Unraveling Amentoflavone's Therapeutic Potential in Alzheimer's Disease: A Preclinical Assessment
- Авторы: Singh S.1, Agrawal N.1, Goyal A.1
-
Учреждения:
- Institute of Pharmaceutical Research, GLA University
- Выпуск: Том 27, № 13 (2024)
- Страницы: 1851-1860
- Раздел: Chemistry
- URL: https://kazanmedjournal.ru/1386-2073/article/view/645254
- DOI: https://doi.org/10.2174/0113862073301291240229102657
- ID: 645254
Цитировать
Полный текст
Аннотация
Alzheimers disease is one of the neurodegenerative diseases which causes cognition deficit. There are currently few medications available to treat Alzheimer's disease, even though researchers have devoted a great deal of time studying the condition and offering many benefits. Thus, only a few drugs are available for the treatment of Alzheimers disease. Amentoflavone is a dietary component found in many plants and herbs that has several health advantages. Amentoflavone has demonstrated strong protective benefits against a range of brain illnesses in preclinical trials, most frequently in Alzheimer's disease. Amentoflavone, a biflavonoid, can be identified in a variety of herbs upon isolation. Considering the beneficial properties of this compound, this review emphasizes the pharmacological effects and botanical sources of amentoflavone, as well as the compound's benefits and possible applications in the treatment of Alzheimer's disorders.
Ключевые слова
Об авторах
Sushma Singh
Institute of Pharmaceutical Research, GLA University
Email: info@benthamscience.net
Neetu Agrawal
Institute of Pharmaceutical Research, GLA University
Email: info@benthamscience.net
Ahsas Goyal
Institute of Pharmaceutical Research, GLA University
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Ishola, I.O.; Chatterjee, M.; Tota, S.; Tadigopulla, N.; Adeyemi, O.O.; Palit, G.; Shukla, R. Pharmacology, biochemistry and behavior antidepressant and anxiolytic effects of amento Fl avone isolated from Cnestis Ferruginea in mice. Pharmacol. Biochem. Behav., 2012, 103, 322-331. doi: 10.1016/j.pbb.2012.08.017 PMID: 22944105
- de Teles, A.R.B.; Diniz, T.C.; Pinto, C.T.C.; de Júnior, O.R.G.; Gama e Silva, M.; de Lavor, É.M.; Fernandes, A.W.C.; de Oliveira, A.P.; de Ribeiro, A.F.P.R.; da Silva, A.A.M.; Cavalcante, T.C.F.; Júnior, Q.L.J.; da Almeida, S.J.R.G. Flavonoids as therapeutic agents in Alzheimers and parkinsons diseases: A systematic review of preclinical evidences. Oxid. Med. Cell. Longev., 2018, 2018, 1-21. doi: 10.1155/2018/7043213 PMID: 29861833
- Minter, M.R.; Taylor, J.M.; Crack, P.J. The contribution of neuroinflammation to amyloid toxicity in Alzheimers disease. J. Neurochem., 2016, 136(3), 457-474. doi: 10.1111/jnc.13411 PMID: 26509334
- AlMatar, M.; Makky, E.A.; Ramli, A.N.M. Natural polysaccharides alleviate neurological disorders: New updates. Mini Rev. Med. Chem., 2022, 22(22), 2813-2819. doi: 10.2174/1389557522666220321145840 PMID: 35319363
- Gregory, J.; Vengalasetti, Y.V.; Bredesen, D.E.; Rao, R.V. Neuroprotective herbs for the management of Alzheimers disease. Biomolecules, 2021, 11(4), 543. doi: 10.3390/biom11040543 PMID: 33917843
- Iriti, M.; Vitalini, S.; Fico, G.; Faoro, F. Neuroprotective herbs and foods from different traditional medicines and diets. Molecules, 2010, 15(5), 3517-3555. doi: 10.3390/molecules15053517 PMID: 20657497
- Minocha, T.; Birla, H.; Obaid, A.A.; Rai, V.; Sushma, P.; Shivamallu, C.; Moustafa, M.; Al-Shehri, M.; Al-Emam, A.; Tikhonova, M.A.; Yadav, S.K.; Poeggeler, B.; Singh, D.; Singh, S.K. Flavonoids as promising neuroprotectants and their therapeutic potential against Alzheimers disease. Oxid. Med. Cell. Longev., 2022, 2022, 6038996. doi: 10.1155/2022/6038996
- Khan, J.; Deb, P.K.; Priya, S.; Medina, K.D.; Devi, R.; Walode, S.G.; Rudrapal, M. Dietary flavonoids: Cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological and therapeutic concerns. Molecules, 2021, 26(13), 4021. doi: 10.3390/molecules26134021 PMID: 34209338
- Hussain, M.; Jabeen, N.; Amanullah, A.; Ashraf Baig, A.; Aziz, B.; Shabbir, S.; Raza, F.; Uddin, N. Molecular docking between human TMPRSS2 and SARS-CoV-2 spike protein: Conformation and intermolecular interactions. AIMS Microbiol., 2020, 6(3), 350-360. doi: 10.3934/microbiol.2020021 PMID: 33029570
- He, X.; Yang, F.; Huang, X. Proceedings of chemistry, pharmacology, pharmacokinetics and synthesis of biflavonoids. Molecules, 2021, 26(19), 6088. doi: 10.3390/molecules26196088
- Sirimangkalakitti, N.; Juliawaty, L.D.; Hakim, E.H.; Waliana, I.; Saito, N.; Koyama, K.; Kinoshita, K. Naturally occurring biflavonoids with amyloid β aggregation inhibitory activity for development of anti-Alzheimer agents. Bioorg. Med. Chem. Lett., 2019, 29(15), 1994-1997. doi: 10.1016/j.bmcl.2019.05.020 PMID: 31138471
- Thapa, A.; Woo, E.R.; Chi, E.Y.; Sharoar, M.G.; Jin, H.G.; Shin, S.Y.; Park, I.S. Biflavonoids are superior to monoflavonoids in inhibiting amyloid-β toxicity and fibrillogenesis via accumulation of nontoxic oligomer-like structures. Biochemistry, 2011, 50(13), 2445-2455. doi: 10.1021/bi101731d PMID: 21322641
- Han, B.H.; Cofell, B.; Everhart, E.; Humpal, C.; Kang, S.S.; Lee, S.K.; Kim-Han, J.S. Amentoflavone promotes cellular uptake and degradation of amyloid-beta in neuronal cells. Int. J. Mol. Sci., 2022, 23(11), 5885. doi: 10.3390/ijms23115885 PMID: 35682567
- Portilla-Martínez, A.; Ortiz-Flores, M.; Hidalgo, I.; Gonzalez-Ruiz, C.; Meaney, E.; Ceballos, G.; Nájera, N. In silico evaluation of flavonoids as potential inhibitors of SARS-CoV-2 main nonstructural proteins (Nsps)Amentoflavone as a multitarget candidate. J. Mol. Model., 2022, 28(12), 404. doi: 10.1007/s00894-022-05391-6 PMID: 36445575
- Jeong, E.J.; Hwang, L.; Lee, M.; Lee, K.Y.; Ahn, M.J.; Sung, S.H. Neuroprotective biflavonoids of Chamaecyparis obtusa leaves against glutamate-induced oxidative stress in HT22 hippocampal cells. Food Chem. Toxicol., 2014, 64, 397-402. doi: 10.1016/j.fct.2013.12.003 PMID: 24315869
- Yu, S.; Yan, H.; Zhang, L.; Shan, M.; Chen, P.; Ding, A.; Li, S. A review on the phytochemistry, pharmacology, and pharmacokinetics of amentoflavone, a naturally-occurring biflavonoid. Molecules, 2017, 22(2), 299. doi: 10.3390/molecules22020299 PMID: 28212342
- Rong, S.; Yang, C.; Wang, F.; Wu, Y.; Sun, K.; Sun, T.; Wu, Z. Amentoflavone exerts anti-neuroinflammatory effects by inhibiting TLR4/MyD88/NF-κB and activating Nrf2/HO-1 pathway in lipopolysaccharide-induced BV2 microglia. Mediators Inflamm., 2022, 2022, 1-12. doi: 10.1155/2022/5184721 PMID: 36523959
- Singh, A.V. Potential of amentoflavone with antiviral properties in COVID-19 treatment. Asian Biomed., 2021, 15(4), 153-159. doi: 10.2478/abm-2021-0020 PMID: 37551327
- Yen, T.H.; Hsieh, C.L.; Te Liu, T.; Huang, C.S.; Chen, Y.C.; Chuang, Y.C.; Lin, S.S.; Hsu, F.T. Amentoflavone induces apoptosis and inhibits nf-ĸb-modulated anti-apoptotic signaling in glioblastoma cells. In Vivo, 2018, 32, 279-285.
- Feng, X.; Chen, Y.; Li, L.; Zhang, Y.; Zhang, L.; Zhang, Z. Preparation, evaluation and metabolites study in rats of novel amentoflavone-loaded TPGS/soluplus mixed nanomicelles. Drug Deliv., 2020, 27(1), 137-150. doi: 10.1080/10717544.2019.1709920 PMID: 31913733
- Roos, K.; Wu, C.; Damm, W.; Reboul, M.; Stevenson, J.M.; Lu, C.; Dahlgren, M.K.; Mondal, S.; Chen, W.; Wang, L.; Abel, R.; Friesner, R.A.; Harder, E.D. OPLS3e: Extending force field coverage for drug-like small molecules. J. Chem. Theory Comput., 2019, 15(3), 1863-1874. doi: 10.1021/acs.jctc.8b01026 PMID: 30768902
- Chen, J.H.; Chen, W.L.; Liu, Y.C. Amentoflavone induces anti-angiogenic and anti-metastatic effects through suppression of NF-κB activation in MCF-7 cells. Anticancer Res., 2015, 35(12), 6685-6693. PMID: 26637885
- Kim, S.Y.; Choi, S.H.; Rollema, H.; Schwam, E.M.; McRae, T.; Dubrava, S.; Jacobsen, J.; Phase, I.I. Phase II crossover trial of varenicline in mild-to-moderate Alzheimers disease. Dement. Geriatr. Cogn. Disord., 2014, 37(3-4), 232-245. doi: 10.1159/000355373 PMID: 24247022
- Lee, K.C.; Tsai, J.J.; Tseng, C.W.; Kuo, Y.C.; Chuang, Y.C.; Lin, S.S.; Hsu, F.T. Amentoflavone inhibits ERK-modulated tumor progression in hepatocellular carcinoma in vitro. In Vivo, 2018, 32, 549-554.
- Cholbi, M.R.; Paya, M.; Alcaraz, M.J. Inhibitory effects of phenolic compounds on CCl4-induced microsomal lipid peroxidation. Experientia, 1991, 47(2), 195-199. doi: 10.1007/BF01945426 PMID: 2001725
- Wang, F.; Zhang, Z.; Sun, T.; Niu, J.; He, Z.; Liu, Y. Amentoflavone protects hippocampal neurons: anti-inflammatory, antioxidative, and antiapoptotic effects. Neural Regen. Res., 2015, 10(7), 1125-1133. doi: 10.4103/1673-5374.160109 PMID: 26330838
- Jung, H.J.; Park, K.; Lee, I.S.; Kim, H.S.; Yeo, S.H.; Woo, E.R.; Lee, D.G. S-phase accumulation of Candida albicans by anticandidal effect of amentoflavone isolated from Selaginella tamariscina. Biol. Pharm. Bull., 2007, 30(10), 1969-1971. doi: 10.1248/bpb.30.1969 PMID: 17917274
- Coulerie, P.; Eydoux, C.; Hnawia, E.; Stuhl, L.; Maciuk, A.; Lebouvier, N.; Canard, B.; Figadère, B.; Guillemot, J.C.; Nour, M. Biflavonoids of dacrydium balansae with potent inhibitory activity on dengue 2 NS5 polymerase. Planta Med., 2012, 78(7), 672-677. doi: 10.1055/s-0031-1298355 PMID: 22411725
- Lin, Y.M.; Anderson, H.; Flavin, M.T.; Pai, Y.H.S.; Greenwood, M.E.; Pengsuparp, T.; Pezzuto, J.M.; Schinazi, R.F.; Hughes, S.H.; Chen, F.C. In vitro anti-HIV activity of biflavonoids isolated from Rhus succedanea and Garcinia multiflora. J. Nat. Prod., 1997, 60(9), 884-888. doi: 10.1021/np9700275 PMID: 9322359
- Kim, H.K.; Son, K.H.; Chang, H.W.; Kang, S.S.; Kim, H.P. Amentoflavone, a plant biflavone: A new potential anti-inflammatory agent. Arch. Pharm. Res., 1998, 21(4), 406-410. doi: 10.1007/BF02974634 PMID: 9875467
- Guruvayoorappan, C.; Kuttan, G. Effect of amentoflavone on the inhibition of pulmonary metastasis induced by B16F-10 melanoma cells in C57BL/6 mice. Integr. Cancer Ther., 2007, 6(2), 185-197. doi: 10.1177/1534735407302345 PMID: 17548797
- Choi, E.Y.; Kang, S.S.; Lee, S.K.; Han, B.H. Polyphenolic biflavonoids inhibit amyloid-beta fibrillation and disaggregate preformed amyloid-beta fibrils. Biomol. Ther., 2020, 28(2), 145-151. doi: 10.4062/biomolther.2019.113 PMID: 31697876
- Hampel, H.; Toschi, N.; Babiloni, C.; Baldacci, F.; Black, K.L.; Bokde, A.L.W.; Bun, R.S.; Cacciola, F.; Cavedo, E.; Chiesa, P.A.; Colliot, O.; Coman, C.M.; Dubois, B.; Duggento, A.; Durrleman, S.; Ferretti, M.T.; George, N.; Genthon, R.; Habert, M.O.; Herholz, K.; Koronyo, Y.; Koronyo-Hamaoui, M.; Lamari, F.; Langevin, T.; Lehéricy, S.; Lorenceau, J.; Neri, C.; Nisticò, R.; Nyasse-Messene, F.; Ritchie, C.; Rossi, S.; Santarnecchi, E.; Sporns, O.; Verdooner, S.R.; Vergallo, A.; Villain, N.; Younesi, E.; Garaci, F.; Lista, S. Revolution of alzheimer precision neurology. Passageway of systems biology and neurophysiology. J. Alzheimers Dis., 2018, 64(s1), S47-S105. doi: 10.3233/JAD-179932 PMID: 29562524
- Su, C.; Yang, C.; Gong, M.; Ke, Y.; Yuan, P.; Wang, X.; Li, M.; Zheng, X.; Feng, W. Antidiabetic activity and potential mechanism of amentoflavone in diabetic mice. Molecules, 2019, 24(11), 2184. doi: 10.3390/molecules24112184 PMID: 31212585
- Xu, Z.Q.; Zhang, W.J.; Su, D.F.; Zhang, G.Q.; Miao, C.Y. Cellular responses and functions of α7 nicotinic acetylcholine receptor activation in the brain: A narrative review. Ann. Transl. Med., 2021, 9(6), 509. doi: 10.21037/atm-21-273 PMID: 33850906
- Rizk, Y.S.; Pereira, S.S.; Gervazoni, L.; Hardoim, D.J.; Cardoso, F.O.; de Souza, C.S.F.; Machado, P.M.; Carollo, C.A.; de Arruda, C.C.P.; Amaral, A.E.E.; do-Valle, Z.T.; Calabrese, K.S. Amentoflavone as an ally in the treatment of cutaneous leishmaniasis: Analysis of its antioxidant/prooxidant mechanisms. Front. Cell. Infect. Microbiol., 2021, 11, 615814. doi: 10.3389/fcimb.2021.615814
- Ishola, I.O.; Tota, S.; Adeyemi, O.O.; Agbaje, E.O.; Narender, T.; Shukla, R. Protective effect of Cnestis ferruginea and its active constituent on scopolamine-induced memory impairment in mice: A behavioral and biochemical study. Pharm. Biol., 2013, 51(7), 825-835. doi: 10.3109/13880209.2013.767360 PMID: 23627469
- Bais, S.; Abrol, N.; Prashar, Y. kumari, R. Modulatory effect of standardised amentoflavone isolated from Juniperus communis L. agianst Freunds adjuvant induced arthritis in rats (histopathological and X Ray anaysis). Biomed. Pharmacother., 2017, 86, 381-392. doi: 10.1016/j.biopha.2016.12.027 PMID: 28012393
- Frota, L.S.; Alves, D.R.; Marinho, M.M.; Paes, L.; Wagner, F.; Almeida, D.Q.; Marinho, E.S.; De Morais, S.M.; Soares, L.; Alves, D.R.; Marinho, M.M. Antioxidant and anticholinesterase activities of amentoflavone isolated from antioxidant and anticholinesterase activities of amentoflavone isolated from ouratea fieldingiana (Gardner) Engl. through in vitro and chemical- quantum studies. J. Biomol. Struct. Dyn., 2023, 41(4), 1208-1216. PMID: 34907850
- Yue, S.; Kang, W. Lowering blood lipid and hepatoprotective activity of amentoflavone from selaginella tamariscina in Vivo. J. Med. Plants Res., 2011, 5, 3007-3014.
- Ma, S.C.; But, P.P.H.; Ooi, V.E.C.; He, Y.H.; Lee, S.H.S.; Lee, S.F.; Lin, R.C. Antiviral amentoflavone from Selaginella sinensis. Biol. Pharm. Bull., 2001, 24(3), 311-312. doi: 10.1248/bpb.24.311 PMID: 11256492
- Bucar, F.; Jachak, S.; Noreem, Y.; Kartnig, T.; Perera, P.; Bohlin, L.; Zsilavecz, S.M. Amentoflavone from Biophytum sensitivum and its effect on COX-1/COX-2 catalysed prostaglandin biosynthesis. Planta Med., 1998, 64(4), 373-374. doi: 10.1055/s-2006-957455 PMID: 17253252
- Chakravarthy, B.; Rao, Y.; Gambhir, S.; Gode, K. Isolation of amentoflavone from Selaginella rupestris and its pharmacological activity on central nervous system, smooth muscles and isolated frog heart preparations. Planta Med., 1981, 43(9), 64-70. doi: 10.1055/s-2007-971475 PMID: 7345444
- Oh, J.; Rho, H.S.; Yang, Y.; Yoon, J.Y.; Lee, J.; Hong, Y.D.; Kim, H.C.; Choi, S.S.; Kim, T.W.; Shin, S.S.; Cho, J.Y. Extracellular signal-regulated kinase is a direct target of the anti-inflammatory compound amentoflavone derived from Torreya nucifera. Mediators Inflamm., 2013, 2013, 1-11. doi: 10.1155/2013/761506 PMID: 23970815
- Bajpai, V.K.; Park, I.; Lee, J.; Shukla, S.; Nile, S.H.; Chun, H.S.; Khan, I.; Oh, S.Y.; Lee, H.; Huh, Y.S.; Na, M.; Han, Y.K. Antioxidant and antimicrobial efficacy of a biflavonoid, amentoflavone from Nandina domestica in vitro and in minced chicken meat and apple juice food models. Food Chem., 2019, 271, 239-247. doi: 10.1016/j.foodchem.2018.07.159 PMID: 30236673
- Hammer, K.D.P.; Hillwig, M.L.; Solco, A.K.S.; Dixon, P.M.; Delate, K.; Murphy, P.A.; Wurtele, E.S.; Birt, D.F. Inhibition of prostaglandin E(2) production by anti-inflammatory hypericum perforatum extracts and constituents in RAW264.7 Mouse Macrophage Cells. J. Agric. Food Chem., 2007, 55(18), 7323-7331. doi: 10.1021/jf0710074 PMID: 17696442
- Krauze-Baranowska, M.; Wiwart, M. Antifungal activity of biflavones from Taxus baccata and Ginkgo biloba. Z. Naturforsch. C J. Biosci., 2003, 58(1-2), 65-69. doi: 10.1515/znc-2003-1-212 PMID: 12622229
- Sannomiya, M.; Fonseca, V.B.; da Silva, M.A.; Rocha, L.R.M.; dos Santos, L.C.; Hiruma-Lima, C.A.; Souza Brito, A.R.M.; Vilegas, W. Flavonoids and antiulcerogenic activity from Byrsonima crassa leaves extracts. J. Ethnopharmacol., 2005, 97(1), 1-6. doi: 10.1016/j.jep.2004.09.053 PMID: 15652267
- Kaikabo, A.A.; Eloff, J.N. Antibacterial activity of two biflavonoids from Garcinia livingstonei leaves against Mycobacterium smegmatis. J. Ethnopharmacol., 2011, 138(1), 253-255. doi: 10.1016/j.jep.2011.08.023 PMID: 21920421
- Bagla, V.P.; McGaw, L.J.; Elgorashi, E.E.; Eloff, J.N. Antimicrobial activity, toxicity and selectivity index of two biflavonoids and a flavone isolated from Podocarpus henkelii (Podocarpaceae) leaves. BMC Complement. Altern. Med., 2014, 14(1), 383. doi: 10.1186/1472-6882-14-383 PMID: 25293523
- Kunert, O.; Swamy, R.C.; Kaiser, M.; Presser, A.; Buzzi, S.; Appa Rao, A.V.N.; Schühly, W. Antiplasmodial and leishmanicidal activity of biflavonoids from Indian Selaginella bryopteris. Phytochem. Lett., 2008, 1(4), 171-174. doi: 10.1016/j.phytol.2008.09.003
- Zhao, N.; Sun, C.; Zheng, M.; Liu, S.; Shi, R. Amentoflavone suppresses amyloid β142 neurotoxicity in Alzheimers disease through the inhibition of pyroptosis. Life Sci., 2019, 239, 117043. doi: 10.1016/j.lfs.2019.117043 PMID: 31722188
- Sun, L.; Sharma, A.K.; Han, B.H.; Mirica, L.M. Amentoflavone: A bifunctional metal chelator that controls the formation of neurotoxic soluble Aβ 42 oligomers. ACS Chem. Neurosci., 2020, 11(17), 2741-2752. doi: 10.1021/acschemneuro.0c00376 PMID: 32786307
- Shin, D.H.; Bae, Y.C.; Kim-Han, J.S.; Lee, J.H.; Choi, I.Y.; Son, K.H.; Kang, S.S.; Kim, W.K.; Han, B.H. Polyphenol amentoflavone affords neuroprotection against neonatal hypoxic‐ischemic brain damage via multiple mechanisms. J. Neurochem., 2006, 96(2), 561-572. doi: 10.1111/j.1471-4159.2005.03582.x PMID: 16336627
- Cao, B.; Zeng, M.; Zhang, Q.; Zhang, B.; Cao, Y.; Wu, Y.; Feng, W.; Zheng, X. Amentoflavone ameliorates memory deficits and abnormal autophagy in Aβ25−35-induced mice by mTOR signaling. Neurochem. Res., 2021, 46(4), 921-934. doi: 10.1007/s11064-020-03223-8 PMID: 33492604
- Cao, Q.; Qin, L.; Huang, F.; Wang, X.; Yang, L.; Shi, H.; Wu, H.; Zhang, B.; Chen, Z.; Wu, X. Amentoflavone protects dopaminergic neurons in MPTP-induced Parkinsons disease model mice through PI3K/Akt and ERK signaling pathways. Toxicol. Appl. Pharmacol., 2017, 319, 80-90. doi: 10.1016/j.taap.2017.01.019 PMID: 28185818
- Sasaki, H. Miki, K.; Kinoshita, K.; Koyama, K.; Juliawaty, L.D.; Achmad, S.A.; Hakim, E.H.; Kaneda, M.; Takahashi, K. β-Secretase (BACE-1) inhibitory effect of biflavonoids. Bioorg. Med. Chem. Lett., 2010, 20(15), 4558-4560. doi: 10.1016/j.bmcl.2010.06.021 PMID: 20598535
- Chen, Y.; Li, N.; Wang, H.; Wang, N.; Peng, H.; Wang, J.; Li, Y.; Liu, M.; Li, H.; Zhang, Y.; Wang, Z. Amentoflavone suppresses cell proliferation and induces cell death through triggering autophagy-dependent ferroptosis in human glioma. Life Sci., 2020, 247, 117425. doi: 10.1016/j.lfs.2020.117425 PMID: 32057904
- Sabogal-Guáqueta, A.M.; Carrillo-Hormaza, L.; Osorio, E.; Gómez, C.G.P. Effects of biflavonoids from Garcinia madruno on a triple transgenic mouse model of Alzheimers disease. Pharmacol. Res., 2018, 129, 128-138. doi: 10.1016/j.phrs.2017.12.002 PMID: 29229355
- Ashwal, S.; Pearce, W.J. Animal models of neonatal stroke. Curr. Opin. Pediatr., 2001, 13(6), 506-516. doi: 10.1097/00008480-200112000-00003 PMID: 11753098
- Halder, S.; Anand, U.; Nandy, S.; Oleksak, P.; Qusti, S.; Alshammari, E.M.; Batiha, E.S.G.; Koshy, E.P.; Dey, A. Herbal drugs and natural bioactive products as potential therapeutics: A review on pro-cognitives and brain boosters perspectives. Saudi Pharm. J., 2021, 29(8), 879-907. doi: 10.1016/j.jsps.2021.07.003 PMID: 34408548
- Vargas, B.D.; Shi, J.; Yaeger, D.M.; Ager, R.; LaFerla, F.M. Diabetes and Alzheimers disease crosstalk. Neurosci. Biobehav. Rev., 2016, 64, 272-287. doi: 10.1016/j.neubiorev.2016.03.005 PMID: 26969101
- Xiong, X.; Tang, N.; Lai, X.; Zhang, J.; Wen, W.; Li, X.; Li, A.; Wu, Y.; Liu, Z. Insights into amentoflavone: A natural multifunctional biflavonoid. Front. Pharmacol., 2021, 12, 768708. doi: 10.3389/fphar.2021.768708 PMID: 35002708
- Chang, B.S.; Lowenstein, D.H. Epilepsy. N. Engl. J. Med., 2003, 349(13), 1257-1266. doi: 10.1056/NEJMra022308 PMID: 14507951
- Rong, S.; Wan, D.; Fan, Y.; Liu, S.; Sun, K.; Huo, J.; Zhang, P.; Li, X.; Xie, X.; Wang, F.; Sun, T. Amentoflavone affects epileptogenesis and exerts neuroprotective effects by inhibiting NLRP3 inflammasome. Front. Pharmacol., 2019, 10, 856. doi: 10.3389/fphar.2019.00856 PMID: 31417409
- Verma, A.; Chaudhary, S.; Solanki, K.; Goyal, A.; Yadav, H.N. Exendin‐4: A potential therapeutic strategy for Alzheimers disease and Parkinsons disease. Chem. Biol. Drug Des., 2024, 103(1), e14426. doi: 10.1111/cbdd.14426 PMID: 38230775
Дополнительные файлы
