Exploratory Study of Differentially Expressed Genes of Peripheral Blood Monocytes in Patients with Carotid Atherosclerosis


Цитировать

Полный текст

Аннотация

Background:The abundance of circulating monocytes is closely associated with the development of atherosclerosis in humans.

Objective:This study aimed to further research into diagnostic biomarkers and targeted treatment of carotid atherosclerosis (CAS).

Methods:We performed transcriptomics analysis through weighted gene co-expression network analysis (WGCNA) of monocytes from patients in public databases with and without CAS. Differentially expressed genes (DEGs) were screened by R package limma. Diagnostic molecules were derived by the least absolute shrinkage and selection operator (LASSO) and support vector machine recursive feature elimination (SVM-RFE) algorithms. NetworkAnalyst, miRWalk, and Star- Base databases assisted in the construction of diagnostic molecule regulatory networks. The Drug- Bank database predicted drugs targeting the diagnostic molecules. RT-PCR tested expression profiles.

Results:From 14,369 hub genes and 61 DEGs, six differentially expressed monocyte-related hub genes were significantly associated with immune cells, immune responses, monocytes, and lipid metabolism. LASSO and SVM-RFE yielded five genes for CAS prediction. RT-PCR of these genes showed HMGB1 was upregulated, and CCL3, CCL3L1, CCL4, and DUSP1 were downregulated in CAS versus controls. Then, we constructed and visualized the regulatory networks of 9 transcription factors (TFs), which significantly related to 5 diagnostic molecules. About 11 miRNAs, 19 lncRNAs, and 39 edges centered on four diagnostic molecules (CCL3, CCL4, DUSP1, and HMGB1) were constructed and displayed. Eleven potential drugs were identified, including ibrutinib, CTI-01, roflumilast etc.

Conclusion:A set of five biomarkers were identified for the diagnosis of CAS and for the study of potential therapeutic targets.

Об авторах

Juhai Chen

, Guizhou Medical University

Email: info@benthamscience.net

Fengyan Xu

Comprehensive Ward, Affiliated Hospital of Guizhou Medical University

Email: info@benthamscience.net

Xiangang Mo

Comprehensive Ward, Affiliated Hospital of Guizhou Medical University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Yiju Cheng

The Department of Respiratory and Critical Medicine,, Guiyang Public Health Clinical Center

Email: info@benthamscience.net

Lan Wang

Comprehensive Ward, Affiliated Hospital of Guizhou Medical University

Email: info@benthamscience.net

Hui Yang

Comprehensive Ward, Affiliated Hospital of Guizhou Medical University

Email: info@benthamscience.net

Jiajing Li

Comprehensive Ward, Affiliated Hospital of Guizhou Medical University

Email: info@benthamscience.net

Shiyue Zhang

, Guizhou Medical University

Email: info@benthamscience.net

Shuping Zhang

, Guizhou Medical University

Email: info@benthamscience.net

Nannan Li

, Guizhou Medical University

Email: info@benthamscience.net

Yang Cao

, Guizhou Medical University

Email: info@benthamscience.net

Список литературы

  1. Björkegren, J.L.M.; Lusis, A.J. Atherosclerosis: Recent developments. Cell, 2022, 185(10), 1630-1645. doi: 10.1016/j.cell.2022.04.004 PMID: 35504280
  2. Jeevarethinam, A.; Venuraju, S.; Dumo, A.; Ruano, S.; Mehta, V.S.; Rosenthal, M.; Nair, D.; Cohen, M.; Darko, D.; Lahiri, A.; Rakhit, R. Relationship between carotid atherosclerosis and coronary artery calcification in asymptomatic diabetic patients: A prospective multicenter study. Clin. Cardiol., 2017, 40(9), 752-758. doi: 10.1002/clc.22727 PMID: 28543093
  3. Bonaca, M.P.; Nault, P.; Giugliano, R.P.; Keech, A.C.; Pineda, A.L.; Kanevsky, E.; Kuder, J.; Murphy, S.A.; Jukema, J.W.; Lewis, B.S.; Tokgozoglu, L.; Somaratne, R.; Sever, P.S.; Pedersen, T.R.; Sabatine, M.S. Low-density lipoprotein cholesterol lowering with evolocumab and outcomes in patients with peripheral artery disease: Insights from the fourier trial (further cardiovascular outcomes research with PCSK9 inhibition in subjects with elevated risk). Circulation., 2018, 137(4), 338-350. doi: 10.1161/CIRCULATIONAHA.117.032235 PMID: 29133605
  4. Roth, G.A.; Johnson, C.; Abajobir, A.; Abd-Allah, F.; Abera, S.F.; Abyu, G.; Ahmed, M.; Aksut, B.; Alam, T.; Alam, K.; Alla, F.; Alvis-Guzman, N.; Amrock, S.; Ansari, H.; Ärnlöv, J.; Asayesh, H.; Atey, T.M.; Avila-Burgos, L.; Awasthi, A.; Banerjee, A.; Barac, A.; Bärnighausen, T.; Barregard, L.; Bedi, N.; Belay Ketema, E.; Bennett, D.; Berhe, G.; Bhutta, Z.; Bitew, S.; Carapetis, J.; Carrero, J.J.; Malta, D.C.; Castañeda-Orjuela, C.A.; Castillo-Rivas, J.; Catalá-López, F.; Choi, J.Y.; Christensen, H.; Cirillo, M.; Cooper, L., Jr; Criqui, M.; Cundiff, D.; Damasceno, A.; Dandona, L.; Dandona, R.; Davletov, K.; Dharmaratne, S.; Dorairaj, P.; Dubey, M.; Ehrenkranz, R.; El Sayed Zaki, M.; Faraon, E.J.A.; Esteghamati, A.; Farid, T.; Farvid, M.; Feigin, V.; Ding, E.L.; Fowkes, G.; Gebrehiwot, T.; Gillum, R.; Gold, A.; Gona, P.; Gupta, R.; Habtewold, T.D.; Hafezi-Nejad, N.; Hailu, T.; Hailu, G.B.; Hankey, G.; Hassen, H.Y.; Abate, K.H.; Havmoeller, R.; Hay, S.I.; Horino, M.; Hotez, P.J.; Jacobsen, K.; James, S.; Javanbakht, M.; Jeemon, P.; John, D.; Jonas, J.; Kalkonde, Y.; Karimkhani, C.; Kasaeian, A.; Khader, Y.; Khan, A.; Khang, Y.H.; Khera, S.; Khoja, A.T.; Khubchandani, J.; Kim, D.; Kolte, D.; Kosen, S.; Krohn, K.J.; Kumar, G.A.; Kwan, G.F.; Lal, D.K.; Larsson, A.; Linn, S.; Lopez, A.; Lotufo, P.A.; El Razek, H.M.A.; Malekzadeh, R.; Mazidi, M.; Meier, T.; Meles, K.G.; Mensah, G.; Meretoja, A.; Mezgebe, H.; Miller, T.; Mirrakhimov, E.; Mohammed, S.; Moran, A.E.; Musa, K.I.; Narula, J.; Neal, B.; Ngalesoni, F.; Nguyen, G.; Obermeyer, C.M.; Owolabi, M.; Patton, G.; Pedro, J.; Qato, D.; Qorbani, M.; Rahimi, K.; Rai, R.K.; Rawaf, S.; Ribeiro, A.; Safiri, S.; Salomon, J.A.; Santos, I.; Santric Milicevic, M.; Sartorius, B.; Schutte, A.; Sepanlou, S.; Shaikh, M.A.; Shin, M.J.; Shishehbor, M.; Shore, H.; Silva, D.A.S.; Sobngwi, E.; Stranges, S.; Swaminathan, S.; Tabarés-Seisdedos, R.; Tadele Atnafu, N.; Tesfay, F.; Thakur, J.S.; Thrift, A.; Topor-Madry, R.; Truelsen, T.; Tyrovolas, S.; Ukwaja, K.N.; Uthman, O.; Vasankari, T.; Vlassov, V.; Vollset, S.E.; Wakayo, T.; Watkins, D.; Weintraub, R.; Werdecker, A.; Westerman, R.; Wiysonge, C.S.; Wolfe, C.; Workicho, A.; Xu, G.; Yano, Y.; Yip, P.; Yonemoto, N.; Younis, M.; Yu, C.; Vos, T.; Naghavi, M.; Murray, C. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J. Am. Coll. Cardiol., 2017, 70(1), 1-25. doi: 10.1016/j.jacc.2017.04.052 PMID: 28527533
  5. Zhao, F.; Gao, H.; Gao, Y.; Zhao, Z.; Li, J.; Ning, F.; Zhang, X.; Wang, Z.; Yu, A.; Guo, Y.; Sun, B. A correlational study on cerebral microbleeds and carotid atherosclerosis in patients with ischemic stroke. J. Stroke Cerebrovasc. Dis., 2018, 27(8), 2228-2234. doi: 10.1016/j.jstrokecerebrovasdis.2018.04.009 PMID: 29759940
  6. Vouillarmet, J; Marsot, C; Maucort-Boulch, D Vascular events and carotid atherosclerosis: A 5 year prospective cohort study in patients with type 2 diabetes and a contemporary cardiovascular prevention treatment. J. Diabetes Res., 2019, 2019, 9059761. doi: 10.1155/2019/9059761 PMID: 31934592
  7. Frodermann, V.; Nahrendorf, M. Macrophages and cardiovascular health. Physiol. Rev., 2018, 98(4), 2523-2569. doi: 10.1152/physrev.00068.2017 PMID: 30156496
  8. Libby, P.; Ridker, P.M.; Hansson, G.K. Progress and challenges in translating the biology of atherosclerosis. Nature., 2011, 473(7347), 317-325. doi: 10.1038/nature10146 PMID: 21593864
  9. Tabas, I. 2016 Russell ross memorial lecture in vascular biology. Arterioscler. Thromb. Vasc. Biol., 2017, 37(2), 183-189. doi: 10.1161/ATVBAHA.116.308036 PMID: 27979856
  10. Gerrity, R.G.; Naito, H.K.; Richardson, M.; Schwartz, C.J. Dietary induced atherogenesis in swine. Morphology of the intima in prelesion stages. Am. J. Pathol., 1979, 95(3), 775-792. PMID: 453335
  11. Swirski, F.K.; Pittet, M.J.; Kircher, M.F.; Aikawa, E.; Jaffer, F.A.; Libby, P.; Weissleder, R. Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease. Proc. Natl. Acad. Sci. USA, 2006, 103(27), 10340-10345. doi: 10.1073/pnas.0604260103 PMID: 16801531
  12. Potteaux, S.; Gautier, E.L.; Hutchison, S.B.; van Rooijen, N.; Rader, D.J.; Thomas, M.J.; Sorci-Thomas, M.G.; Randolph, G.J. Suppressed monocyte recruitment drives macrophage removal from atherosclerotic plaques of Apoe–/– mice during disease regression. J. Clin. Invest., 2011, 121(5), 2025-2036. doi: 10.1172/JCI43802 PMID: 21505265
  13. Afanasieva, O.I.; Filatova, A.Y.; Arefieva, T.I.; Klesareva, E.A.; Tyurina, A.V.; Radyukhina, N.V.; Ezhov, M.V.; Pokrovsky, S.N. The association of lipoprotein(a) and circulating monocyte subsets with severe coronary atherosclerosis. J. Cardiovasc. Dev. Dis., 2021, 8(6), 63. doi: 10.3390/jcdd8060063 PMID: 34206012
  14. Vogel, M.E.; Idelman, G.; Konaniah, E.S.; Zucker, S.D. Bilirubin prevents atherosclerotic lesion formation in low‐density lipoprotein receptor‐deficient mice by inhibiting endothelial VCAM‐1 and ICAM‐1 signaling. J. Am. Heart Assoc., 2017, 6(4), e004820. doi: 10.1161/JAHA.116.004820 PMID: 28365565
  15. Munjal, A; Khandia, R. Atherosclerosis: Orchestrating cells and biomolecules involved in its activation and inhibition. Adv. Protein. Chem. Struct. Biol., 2020, 120, 85-122. doi: 10.1016/bs.apcsb.2019.11.002 PMID: 32085889
  16. Chen, Q.; Yin, Q.; Song, J.; Liu, C.; Chen, H.; Li, S. Identification of monocyte-associated genes as predictive biomarkers of heart failure after acute myocardial infarction. BMC Med. Genomics., 2021, 14(1), 44. doi: 10.1186/s12920-021-00890-6 PMID: 33563285
  17. Langfelder, P; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform., 2008, 9, 559. doi: 10.1186/1471-2105-9-559 PMID: 19114008
  18. Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47. doi: 10.1093/nar/gkv007 PMID: 25605792
  19. Bardou, P.; Mariette, J.; Escudié, F.; Djemiel, C.; Klopp, C. jvenn: An interactive venn diagram viewer. BMC Bioinform., 2014, 15(1), 293. doi: 10.1186/1471-2105-15-293 PMID: 25176396
  20. Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287. doi: 10.1089/omi.2011.0118 PMID: 22455463
  21. Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw., 2010, 33(1), 1-22. doi: 10.18637/jss.v033.i01 PMID: 20808728
  22. Huang, ML; Hung, YH; Lee, WM SVM-RFE based feature selection and Taguchi parameters optimization for multiclass SVM classifier. Sci. World J., 2014, 2014, 795624. doi: 10.1155/2014/795624 PMID: 25295306
  23. Robin, X; Turck, N.; Hainard, A pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform, 2011, 2014, 795624. doi: 10.1186/1471-2105-12-77 PMID: 21414208
  24. Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The string database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 2021, 49(D1), D605-D612. doi: 10.1093/nar/gkaa1074 PMID: 33237311
  25. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome. Res., 2003, 13(11), 2498-2504. doi: 10.1101/gr.1239303 PMID: 14597658
  26. Chang, L.; Zhou, G.; Soufan, O.; Xia, J. miRNet 2.0: Network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res., 2020, 48(W1), W244-W251. doi: 10.1093/nar/gkaa467 PMID: 32484539
  27. Sticht, C.; De La Torre, C.; Parveen, A.; Gretz, N. miRWalk: An online resource for prediction of microRNA binding sites. PLoS One, 2018, 13(10), e0206239. doi: 10.1371/journal.pone.0206239 PMID: 30335862
  28. Li, J.H.; Liu, S.; Zhou, H.; Qu, L.H.; Yang, J.H. starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res., 2014, 42(D1), D92-D97. doi: 10.1093/nar/gkt1248 PMID: 24297251
  29. Khan, K; Kumar, V; Colombo, E Intelligent consensus predictions of bioconcentration factor of pharmaceuticals using 2D and fragment based descriptors. Environ Int., 2022, 170, 107625. doi: 10.1016/j.envint.2022.107625 PMID: 36375281
  30. Niu, N.; Xu, S.; Xu, Y.; Little, P.J.; Jin, Z.G. Targeting mechanosensitive transcription factors in atherosclerosis. Trends. Pharmacol. Sci., 2019, 40(4), 253-266. doi: 10.1016/j.tips.2019.02.004 PMID: 30826122
  31. Youn, S.; Park, K.K. Small-nucleic-acid-based therapeutic strategy targeting the transcription factors regulating the vascular inflammation, remodeling and fibrosis in atherosclerosis. Int. J. Mol. Sci., 2015, 16(12), 11804-11833. doi: 10.3390/ijms160511804 PMID: 26006249
  32. Chen, K.C.; Hsieh, I.C.; Hsi, E.; Wang, Y.S.; Dai, C.Y.; Chou, W.W.; Juo, S.H.H. Negative feedback regulation between microRNA let-7g and the oxLDL receptor LOX-1. J. Cell Sci., 2011, 124(23), 4115-4124. doi: 10.1242/jcs.092767 PMID: 22135361
  33. Chen, K.C.; Liao, Y.C.; Hsieh, I.C.; Wang, Y.S.; Hu, C.Y.; Juo, S.H.H. OxLDL causes both epigenetic modification and signaling regulation on the microRNA-29b gene: Novel mechanisms for cardiovascular diseases. J. Mol. Cell. Cardiol., 2012, 52(3), 587-595. doi: 10.1016/j.yjmcc.2011.12.005 PMID: 22226905
  34. Guo, F.; Tang, C.; Li, Y.; Liu, Y.; Lv, P.; Wang, W.; Mu, Y. The interplay of LncRNA ANRIL and miR‐181b on the inflammation‐relevant coronary artery disease through mediating NF‐κB signalling pathway. J. Cell. Mol. Med., 2018, 22(10), 5062-5075. doi: 10.1111/jcmm.13790 PMID: 30079603
  35. Wang, M.; Liu, Y.; Li, C.; Zhang, Y.; Zhou, X.; Lu, C. Long noncoding RNA OIP5-AS1 accelerates the ox-LDL mediated vascular endothelial cells apoptosis through targeting GSK-3β via recruiting EZH2. Am. J. Transl. Res., 2019, 11(3), 1827-1834. PMID: 30972206
  36. Ning, W; Ma, Y; Li, S Shared molecular mechanisms between atherosclerosis and periodontitis by analyzing the transcriptomic alterations of peripheral blood monocytes. Comput. Math. Methods. Med., 2021, 2021, 1498431. doi: 10.1155/2021/1498431 PMID: 34899963
  37. Gencer, S.; Evans, B.R.; van der Vorst, E.P.C.; Döring, Y.; Weber, C. Inflammatory chemokines in atherosclerosis. Cells, 2021, 10(2), 226. doi: 10.3390/cells10020226 PMID: 33503867
  38. Maurer, M.; von Stebut, E. Macrophage inflammatory protein-1. Int. J. Biochem. Cell Biol., 2004, 36(10), 1882-1886. doi: 10.1016/j.biocel.2003.10.019 PMID: 15203102
  39. Lutgens, E.; Faber, B.; Schapira, K.; Evelo, C.T.A.; van Haaften, R.; Heeneman, S.; Cleutjens, K.B.J.M.; Bijnens, A.P.; Beckers, L.; Porter, J.G.; Mackay, C.R.; Rennert, P.; Bailly, V.; Jarpe, M.; Dolinski, B.; Koteliansky, V.; de Fougerolles, T.; Daemen, M.J.A.P. Gene profiling in atherosclerosis reveals a key role for small inducible cytokines: Validation using a novel monocyte chemoattractant protein monoclonal antibody. Circulation, 2005, 111(25), 3443-3452. doi: 10.1161/CIRCULATIONAHA.104.510073 PMID: 15967845
  40. Tacke, F.; Alvarez, D.; Kaplan, T.J.; Jakubzick, C.; Spanbroek, R.; Llodra, J.; Garin, A.; Liu, J.; Mack, M.; van Rooijen, N.; Lira, S.A.; Habenicht, A.J.; Randolph, G.J. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest., 2007, 117(1), 185-194. doi: 10.1172/JCI28549 PMID: 17200718
  41. Menten, P.; Wuyts, A.; Van Damme, J. Macrophage inflammatory protein-1. Cytokine. Growth. Factor. Rev., 2002, 13(6), 455-481. doi: 10.1016/S1359-6101(02)00045-X PMID: 12401480
  42. Schirmer, S.H.; Fledderus, J.O.; van der Laan, A.M.; van der Pouw-Kraan, T.C.T.M.; Moerland, P.D.; Volger, O.L.; Baggen, J.M.; Böhm, M.; Piek, J.J.; Horrevoets, A.J.G.; van Royen, N. Suppression of inflammatory signaling in monocytes from patients with coronary artery disease. J. Mol. Cell. Cardiol., 2009, 46(2), 177-185. doi: 10.1016/j.yjmcc.2008.10.029 PMID: 19059264
  43. Komissarov, A.; Potashnikova, D.; Freeman, M.L.; Gontarenko, V.; Maytesyan, D.; Lederman, M.M.; Vasilieva, E.; Margolis, L. Driving T cells to human atherosclerotic plaques: CCL3/CCR5 and CX3CL1/CX3CR1 migration axes. Eur. J. Immunol., 2021, 51(7), 1857-1859. doi: 10.1002/eji.202049004 PMID: 33772780
  44. Kim, H.S.; Ullevig, S.L.; Zamora, D.; Lee, C.F.; Asmis, R. Redox regulation of MAPK phosphatase 1 controls monocyte migration and macrophage recruitment. Proc. Natl. Acad. Sci. USA., 2012, 109(41), E2803-E2812. doi: 10.1073/pnas.1212596109 PMID: 22991462
  45. Kim, HS; Tavakoli, S; Piefer, LA Monocytic mkp 1 is a sensor of the metabolic environment and regulates function and phenotypic fate of monocyte derived macrophages in atherosclerosis. Sci Rep., 2016, 6, 34223. doi: 10.1038/srep34223 PMID: 27670844
  46. Yang, H; Wang, H; Chavan, SS High mobility group box protein 1 (HMGB1): The prototypical endogenous danger molecule. Mol. Med., 2015, 21(Suppl 1), S6-S12. doi: 10.2119/molmed.2015.00087 PMID: 26605648
  47. Scaffidi, P.; Misteli, T.; Bianchi, M.E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature., 2002, 418(6894), 191-195. doi: 10.1038/nature00858 PMID: 12110890
  48. Andrassy, M.; Volz, H.C.; Riedle, N.; Gitsioudis, G.; Seidel, C.; Laohachewin, D.; Zankl, A.R.; Kaya, Z.; Bierhaus, A.; Giannitsis, E.; Katus, H.A.; Korosoglou, G. HMGB1 as a predictor of infarct transmurality and functional recovery in patients with myocardial infarction. J. Intern. Med., 2011, 270(3), 245-253. doi: 10.1111/j.1365-2796.2011.02369.x PMID: 21362071
  49. Giovannini, S.; Tinelli, G.; Biscetti, F.; Straface, G.; Angelini, F.; Pitocco, D.; Mucci, L.; Landolfi, R.; Flex, A. Serum high mobility group box-1 and osteoprotegerin levels are associated with peripheral arterial disease and critical limb ischemia in type 2 diabetic subjects. Cardiovasc. Diabetol., 2017, 16(1), 99. doi: 10.1186/s12933-017-0581-z PMID: 28789654
  50. Biscetti, F.; Tinelli, G.; Rando, M.M.; Nardella, E.; Cecchini, A.L.; Angelini, F.; Straface, G.; Filipponi, M.; Arena, V.; Pitocco, D.; Gasbarrini, A.; Massetti, M.; Flex, A. Association between carotid plaque vulnerability and high mobility group box-1 serum levels in a diabetic population. Cardiovasc. Diabetol., 2021, 20(1), 114. doi: 10.1186/s12933-021-01304-8 PMID: 34044825
  51. Jiang, J.F.; Zhou, Z.Y.; Liu, Y.Z.; Wu, L.; Nie, B.B.; Huang, L.; Zhang, C. Role of Sp1 in atherosclerosis. Mol. Biol. Rep., 2022, 49(10), 9893-9902. doi: 10.1007/s11033-022-07516-9 PMID: 35715606
  52. Zahid, M.D.K.; Rogowski, M.; Ponce, C.; Choudhury, M.; Moustaid-Moussa, N.; Rahman, S.M. CCAAT/enhancer-binding protein beta (C/EBPβ) knockdown reduces inflammation, ER stress, and apoptosis, and promotes autophagy in oxLDL-treated RAW264.7 macrophage cells. Mol. Cell. Biochem., 2020, 463(1-2), 211-223. doi: 10.1007/s11010-019-03642-4 PMID: 31686316
  53. Kong, J.; Liu, L.; Song, L. MicroRNA miR-34a-5p inhibition restrains oxidative stress injury of macrophages by targeting MDM4. Vascular., 2022, 31(3), 608-618. doi: 10.1177/17085381211069447 PMID: 35226569
  54. Xu, Y.; Xu, Y.; Zhu, Y.; Sun, H.; Juguilon, C.; Li, F.; Fan, D.; Yin, L.; Zhang, Y. Macrophage miR-34a is a key regulator of cholesterol Efflux and atherosclerosis. Mol. Ther., 2020, 28(1), 202-216. doi: 10.1016/j.ymthe.2019.09.008 PMID: 31604677
  55. Cheng, X.; Kan, P.; Ma, Z.; Wang, Y.; Song, W.; Huang, C.; Zhang, B. Exploring the potential value of miR-148b-3p, miR-151b and miR-27b-3p as biomarkers in acute ischemic stroke. Biosci. Rep., 2018, 38(6), BSR20181033. doi: 10.1042/BSR20181033 PMID: 30361294
  56. Urban, M.H.; Kreibich, N.; Gleiss, A.; Funk, G.C.; Hartl, S.; Burghuber, O.C. Effects of roflumilast on arterial stiffness in COPD (ELASTIC): A randomized trial. Respirology., 2021, 26(2), 153-160. doi: 10.1111/resp.13914 PMID: 32725799
  57. Tuure, L.; Hämäläinen, M.; Moilanen, E. PDE4 inhibitor rolipram inhibits the expression of microsomal prostaglandin E synthase-1 by a mechanism dependent on MAP kinase phosphatase-1. Pharmacol. Res. Perspect., 2017, 5(6), e00363. doi: 10.1002/prp2.363 PMID: 29226622
  58. Haidl, H.; Schlagenhauf, A.; Krebs, A.; Plank, H.; Wonisch, W.; Fengler, V.; Fiegl, A.; Hörl, G.; Koestenberger, M.; Wagner, T.; Tafeit, E.; Cvirn, G.; Hallström, S. The anticoagulant effects of ethyl pyruvate in whole blood samples. PLoS One., 2020, 15(10), e0240541. doi: 10.1371/journal.pone.0240541 PMID: 33035271
  59. Gu, HF; Li, N; Xu, ZQ Chronic unpredictable mild stress promotes atherosclerosis via HMGB1/TLR4 mediated downregulation of PPARγ/LXRα/ABCA1 in ApoE-/- Mice Mice. Front., 2019, 10, 165. doi: 10.3389/fphys.2019.00165 PMID: 30881312
  60. Kelava, L.; Nemeth, D.; Hegyi, P.; Keringer, P.; Kovacs, D.K.; Balasko, M.; Solymar, M.; Pakai, E.; Rumbus, Z.; Garami, A. Dietary supplementation of transient receptor potential vanilloid-1 channel agonists reduces serum total cholesterol level: A meta-analysis of controlled human trials. Crit. Rev. Food Sci. Nutr., 2022, 62(25), 7025-7035. doi: 10.1080/10408398.2021.1910138 PMID: 33840333
  61. Wang, Z; Yang, Y; Yang, H NF κB feedback control of JNK1 activation modulates TRPV1 induced increases in IL 6 and IL 8 release by human corneal epithelial cells. Mol. Vis., 2011, 17, 3137-3746. PMID: 22171160
  62. Aslan, B.; Kismali, G.; Iles, L.R.; Manyam, G.C.; Ayres, M.L.; Chen, L.S.; Gagea, M.; Bertilaccio, M.T.S.; Wierda, W.G.; Gandhi, V. Pirtobrutinib inhibits wild-type and mutant Bruton’s tyrosine kinase-mediated signaling in chronic lymphocytic leukemia. Blood Cancer J., 2022, 12(5), 80. doi: 10.1038/s41408-022-00675-9 PMID: 35595730
  63. Goldmann, L.; Duan, R.; Kragh, T.; Wittmann, G.; Weber, C.; Lorenz, R.; von Hundelshausen, P.; Spannagl, M.; Siess, W. Oral Bruton tyrosine kinase inhibitors block activation of the platelet Fc receptor CD32a (FcγRIIA): A new option in HIT? Blood Adv., 2019, 3(23), 4021-4033. doi: 10.1182/bloodadvances.2019000617 PMID: 31809536
  64. Santanam, N.; Parthasarathy, S. Aspirin is a substrate for paraoxonase-like activity: Implications in atherosclerosis. Atherosclerosis., 2007, 191(2), 272-275. doi: 10.1016/j.atherosclerosis.2006.05.027 PMID: 16793048

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024