because of their ability to accomplish exact compound detection via efficient signal transduction. However, this has not been investigated because of some obstacles to learning minimum metabolites' fundamentals and nonredox properties. This article reviews the electrochemical basis of plants, contrasting it with more conventional techniques and offering both positive and negative perspectives on the topic. Because few studies have been devoted to the concept of merging the domains, we've expanded the scope of this work by including pertinent non-phytochemical reports for better report comparison.

Об авторах

Deepti Katiyar

KIET School of Pharmacy, KIET Group of Institutions

Автор, ответственный за переписку.
Email: info@benthamscience.net

Manish

Department of Electronics and Communication Engineering, ABES Engineering College

Email: info@benthamscience.net

Rashmi Saxena Pal

Department of Pharmacy (Pharmacognosy), Lovely Professional University

Email: info@benthamscience.net

Priya Bansal

KIET SCHOOL OF PHARMACY, KIET Group of Institutions

Email: info@benthamscience.net

Abhishek Kumar

Department of Pharmaceutical Sciences, KIET Group of Institutions

Email: info@benthamscience.net

Surya Prakash

KIET School of Pharmacy, KIET Group of Institutions

Email: info@benthamscience.net

Список литературы

  1. Lin, J.; Wang, M.; Zhang, M.; Zhang, Y.; Chen, L. Electrochemical sensors for soil nutrient detection: Opportunity and challenge. International Federation for Information Processing, 2008, 259, 1349-1353. doi: 10.1007/978-0-387-77253-0_77
  2. Pujol, L.; Evrard, D.; Groenen-Serrano, K.; Freyssinier, M.; Ruffien-Cizsak, A.; Gros, P. Electrochemical sensors and devices for heavy metals assay in water: The French groups’ contribution. Front Chem., 2014, 2, 19. doi: 10.3389/fchem.2014.00019 PMID: 24818124
  3. Ludvík, J.; Riedl, F.; Liška, F.; Zuman, P. Electrochemical reduction of metribuzin. Electroanalysis, 1998, 10(13), 869-876. doi: 10.1002/(SICI)1521-4109(199810)10:133.0.CO;2-Y
  4. Vafaee-Shahi, S.; Shishehbore, M.R.; Sheibani, A.; Tabatabaee, M. Electrochemical sensing of folic acid in presence of ascorbic acid using carbon paste nano composite modified electrode. Anal. Bioanal. Chem. Res., 2021, 8, 261-274.
  5. Naik, G.P.; Poonia, A.K.; Chaudhari, P.K. Pretreatment of lignocellulosic agricultural waste for delignification, rapid hydrolysis, and enhanced biogas production: A review. J. Indian Chem. Soc., 2021, 98(10), 100147. doi: 10.1016/j.jics.2021.100147
  6. Chiavari, G.; Concialini, V.; Galletti, G.C.; Bologna, U.; Selmi, V.; Galletti, G.C. Electrochemical detection in the high-performance liquid chromatographic analysis of plant phenolics. Analyst, 1988, 113(1), 91-94. doi: 10.1039/an9881300091 PMID: 3358526
  7. Baezzat, M.R.; Tavakkoli, N.; Zamani, H. Construction of a new electrochemical sensor based on mos 2 nanosheets modified graphite screen printed electrode for simultaneous determination of diclofenac. Anal. Bioanal. Chem. Res., 2022, 9, 153-162.
  8. Amreen, K.; Sujatha, M. Nanomaterial assisted electrochemical detection of isolated piperine. A Anal. Bioanal. Chem. Res., 2021, 8, 209-217.
  9. Pandey, R.; Teig-Sussholz, O.; Schuster, S.; Avni, A.; Shacham-Diamand, Y. Integrated electrochemical Chip-on-Plant functional sensor for monitoring gene expression under stress. Biosens. Bioelectron., 2018, 117, 493-500. doi: 10.1016/j.bios.2018.06.045 PMID: 29982119
  10. Shrivastava, S.; Trung, T.Q.; Lee, N.E. Recent progress, challenges, and prospects of fully integrated mobile and wearable point-of-care testing systems for self-testing. Chem. Soc. Rev., 2020, 49(6), 1812-1866. doi: 10.1039/C9CS00319C PMID: 32100760
  11. Nguyen, H.H.; Lee, S.H.; Lee, U.J.; Fermin, C.D.; Kim, M. Immobilized enzymes in biosensor applications. Materials, 2019, 12(1), 121. doi: 10.3390/ma12010121 PMID: 30609693
  12. Mehrotra, P. Biosensors and their applications – A review. J. Oral Biol. Craniofac. Res., 2016, 6(2), 153-159. doi: 10.1016/j.jobcr.2015.12.002 PMID: 27195214
  13. Bobrinetskiy, I.I.; Knezevic, N.Z. Graphene-based biosensors for on-site detection of contaminants in food. Anal. Methods, 2018, 10(42), 5061-5070. doi: 10.1039/C8AY01913D
  14. Gan, T.; Shi, Z.; Sun, J.; Liu, Y. Simple and novel electrochemical sensor for the determination of tetracycline based on iron/zinc cations–exchanged montmorillonite catalyst. Talanta, 2014, 121, 187-193. doi: 10.1016/j.talanta.2014.01.002 PMID: 24607125
  15. González-Fernández, E.; Avlonitis, N.; Murray, A.F.; Mount, A.R.; Bradley, M. Methylene blue not ferrocene: Optimal reporters for electrochemical detection of protease activity. Biosens. Bioelectron., 2016, 84, 82-88. doi: 10.1016/j.bios.2015.11.088 PMID: 26684247
  16. Liu, X.; Lillehoj, P.B. Embroidered electrochemical sensors for biomolecular detection. Lab Chip, 2016, 16(11), 2093-2098. doi: 10.1039/C6LC00307A PMID: 27156700
  17. Maduraiveeran, G.; Jin, W. Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications. Trends Environ. Analy. Chem., 2017, 13, 10-23. doi: 10.1016/j.teac.2017.02.001
  18. Motia, S.; Tudor, I.A.; Ribeiro, P.A.; Raposo, M.; Bouchikhi, B.; El Bari, N. Electrochemical sensor based on molecularly imprinted polymer for sensitive triclosan detection in wastewater and mineral water. Sci. Total Environ., 2019, 664, 647-658. doi: 10.1016/j.scitotenv.2019.01.331 PMID: 30763845
  19. Sánchez, A.; Villalonga, A.; Martínez-García, G.; Parrado, C.; Villalonga, R. Dendrimers as soft nanomaterials for electrochemical immunosensors. Nanomaterials, 2019, 9(12), 1745. doi: 10.3390/nano9121745 PMID: 31817938
  20. Bhat, V.S. S, S.; Hegde, G. Review—biomass derived carbon materials for electrochemical sensors. J. Electrochem. Soc., 2020, 167(3), 037526. doi: 10.1149/2.0262003JES
  21. Berkov, S.; Osorio, E.; Viladomat, F. Chemodiversity, Chemotaxonomy and Chemoecology of Amaryllidaceae Alkaloids, 1st ed; ElsevierInc.: Amsterdam, The Netherlands, 2020, p. 83. doi: 10.1016/bs.alkal.2019.10.002
  22. Doménech-Carbó, A.; Ibars, A.M.; Prieto-Mossi, J.; Estrelles, E.; Scholz, F.; Cebrián-Torrejón, G.; Martini, M. Electrochemistry-based chemotaxonomy in plants using the voltammetry of microparticles methodology. New J. Chem., 2015, 39(9), 7421-7428. doi: 10.1039/C5NJ01233C
  23. Umoh, O.T. Chemotaxonomy: The role of phytochemicals in chemotaxonomic delineation of taxa. Asian Plant Res. J., 2020, 5, 43-52. doi: 10.9734/aprj/2020/v5i130100
  24. Rivière, C.; Pawlus, A.D.; Mérillon, J.M. Natural stilbenoids: Distribution in the plant kingdom and chemotaxonomic interest in Vitaceae. Nat. Prod. Rep., 2012, 29(11), 1317-1333. doi: 10.1039/c2np20049j PMID: 23014926
  25. Lanfer-Marquez, U.M.; Barros, R.M.C.; Sinnecker, P. Antioxidant activity of chlorophylls and their derivatives. Food Res. Int., 2005, 38(8-9), 885-891. doi: 10.1016/j.foodres.2005.02.012
  26. Wei, F.; Lillehoj, P.B.; Ho, C.M. DNA diagnostics: Nanotechnology-enhanced electrochemical detection of nucleic acids. Pediatr. Res., 2010, 67(5), 458-468. doi: 10.1203/PDR.0b013e3181d361c3 PMID: 20075759
  27. Ferdosian, F.; Ebadi, M.; Mehrabian, R.Z.; Golsefidi, M.A.; Moradi, A.V. Application of electrochemical techniques for determining and extracting natural product (egcg) by the synthesized conductive polymer electrode (Ppy/Pan/rGO) impregnated with nano-particles of TiO2. Sci. Rep., 2019, 9(1), 3940. doi: 10.1038/s41598-019-39952-2 PMID: 30850628
  28. Samoticha, J.; Jara-Palacios, M.J.; Hernández-Hierro, J.M.; Heredia, F.J. Wojdyło, A.; Aneta, J.H. Phenolic compounds and antioxidant activity of twelve grape cultivars measured by chemical and electrochemical methods. Eur. Food Res. Technol., 2018, 244(11), 1933-1943. doi: 10.1007/s00217-018-3105-5
  29. Arroyo-Currás, N.; Rosas-García, V.; Videa, M. Substituent inductive effects on the electrochemical oxidation of flavonoids studied by square wave voltammetry and ab initio calculations. Molecules, 2016, 21(11), 1422. doi: 10.3390/molecules21111422 PMID: 27801813
  30. Šeruga, M.; Tomac, I. Influence of chemical structure of some flavonols on their electrochemical behaviour. Int. J. Electrochem. Sci., 2017, 12(8), 7616-7637. doi: 10.20964/2017.08.79
  31. Mateo, E.M.; Gómez, J.V.; Montoya, N.; Mateo-Castro, R.; Gimeno-Adelantado, J.V.; Jiménez, M.; Doménech-Carbó, A. Electrochemical identification of toxigenic fungal species using solid-state voltammetry strategies. Food Chem., 2018, 267, 91-100. doi: 10.1016/j.foodchem.2017.02.033 PMID: 29934194
  32. Bavishi, K.; Laursen, T.; Martinez, K.L.; Møller, B.L.; Della Pia, E.A. Application of nanodisc technology for direct electrochemical investigation of plant cytochrome P450s and their NADPH P450 oxidoreductase. Sci. Rep., 2016, 6(1), 29459. doi: 10.1038/srep29459 PMID: 27386958
  33. Udit, A.K.; Hill, M.G.; Gray, H.B. Electrochemistry of cytochrome P450 BM3 in sodium dodecyl sulfate films. Langmuir, 2006, 22(25), 10854-10857. doi: 10.1021/la061162x PMID: 17129070
  34. Nurmi, T.; Adlercreutz, H. Sensitive high-performance liquid chromatographic method for profiling phytoestrogens using coulometric electrode array detection: application to plasma analysis. Anal. Biochem., 1999, 274(1), 110-117. doi: 10.1006/abio.1999.4247 PMID: 10527503
  35. Gil, E.S.; Couto, R.O. Flavonoid electrochemistry: A review on the electroanalytical applications. Rev. Bras. Farmacogn., 2013, 23(3), 542-558. doi: 10.1590/S0102-695X2013005000031
  36. Fu, Y.; You, Z.; Xiao, A.; Liu, L.; Zhou, W. Electrochemical evaluation of the antioxidant capacity of natural compounds on glassy carbon electrode modified with guanine-, polythionine-, and nitrogen-doped graphene. Open Chem., 2020, 18(1), 1054-1063. doi: 10.1515/chem-2020-0157
  37. Della Pelle, F.; Compagnone, D. Nanomaterial-based sensing and biosensing of phenolic compounds and related antioxidant capacity in food. Sensors, 2018, 18(2), 462. doi: 10.3390/s18020462 PMID: 29401719
  38. Munteanu, I.G.; Apetrei, C. Electrochemical determination of chlorogenic acid in nutraceuticals using voltammetric sensors based on screen-printed carbon electrode modified with graphene and gold nanoparticles. Int. J. Mol. Sci., 2021, 22(16), 8897. doi: 10.3390/ijms22168897 PMID: 34445600
  39. Garkani Nejad, F.; Tajik, S.; Beitollahi, H.; Sheikhshoaie, I. Magnetic nanomaterials based electrochemical (bio)sensors for food analysis. Talanta, 2021, 228, 122075. doi: 10.1016/j.talanta.2020.122075 PMID: 33773704
  40. Ziyatdinova, G.; Guss, E.; Yakupova, E. Electrochemical sensors based on the electropolymerized natural phenolic antioxidants and their analytical application. Sensors, 2021, 21(24), 8385. doi: 10.3390/s21248385 PMID: 34960482
  41. Brainina, K.; Stozhko, N.; Bukharinova, M.; Vikulova, E. Nanomaterials: Electrochemical properties and application in sensors; Phys Sci Rev, 2018, p. 3.
  42. Bertel, L.; Miranda, D.A.; García-Martín, J.M. Nanostructured titanium dioxide surfaces for electrochemical biosensing. Sensors, 2021, 21(18), 6167. doi: 10.3390/s21186167 PMID: 34577374
  43. Avelino, K.Y.P.S.; dos Santos, G.S.; Frías, I.A.M.; Silva-Junior, A.G.; Pereira, M.C.; Pitta, M.G.R.; de Araújo, B.C.; Errachid, A.; Oliveira, M.D.L.; Andrade, C.A.S. Nanostructured sensor platform based on organic polymer conjugated to metallic nanoparticle for the impedimetric detection of SARS-CoV-2 at various stages of viral infection. J. Pharm. Biomed. Anal., 2021, 206, 114392. doi: 10.1016/j.jpba.2021.114392 PMID: 34607201
  44. Li, J.; Liu, Z.X.; Li, Y.X.; Shu, G.; Zhang, X.J.; Marks, R.S.; Shan, D. 2‐Methylimidazole‐assisted morphology modulation of a copper‐based metal‐organic framework transducer for enhanced electrochemical peroxidase‐like activity. Electroanalysis, 2023, 35(1), e202100423. doi: 10.1002/elan.202100423
  45. Beduk, T.; de Oliveira Filho, J.I.; Ait Lahcen, A.; Mani, V.; Salama, K.N. Inherent surface activation of laser-scribed graphene decorated with au and ag nanoparticles: Simultaneous electrochemical behavior toward uric acid and dopamine. Langmuir, 2021, 37(47), 13890-13902. doi: 10.1021/acs.langmuir.1c02379 PMID: 34787434
  46. Vinothkumar, V.; Koventhan, C.; Chen, S.M.; Abinaya, M.; Kesavan, G.; Sengottuvelan, N. Preparation of three dimensional flower-like cobalt phosphateas dual functional electrocatalyst for flavonoids sensing and supercapacitor applications. Ceram. Int., 2021, 47(1), 29688-29706.
  47. Lima, A.P.; dos Santos, W.T.P.; Nossol, E.; Richter, E.M.; Munoz, R.A.A. Critical evaluation of voltammetric techniques for antioxidant capacity and activity: Presence of alumina on glassy-carbon electrodes alters the results. Electrochim. Acta, 2020, 358, 136925. doi: 10.1016/j.electacta.2020.136925
  48. Abou Samra, M.; Chedea, V.S.; Economou, A.; Calokerinos, A.; Kefalas, P. Antioxidant/prooxidant properties of model phenolic compounds: Part I. Studies on equimolar mixtures by chemiluminescence and cyclic voltammetry. Food Chem., 2011, 125(2), 622-629. doi: 10.1016/j.foodchem.2010.08.076
  49. Ricci, A.; Parpinello, G.P. Teslić N.; Kilmartin, P.A.; Versari, A. Suitability of the cyclic voltammetry measurements and dpph• spectrophotometric assay to determine the antioxidant capacity of food-grade oenological tannins. Molecules, 2019, 24(16), 2925. doi: 10.3390/molecules24162925 PMID: 31412565
  50. Photinon, K.; Chalermchart, Y.; Khanongnuch, C.; Wang, S.H.; Liu, C.C. A thick-film sensor as a novel device for determination of polyphenols and their antioxidant capacity in white wine. Sensors, 2010, 10(3), 1670-1678. doi: 10.3390/s100301670 PMID: 22294893
  51. Firuzi, O.; Lacanna, A.; Petrucci, R.; Marrosu, G.; Saso, L. Evaluation of the antioxidant activity of flavonoids by "ferric reducing antioxidant power" assay and cyclic voltammetry. Biochim. Biophys. Acta, Gen. Subj., 2005, 1721(1-3), 174-184. doi: 10.1016/j.bbagen.2004.11.001 PMID: 15652192
  52. Giné Bordonaba, J.; Terry, L.A. Electrochemical behaviour of polyphenol rich fruit juices using disposable screen-printed carbon electrodes: Towards a rapid sensor for antioxidant capacity and individual antioxidants. Talanta, 2012, 90, 38-45. doi: 10.1016/j.talanta.2011.12.058 PMID: 22340113
  53. Petković B.B.; Stanković D.; Milčić M.; Sovilj, S.P.; Manojlović D. Dinuclear copper(II) octaazamacrocyclic complex in a PVC coated GCE and graphite as a voltammetric sensor for determination of gallic acid and antioxidant capacity of wine samples. Talanta, 2015, 132, 513-519. doi: 10.1016/j.talanta.2014.09.025 PMID: 25476338
  54. Gualandi, I.; Ferraro, L.; Matteucci, P.; Tonelli, D. Assessment of the antioxidant capacity of standard compounds and fruit juices by a newly developed electrochemical method: comparative study with results from other analytical methods. Electroanalysis, 2015, 27(8), 1906-1914. doi: 10.1002/elan.201500076
  55. Souza, L.P.; Calegari, F.; Zarbin, A.J.G.; Marcolino-Júnior, L.H.; Bergamini, M.F. Voltammetric determination of the antioxidant capacity in wine samples using a carbon nanotube modified electrode. J. Agric. Food Chem., 2011, 59(14), 7620-7625. doi: 10.1021/jf2005589 PMID: 21692474
  56. David, M. Şerban, A.; Popa, C.; Florescu, M. A nanoparticlebased label-free sensor for screening the relative antioxidant capacity of hydrosoluble plant extracts. Sensors, 2019, 19(3), 590. doi: 10.3390/s19030590 PMID: 30704125
  57. Congming, Li. Zhou, Y.; Ye, B.; Xu, M. Sensitive voltammetric sensor for evaluation of trans-resveratrol levels in wines based on Poly(L-lysine) modified electrode. J. Anal. Chem., 2020, 75(1), 111-118. doi: 10.1134/S1061934820010098
  58. Banica, F.; Bungau, S.; Tit, D.M.; Behl, T.; Otrisal, P.; Nechifor, A.C.; Gitea, D.; Pavel, F.M.; Nemeth, S. Determination of the total polyphenols content and antioxidant activity of echinacea purpurea extracts using newly manufactured glassy carbon electrodes modified with carbon nanotubes. Processes, 2020, 8(7), 833. doi: 10.3390/pr8070833
  59. Koc, T.B.; Kuyumcu Savan, E.; Karabulut, I. Determination of antioxidant properties and β-carotene in orange fruits and vegetables by an oxidation voltammetric assay. Anal. Lett., 2022, 55(6), 891-903. doi: 10.1080/00032719.2021.1971686
  60. Rivas Romero, M.P.; Estévez Brito, R.; Rodríguez Mellado, J.M.; González-Rodríguez, J.; Ruiz Montoya, M.; Rodríguez-Amaro, R. Exploring the relation between composition of extracts of healthy foods and their antioxidant capacities determined by electrochemical and spectrophotometrical methods. Lebensm. Wiss. Technol., 2018, 95, 157-166. doi: 10.1016/j.lwt.2018.04.079
  61. Ye, Y.; Ji, J.; Sun, Z.; Shen, P.; Sun, X. Recent advances in electrochemical biosensors for antioxidant analysis in foodstuff. Trends Analyt. Chem., 2020, 122, 115718. doi: 10.1016/j.trac.2019.115718
  62. Wongkaew, N.; Simsek, M.; Griesche, C.; Baeumner, A.J. Functional nanomaterials and nanostructures enhancing electrochemical biosensors and lab-on-a-chip performances: Recent progress, applications, and future perspective. Chem. Rev., 2019, 119(1), 120-194. doi: 10.1021/acs.chemrev.8b00172 PMID: 30247026
  63. Shao, J.; Wang, C.; Shen, Y.; Shi, J.; Ding, D. Electrochemical sensors and biosensors for the analysis of tea components: A bibliometric review. Front Chem., 2022, 9, 818461. doi: 10.3389/fchem.2021.818461 PMID: 35096777
  64. Cesewski, E.; Johnson, B.N. Electrochemical biosensors for pathogen detection. Biosens. Bioelectron., 2020, 159, 112214. doi: 10.1016/j.bios.2020.112214 PMID: 32364936
  65. Serra, B.; Reviejo, Á.J.; Pingarrón, J.M. Application of electrochemical enzyme biosensors for food quality control. In: Comprehensive Analytical Chemistry; Alegret, S.; Merkoçi, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Vol. 49, pp. 255-298.
  66. de Macêdo, I.Y.L.; Garcia, L.F.; Oliveira Neto, J.R.; de Siqueira Leite, K.C.; Ferreira, V.S.; Ghedini, P.C.; de Souza Gil, E. Electroanalytical tools for antioxidant evaluation of red fruits dry extracts. Food Chem., 2017, 217, 326-331. doi: 10.1016/j.foodchem.2016.08.082 PMID: 27664641
  67. Cetó, X.; Céspedes, F.; Pividori, M.I.; Gutiérrez, J.M.; del Valle, M. Resolution of phenolic antioxidant mixtures employing a voltammetric bio-electronic tongue. Analyst (Lond.), 2012, 137(2), 349-356. doi: 10.1039/C1AN15456G PMID: 22102984
  68. Wee, Y.; Park, S.; Kwon, Y.H.; Ju, Y.; Yeon, K.M.; Kim, J. Tyrosinase-immobilized CNT based biosensor for highly-sensitive detection of phenolic compounds. Biosens. Bioelectron., 2019, 132, 279-285. doi: 10.1016/j.bios.2019.03.008 PMID: 30884314
  69. Stasyuk, N.; Gayda, G.; Zakalskiy, A.; Zakalska, O.; Serkiz, R.; Gonchar, M. Amperometric biosensors based on oxidases and PtRu nanoparticles as artificial peroxidase. Food Chem., 2019, 285, 213-220. doi: 10.1016/j.foodchem.2019.01.117 PMID: 30797337
  70. Zhang, Z.; Liu, J.; Fan, J.; Wang, Z.; Li, L. Detection of catechol using an electrochemical biosensor based on engineered Escherichia coli cells that surface-display laccase. Anal. Chim., 2018, 65-72.
  71. Agarwal, P.; Gupta, R.; Agarwal, N. A review on enzymatic treatment of phenols in wastewater. J. Biotechnol. Biomater., 2016, 6(4), 4. doi: 10.4172/2155-952X.1000249
  72. Nejadmansouri, M.; Majdinasab, M.; Nunes, G.S.; Marty, J.L. An overview of optical and electrochemical sensors and biosensors for analysis of antioxidants in food during the last 5 years. Sensors, 2021, 21(4), 1176. doi: 10.3390/s21041176 PMID: 33562374
  73. Sýs, M.; Pekec, B.; Kalcher, K. Vytřas, K. Amperometric enzyme carbon paste-based biosensor for quantification of hydroquinone and polyphenolic antioxidant capacity. Int. J. Electrochem. Sci., 2013, 8(7), 9030-9040. doi: 10.1016/S1452-3981(23)12947-6
  74. Abosadeh, D.J.; Kashanian, S.; Nazari, M.; Parnianchi, F. Fabrication of a novel phenolic compound biosensor using laccase enzyme and metal-organic coordination polymers. Anal. Bioanal. Chem. Res., 2021, 8, 467-480.
  75. Bounegru, A.V.; Apetrei, C. Laccase and Tyrosinase Biosensors Used in the Determination of Hydroxycinnamic Acids. Int. J. Mol. Sci., 2021, 22(9), 4811. doi: 10.3390/ijms22094811 PMID: 34062799
  76. García-Guzmán, J.J.; López-Iglesias, D.; Marin, M.; Lete, C.; Lupu, S.; Palacios-Santander, J.M.; Cubillana-Aguilera, L. Electrochemical biosensors for antioxidants. In: Advanced Biosensors for Health Care Applications; Inamuddin, K.R.; Mohammad, A.; Asiri, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 105-146. doi: 10.1016/B978-0-12-815743-5.00004-4
  77. Zrinski, I.; Pungjunun, K.; Martinez, S.; Zavašnik, J. Stanković D.; Kalcher, K.; Mehmeti, E. Evaluation of phenolic antioxidant capacity in beverages based on laccase immobilized on screen-printed carbon electrode modified with graphene nanoplatelets and gold nanoparticles. Microchem. J., 2020, 152, 104282. doi: 10.1016/j.microc.2019.104282
  78. ElKaoutit, M.; Naranjo-Rodriguez, I.; Temsamani, K.R.; de la Vega, M.D.; de Cisneros, J.L.H.H. Dual laccase-tyrosinase based Sonogel-Carbon biosensor for monitoring polyphenols in beers. J. Agric. Food Chem., 2007, 55(20), 8011-8018. doi: 10.1021/jf0711136 PMID: 17848081
  79. Montereali, M.R.; Seta, L.D.; Vastarella, W.; Pilloton, R. A disposable Laccase–Tyrosinase based biosensor for amperometric detection of phenolic compounds in must and wine. J. Mol. Catal., B Enzym., 2010, 64(3-4), 189-194. doi: 10.1016/j.molcatb.2009.07.014
  80. Steevensz, A.; Cordova Villegas, L.G.; Feng, W.; Taylor, K.E.; Bewtra, J.K.; Biswas, N. Soybean peroxidase for industrial wastewater treatment: A mini review. J. Environ. Eng. Sci., 2014, 9(3), 181-186. doi: 10.1680/jees.13.00013
  81. Mello, L.D.; Sotomayor, M.D.P.T.; Kubota, L.T. HRP-based amperometric biosensor for the polyphenols determination in vegetables extract. Sens. Actuators B Chem., 2003, 96(3), 636-645. doi: 10.1016/j.snb.2003.07.008
  82. Mello, L.D.; Alves, A.A.; Macedo, D.V.; Kubota, L.T. Peroxidase-based biosensor as a tool for a fast evaluation of antioxidant capacity of tea. Food Chem., 2005, 92(3), 515-519. doi: 10.1016/j.foodchem.2004.08.019
  83. Mello, L.D.; Kubota, L.T. Antioxidant capacity of Ilex paraguariensis extracts by using HRP-based biosensor. Lat. Am. Appl. Res., 2014, 44(4), 325-329. doi: 10.52292/j.laar.2014.461
  84. Thapa, K.; Liu, W.; Wang, R. Nucleic acid‐based electrochemical biosensor: Recent advances in probe immobilization and signal amplification strategies. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2022, 14(1), e1765. doi: 10.1002/wnan.1765 PMID: 34734485
  85. Tandon, A.; Park, S.H. DNA structures embedded with functionalized nanomaterials for biophysical applications. J. Korean Phys. Soc., 2021, 78(5), 449-460. doi: 10.1007/s40042-020-00053-3
  86. Bagheri Hashkavayi, A.; Hashemnia, S.; Osfouri, S. Investigations of antioxidant potential and protective effect of Acanthophora algae on DNA damage: An electrochemical approach. Microchem. J., 2020, 159, 105455. doi: 10.1016/j.microc.2020.105455
  87. Tao, S.S.; Wu, G.C.; Zhang, Q.; Zhang, T.P.; Leng, R.X.; Pan, H.F.; Ye, D.Q. TREX1 as a potential therapeutic target for autoimmune and inflammatory diseases. Curr. Pharm. Des., 2019, 25(30), 3239-3247. doi: 10.2174/1381612825666190902113218 PMID: 31475890
  88. Ligaj, M.; Kobus-Cisowska, J.; Szczepaniak, O.; Szulc, P.; Kikut-Ligaj, D. Mikołajczak-Ratajczak, A.; Bykowski, P.; Szymanowska, D.; Przeor, M.; Polewski, K.; Jarzębski, M. Electrochemical screening of genoprotective and antioxidative effectiveness of Origanum vulgare L. and its functionality in the prevention of neurodegenerative disorders. Talanta, 2021, 223(Pt 2), 121749. doi: 10.1016/j.talanta.2020.121749 PMID: 33298273
  89. Barroso, M.F.; Delerue-Matos, C.; Oliveira, M.B.P.P. Electrochemical evaluation of total antioxidant capacity of beverages using a purine-biosensor. Food Chem., 2012, 132(2), 1055-1062. doi: 10.1016/j.foodchem.2011.10.072
  90. Yue, Y.; Zhihong, B.; Sanming, L.; Kun, Z. Electrochemical evaluation of antioxidant capacity in pharmaceutical antioxidant excipient of drugs on guanine-based modified electrode. J. Electroanal. Chem., 2016, 772, 58-65. doi: 10.1016/j.jelechem.2016.03.008
  91. Kamel, A.H.; Moreira, F.T.C.; Delerue-Matos, C.; Sales, M.G.F. Electrochemical determination of antioxidant capacities in flavored waters by guanine and adenine biosensors. Biosens. Bioelectron., 2008, 24(4), 591-599. doi: 10.1016/j.bios.2008.06.007 PMID: 18640022
  92. Barroso, M.F.; Delerue-Matos, C.; Oliveira, M.B.P.P. Electrochemical DNA-sensor for evaluation of total antioxidant capacity of flavours and flavoured waters using superoxide radical damage. Biosens. Bioelectron., 2011, 26(9), 3748-3754. doi: 10.1016/j.bios.2011.02.015 PMID: 21474298
  93. Bucková, M.; Labuda, J.; Sandula, J.; Krizková, L.; Stepánek, I.; Duracková, Z. Detection of damage to DNA and antioxidative activity of yeast polysaccharides at the DNA-modified screen-printed electrode. Talanta, 2002, 56(5), 939-947. doi: 10.1016/S0039-9140(01)00654-3 PMID: 18968573
  94. Labuda, J. Bučková, M.; Heilerová, L.; Čaniová-Žiaková, A.; Brandšteterová, E.; Mattusch, J.; Wennrich, R. Detection of antioxidative activity of plant extracts at the dna-modified screen-printed electrode. Sensors, 2002, 2(1), 1-10. doi: 10.3390/s20100001
  95. Labuda, J. Bučková, M.; Heilerová, Ľ.; Šilhár, S.; Štepánek, I. Evaluation of the redox properties and anti/pro-oxidant effects of selected flavonoids by means of a DNA-based electrochemical biosensor. Anal. Bioanal. Chem., 2003, 376(2), 168-173. doi: 10.1007/s00216-003-1884-3 PMID: 12712310
  96. Oliveira-Brett, A.M.; Diculescu, V.C. Electrochemical study of quercetin–DNA interactions. Bioelectrochemistry, 2004, 64(2), 143-150. doi: 10.1016/j.bioelechem.2004.05.002 PMID: 15296787
  97. Ensafi, A.A.; Kazemnadi, N.; Amini, M.; Rezaei, B. Impedimetric DNA-biosensor for the study of dopamine induces DNA damage and investigation of inhibitory and repair effects of some antioxidants. Bioelectrochemistry, 2015, 104, 71-78. doi: 10.1016/j.bioelechem.2015.03.008 PMID: 25866909
  98. Tsai, T.H.; Lin, K.C.; Chen, S.M. Electrochemical synthesis of Poly(3,4-ethylenedioxythiophene) and gold nanocomposite and its application for hypochlorite sensor. Int. J. Electrochem. Sci., 2011, 6(7), 2672-2687. doi: 10.1016/S1452-3981(23)18209-5
  99. Wang, X.; Jiao, C.; Yu, Z. Electrochemical biosensor for assessment of the total antioxidant capacity of orange juice beverage based on the immobilizing DNA on a poly l-glutamic acid doped silver hybridized membrane. Sens. Actuators B Chem., 2014, 192, 628-633. doi: 10.1016/j.snb.2013.11.025
  100. Li, G.; Yuan, B.; Zhao, L.; Gao, W.; Xu, C.; Liu, G. Fouling-resistant electrode for electrochemical sensing based on covalent-organic frameworks TpPA-1 dispersed cabon nanotubes. Talanta, 2024, 267, 125162. doi: 10.1016/j.talanta.2023.125162 PMID: 37688894
  101. Kumaran, A.; Jude Serpes, N.; Gupta, T.; James, A.; Sharma, A.; Kumar, D.; Nagraik, R.; Kumar, V.; Pandey, S. Advancements in CRISPR-based biosensing for next-gen point of care diagnostic application. Biosensors, 2023, 13(2), 202. doi: 10.3390/bios13020202 PMID: 36831968
  102. Cho, S.; Shin, J.; Cho, B.K. Applications of CRISPR/cas system to bacterial metabolic engineering. Int. J. Mol. Sci., 2018, 19(4), 1089. doi: 10.3390/ijms19041089 PMID: 29621180
  103. Konieczyński, P. Electrochemical fingerprint studies of selected medicinal plants rich in flavonoids. Acta Pol. Pharm., 2015, 72(4), 655-661. PMID: 26647621
  104. Amidi, S.; Mojab, F.; Bayandori Moghaddam, A.; Tabib, K.; Kobarfard, F. A simple electrochemical method for the rapid estimation of antioxidant potentials of some selected medicinal plants. Iran. J. Pharm. Res., 2012, 11(1), 117-121. PMID: 25317192
  105. Shen, Y.; Li, X.; Chen, W.; Cheng, F.; Song, F. Electrochemical determination of indole butyric acid by differential pulse voltammetry on hanging mercury drops electrode. J. Plant Biochem. Biotechnol., 2013, 22(3), 319-323. doi: 10.1007/s13562-012-0162-x
  106. Fang, Y.; Umasankar, Y.; Ramasamy, R.P. A novel bi-enzyme electrochemical biosensor for selective and sensitive determination of methyl salicylate. Biosens. Bioelectron., 2016, 81, 39-45. doi: 10.1016/j.bios.2016.01.095 PMID: 26918616
  107. Volkov, A.G.; Collins, D.J.; Mwesigwa, J. Plant electrophysiology: Pentachlorophenol induces fast action potentials in soybean. Plant Sci., 2000, 153(2), 185-190. doi: 10.1016/S0168-9452(99)00271-X PMID: 10717325
  108. Rodríguez-Sevilla, E.; Ramírez-Silva, M.T.; Romero-Romo, M.; Ibarra-Escutia, P.; Palomar-Pardavé, M. Electrochemical quantification of the antioxidant capacity of medicinal plants using biosensors. Sensors, 2014, 14(8), 14423-14439. doi: 10.3390/s140814423 PMID: 25111237
  109. Olkov, A.G.V.; Abady, A.L.; Homas, D.J.T.; Hvetsova, T.S. Green plants as environmental biosensors: electrochemical effects of carbonyl cyanide 3-chlorophenylhydrazone on soybean. Anal. Chem., 2001, 17, 359-362.
  110. Oliveira-Neto, J.R.; Rezende, S.G.; de Fátima Reis, C.; Benjamin, S.R.; Rocha, M.L.; de Souza Gil, E. Electrochemical behavior and determination of major phenolic antioxidants in selected coffee samples. Food Chem., 2016, 190, 506-512. doi: 10.1016/j.foodchem.2015.05.104 PMID: 26213003
  111. Aguirre, M.J.; Chen, Y.Y.; Isaacs, M.; Matsuhiro, B.; Mendoza, L.; Torres, S. Electrochemical behaviour and antioxidant capacity of anthocyanins from Chilean red wine, grape and raspberry. Food Chem., 2010, 121(1), 44-48. doi: 10.1016/j.foodchem.2009.11.088
  112. Airado-Rodríguez, D.; Galeano-Díaz, T.; Durán-Merás, I. Determination of trans-resveratrol in red wine by adsorptive stripping square-wave voltammetry with medium exchange. Food Chem., 2010, 122(4), 1320-1326. doi: 10.1016/j.foodchem.2010.03.098
  113. Gandhi, M.; Rajagopal, D.; Parthasarathy, S.; Raja, S.; Huang, S.T.; Senthil Kumar, A. In Situ immobilized sesamol-quinone/carbon nanoblack-based electrochemical redox platform for efficient bioelectrocatalytic and immunosensor applications. ACS Omega, 2018, 3(9), 10823-10835. doi: 10.1021/acsomega.8b01296 PMID: 30320253
  114. Piovesan, J.V.; Jost, C.L.; Spinelli, A. Electroanalytical determination of total phenolic compounds by square-wave voltammetry using a poly(vinylpyrrolidone)-modified carbon-paste electrode. Sens. Actuators B Chem., 2015, 216, 192-197. doi: 10.1016/j.snb.2015.04.031
  115. Yang, Y.; Zhou, J.; Zhang, H.; Gai, P.; Zhang, X.; Chen, J. Electrochemical evaluation of total antioxidant capacities in fruit juice based on the guanine/graphene nanoribbon/glassy carbon electrode. Talanta, 2013, 106, 206-211. doi: 10.1016/j.talanta.2012.12.030 PMID: 23598118
  116. Głód, B.K.; Kiersztyn, I.; Piszcz, P. Total antioxidant potential assay with cyclic voltammetry and/or differential pulse voltammetry measurements. J. Electroanal. Chem., 2014, 719, 24-29. doi: 10.1016/j.jelechem.2014.02.004
  117. Lino, F.M.A.; de Sá, L.Z.; Torres, I.M.S.; Rocha, M.L.; Dinis, T.C.P.; Ghedini, P.C.; Somerset, V.S.; Gil, E.S. Voltammetric and spectrometric determination of antioxidant capacity of selected wines. Electrochim. Acta, 2014, 128, 25-31. doi: 10.1016/j.electacta.2013.08.109

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024