Liver Metabolomics Analysis Revealing Key Metabolites Associated with Different Stages of Nonalcoholic Fatty Liver Disease in Hamsters
- Authors: Gao S.1, Shen Y.2, Chen Y.1, Wei X.1, Hu J.3, Wang J.3, Wu W.1
-
Affiliations:
- Department of Ultrasound, Ningbo No. 2 Hospital, University of Chinese Academy of Sciences
- Department of Pathology and Pathophysiology,, Zhejiang University School of Medicine
- Department of Ultrasound, Ningbo No. 2 Hospital,, University of Chinese Academy of Sciences
- Issue: Vol 27, No 9 (2024)
- Pages: 1303-1317
- Section: Chemistry
- URL: https://kazanmedjournal.ru/1386-2073/article/view/644992
- DOI: https://doi.org/10.2174/0113862073238503230924180432
- ID: 644992
Cite item
Full Text
Abstract
Background and Aim:Nonalcoholic fatty liver disease (NAFLD) is not only the top cause of liver diseases but also a hepatic-correlated metabolic syndrome. This study performed untargeted metabolomics analysis of NAFLD hamsters to identify the key metabolites to discriminate different stages of NAFLD.
Methods:Hamsters were fed a high-fat diet (HFD) to establish the NAFLD model with different stages (six weeks named as the NAFLD1 group and twelve weeks as the NAFLD2 group, respectively). Those liver samples were analyzed by untargeted metabolomics (UM) analysis to investigate metabolic changes and metabolites to discriminate different stages of NAFLD.
Results:The significant liver weight gain in NAFLD hamsters was observed, accompanied by significantly increased levels of serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Moreover, the levels of TG, LDL-C, ALT, and AST were significantly higher in the NAFLD2 group than in the NAFLD1 group. The UM analysis also revealed the metabolic changes; 27 differently expressed metabolites were detected between the NAFLD2 and NAFLD1 groups. More importantly, the levels of N-methylalanine, allantoin, glucose, and glutamylvaline were found to be significantly different between any two groups (control, NAFLD2 and NAFLD1). Receiver operating characteristic curve (ROC) curve results also showed that these four metabolites are able to distinguish control, NAFLD1 and NAFLD2 groups.
Conclusion:This study indicated that the process of NAFLD in hamsters is accompanied by different metabolite changes, and these key differently expressed metabolites may be valuable diagnostic biomarkers and responses to therapeutic interventions.
About the authors
Shan-Shan Gao
Department of Ultrasound, Ningbo No. 2 Hospital, University of Chinese Academy of Sciences
Email: info@benthamscience.net
Yue-Liang Shen
Department of Pathology and Pathophysiology,, Zhejiang University School of Medicine
Email: info@benthamscience.net
Yun-Wen Chen
Department of Ultrasound, Ningbo No. 2 Hospital, University of Chinese Academy of Sciences
Email: info@benthamscience.net
Xiu-Zhi Wei
Department of Ultrasound, Ningbo No. 2 Hospital, University of Chinese Academy of Sciences
Email: info@benthamscience.net
Jing-Jing Hu
Department of Ultrasound, Ningbo No. 2 Hospital,, University of Chinese Academy of Sciences
Email: info@benthamscience.net
Jue Wang
Department of Ultrasound, Ningbo No. 2 Hospital,, University of Chinese Academy of Sciences
Email: info@benthamscience.net
Wen-Jing Wu
Department of Ultrasound, Ningbo No. 2 Hospital, University of Chinese Academy of Sciences
Author for correspondence.
Email: info@benthamscience.net
References
- Paul, S.; Davis, A.M. Diagnosis and management of nonalcoholic fatty liver disease. JAMA, 2018, 320(23), 2474-2475. doi: 10.1001/jama.2018.17365 PMID: 30476962
- Diehl, A.M.; Day, C. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. N. Engl. J. Med., 2017, 377(21), 2063-2072. doi: 10.1056/NEJMra1503519 PMID: 29166236
- Nobili, V.; Alisi, A.; Valenti, L.; Miele, L.; Feldstein, A.E.; Alkhouri, N. NAFLD in children: New genes, new diagnostic modalities and new drugs. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(9), 517-530. doi: 10.1038/s41575-019-0169-z PMID: 31278377
- Younossi, Z.M.; Otgonsuren, M.; Henry, L.; Venkatesan, C.; Mishra, A.; Erario, M.; Hunt, S. Association of nonalcoholic fatty liver disease (NAFLD) with hepatocellular carcinoma (HCC) in the United States from 2004 to 2009. Hepatology, 2015, 62(6), 1723-1730. doi: 10.1002/hep.28123 PMID: 26274335
- Pais, R.; Barritt, A.S., IV; Calmus, Y.; Scatton, O.; Runge, T.; Lebray, P.; Poynard, T.; Ratziu, V.; Conti, F. NAFLD and liver transplantation: Current burden and expected challenges. J. Hepatol., 2016, 65(6), 1245-1257. doi: 10.1016/j.jhep.2016.07.033 PMID: 27486010
- Hashimoto, E.; Taniai, M.; Tokushige, K. Characteristics and diagnosis of NAFLD/NASH. J. Gastroenterol. Hepatol., 2013, 28(Suppl. 4), 64-70. doi: 10.1111/jgh.12271 PMID: 24251707
- Treeprasertsuk, S.; Björnsson, E.; Enders, F.; Suwanwalaikorn, S.; Lindor, K.D. NAFLD fibrosis score: A prognostic predictor for mortality and liver complications among NAFLD patients. World J. Gastroenterol., 2013, 19(8), 1219-1229. doi: 10.3748/wjg.v19.i8.1219 PMID: 23482703
- Ekstedt, M.; Hagström, H.; Nasr, P.; Fredrikson, M.; Stål, P.; Kechagias, S.; Hultcrantz, R. Fibrosis stage is the strongest predictor for disease‐specific mortality in NAFLD after up to 33 years of follow‐up. Hepatology, 2015, 61(5), 1547-1554. doi: 10.1002/hep.27368 PMID: 25125077
- Wishart, D.S. Emerging applications of metabolomics in drug discovery and precision medicine. Nat. Rev. Drug Discov., 2016, 15(7), 473-484. doi: 10.1038/nrd.2016.32 PMID: 26965202
- Chen, G. The link between hepatic vitamin A metabolism and nonalcoholic fatty liver disease. Curr. Drug Targets, 2015, 16(12), 1281-1292. doi: 10.2174/1389450116666150325231015 PMID: 25808650
- Wang, G.E.; Li, Y.F.; Zhai, Y.J.; Gong, L.; Tian, J.Y.; Hong, M.; Yao, N.; Wu, Y.P.; Kurihara, H.; He, R.R. Theacrine protects against nonalcoholic fatty liver disease by regulating acylcarnitine metabolism. Metabolism, 2018, 85, 227-239. doi: 10.1016/j.metabol.2018.04.011 PMID: 29727630
- Onorato, A.; Fiore, E.; Bayo, J.; Casali, C.; Fernandez-Tomé, M.; Rodríguez, M.; Domínguez, L.; Argemi, J.; Hidalgo, F.; Favre, C.; García, M.; Atorrasagasti, C.; Mazzolini, G.D. SPARC inhibition accelerates NAFLD‐associated hepatocellular carcinoma development by dysregulating hepatic lipid metabolism. Liver Int., 2021, 41(7), 1677-1693. doi: 10.1111/liv.14857 PMID: 33641248
- Elbadawy, M.; Yamanaka, M.; Goto, Y.; Hayashi, K.; Tsunedomi, R.; Hazama, S.; Nagano, H.; Yoshida, T.; Shibutani, M.; Ichikawa, R.; Nakahara, J.; Omatsu, T.; Mizutani, T.; Katayama, Y.; Shinohara, Y.; Abugomaa, A.; Kaneda, M.; Yamawaki, H.; Usui, T.; Sasaki, K. Efficacy of primary liver organoid culture from different stages of non-alcoholic steatohepatitis (NASH) mouse model. Biomaterials, 2020, 237, 119823. doi: 10.1016/j.biomaterials.2020.119823 PMID: 32044522
- Han, L.; Zhao, L.H.; Zhang, M.L.; Li, H.T.; Gao, Z.Z.; Zheng, X.J.; Wang, X.M.; Wu, H.R.; Zheng, Y.J.; Jiang, X.T.; Ding, Q.Y.; Yang, H.Y.; Jia, W.P.; Tong, X.L. A novel antidiabetic monomers combination alleviates insulin resistance through bacteria-cometabolism-inflammation responses. Front. Microbiol., 2020, 11, 173. doi: 10.3389/fmicb.2020.00173 PMID: 32132984
- Estes, C.; Anstee, Q.M.; Arias-Loste, M.T.; Bantel, H.; Bellentani, S.; Caballeria, J.; Colombo, M.; Craxi, A.; Crespo, J.; Day, C.P.; Eguchi, Y.; Geier, A.; Kondili, L.A.; Kroy, D.C.; Lazarus, J.V.; Loomba, R.; Manns, M.P.; Marchesini, G.; Nakajima, A.; Negro, F.; Petta, S.; Ratziu, V.; Romero-Gomez, M.; Sanyal, A.; Schattenberg, J.M.; Tacke, F.; Tanaka, J.; Trautwein, C.; Wei, L.; Zeuzem, S.; Razavi, H. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 20162030. J. Hepatol., 2018, 69(4), 896-904. doi: 10.1016/j.jhep.2018.05.036 PMID: 29886156
- Estes, C.; Razavi, H.; Loomba, R.; Younossi, Z.; Sanyal, A.J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology, 2018, 67(1), 123-133. doi: 10.1002/hep.29466 PMID: 28802062
- Carreres, L.; Jílková, Z.M.; vial, G.; Marche, P.N.; Decaens, T.; Lerat, H. Modeling diet-induced NAFLD and NASH in rats: A comprehensive review. Biomedicines, 2021, 9(4), 378. doi: 10.3390/biomedicines9040378 PMID: 33918467
- Maciejewska, D.; Łukomska, A.; Dec, K.; Skonieczna-Żydecka, K.; Gutowska, I.; Skórka-Majewicz, M.; Styburski, D.; Misiakiewicz-Has, K.; Pilutin, A.; Palma, J.; Sieletycka, K.; Marlicz, W.; Stachowska, E. Diet-induced rat model of gradual development of Non-Alcoholic Fatty Liver Disease (NAFLD) with Lipopolysaccharides (LPS) secretion. Diagnostics, 2019, 9(4), 205. doi: 10.3390/diagnostics9040205 PMID: 31783667
- Gauthier, M.S.; Favier, R.; Lavoie, J.M. Time course of the development of non-alcoholic hepatic steatosis in response to high-fat diet-induced obesity in rats. Br. J. Nutr., 2006, 95(2), 273-281. doi: 10.1079/BJN20051635 PMID: 16469142
- Sookoian, S.; Pirola, C.J. Alanine and aspartate aminotransferase and glutamine-cycling pathway: Their roles in pathogenesis of metabolic syndrome. World J. Gastroenterol., 2012, 18(29), 3775-3781. doi: 10.3748/wjg.v18.i29.3775 PMID: 22876026
- De Chiara, F.; Heebøll, S.; Marrone, G.; Montoliu, C.; Hamilton-Dutoit, S.; Ferrandez, A.; Andreola, F.; Rombouts, K.; Grønbæk, H.; Felipo, V.; Gracia-Sancho, J.; Mookerjee, R.P.; Vilstrup, H.; Jalan, R.; Thomsen, K.L. Urea cycle dysregulation in non-alcoholic fatty liver disease. J. Hepatol., 2018, 69(4), 905-915. doi: 10.1016/j.jhep.2018.06.023 PMID: 29981428
- Mashek, D.G.; Coleman, R.A. Cellular fatty acid uptake: The contribution of metabolism. Curr. Opin. Lipidol., 2006, 17(3), 274-278. doi: 10.1097/01.mol.0000226119.20307.2b PMID: 16680032
- Mashek, D.G. Hepatic lipid droplets: A balancing act between energy storage and metabolic dysfunction in NAFLD. Mol. Metab., 2021, 50, 101115. doi: 10.1016/j.molmet.2020.101115 PMID: 33186758
- Nascimento-Ferreira, M.V.; Rendo-Urteaga, T.; Vilanova-Campelo, R.C.; Carvalho, H.B.; da Paz Oliveira, G.; Paes Landim, M.B.; Torres-Leal, F.L. The lipid accumulation product is a powerful tool to predict metabolic syndrome in undiagnosed Brazilian adults. Clin. Nutr., 2017, 36(6), 1693-1700. doi: 10.1016/j.clnu.2016.12.020 PMID: 28081980
- Motamed, N.; Razmjou, S.; Hemmasi, G.; Maadi, M.; Zamani, F. Lipid accumulation product and metabolic syndrome: A population-based study in northern Iran, Amol. J. Endocrinol. Invest., 2016, 39(4), 375-382. doi: 10.1007/s40618-015-0369-5 PMID: 26319991
- Nita, C.; Rusu, A.; Hancu, N.; Roman, G.; Bala, C. Hypertensive waist and lipid accumulation product as predictors of metabolic syndrome. Metab. Syndr. Relat. Disord., 2018, 16(10), 505-506. doi: 10.1089/met.2018.0098 PMID: 30300092
- Agius, L. Dietary carbohydrate and control of hepatic gene expression: Mechanistic links from ATP and phosphate ester homeostasis to the carbohydrate-response element-binding protein. Proc. Nutr. Soc., 2016, 75(1), 10-18. doi: 10.1017/S0029665115002451 PMID: 26264689
- Félix, D.R.; Costenaro, F.; Gottschall, C.B.A.; Coral, G.P. Non-alcoholic fatty liver disease (Nafld) in obese children- effect of refined carbohydrates in diet. BMC Pediatr., 2016, 16(1), 187. doi: 10.1186/s12887-016-0726-3 PMID: 27846831
- Pompili, S.; Vetuschi, A.; Gaudio, E.; Tessitore, A.; Capelli, R.; Alesse, E.; Latella, G.; Sferra, R.; Onori, P. Long-term abuse of a high-carbohydrate diet is as harmful as a high-fat diet for development and progression of liver injury in a mouse model of NAFLD/NASH. Nutrition, 2020, 75-76, 110782. doi: 10.1016/j.nut.2020.110782 PMID: 32268264
- López-Bautista, F.; Barbero-Becerra, V.J.; Ríos, M.Y.; Ramírez-Cisneros, M.Á.; Sánchez-Pérez, C.A.; Ramos-Ostos, M.H.; Uribe, M.; Chávez-Tapia, N.C.; Juárez-Hernández, E. Dietary consumption and serum pattern of bioactive fatty acids in NAFLD patients. Ann. Hepatol., 2020, 19(5), 482-488. doi: 10.1016/j.aohep.2020.06.008 PMID: 32717363
- Balaban, S.; Lee, L.S.; Schreuder, M.; Hoy, A.J. Obesity and cancer progression: Is there a role of fatty acid metabolism? BioMed Res. Int., 2015, 2015, 1-17. doi: 10.1155/2015/274585 PMID: 25866768
- Yamada, K.; Mizukoshi, E.; Sunagozaka, H.; Arai, K.; Yamashita, T.; Takeshita, Y.; Misu, H.; Takamura, T.; Kitamura, S.; Zen, Y.; Nakanuma, Y.; Honda, M.; Kaneko, S. Characteristics of hepatic fatty acid compositions in patients with nonalcoholic steatohepatitis. Liver Int., 2015, 35(2), 582-590. doi: 10.1111/liv.12685 PMID: 25219574
- Sitarek, K.; Gromadzińska, J.; Stetkiewicz, J.; Lutz, P.; Król, M.; Domeradzka-Gajda, K.; Wąsowicz, W. Developmental toxicity of N-methylaniline following prenatal oral administration in rats. Int. J. Occup. Med. Environ. Health, 2016, 29(3), 479-492. doi: 10.13075/ijomeh.1896.00571 PMID: 26988886
- Ma, J.; Meng, X.; Liu, Y.; Yin, C.; Zhang, T.; Wang, P.; Park, Y.K.; Jung, H.W. Effects of a rhizome aqueous extract of Dioscorea batatas and its bioactive compound, allantoin in high fat diet and streptozotocin-induced diabetic mice and the regulation of liver, pancreas and skeletal muscle dysfunction. J. Ethnopharmacol., 2020, 259, 112926. doi: 10.1016/j.jep.2020.112926 PMID: 32380247
- Komeili Movahhed, T.; Moslehi, A.; Golchoob, M.; Ababzadeh, S. Allantoin improves methionine-choline deficient diet-induced nonalcoholic steatohepatitis in mice through involvement in endoplasmic reticulum stress and hepatocytes apoptosis-related genes expressions. Iran. J. Basic Med. Sci., 2019, 22(7), 736-744. PMID: 32373294
- Jimba, S.; Nakagami, T.; Takahashi, M.; Wakamatsu, T.; Hirota, Y.; Iwamoto, Y.; Wasada, T. Prevalence of non-alcoholic fatty liver disease and its association with impaired glucose metabolism in Japanese adults. Diabet. Med., 2005, 22(9), 1141-1145. doi: 10.1111/j.1464-5491.2005.01582.x PMID: 16108839
- Ochi, T.; Kawaguchi, T.; Nakahara, T.; Ono, M.; Noguchi, S.; Koshiyama, Y.; Munekage, K.; Murakami, E.; Hiramatsu, A.; Ogasawara, M.; Hirose, A.; Mizuta, H.; Masuda, K.; Okamoto, N.; Suganuma, N.; Chayama, K.; Yamaguchi, M.; Torimura, T.; Saibara, T. Differences in characteristics of glucose intolerance between patients with NAFLD and chronic hepatitis C as determined by CGMS. Sci. Rep., 2017, 7(1), 10146. doi: 10.1038/s41598-017-09256-4 PMID: 28860506
- Xing, L.; Zhang, H.; Majumder, K.; Zhang, W.; Mine, Y. γ-glutamylvaline prevents low-grade chronic inflammation via activation of a calcium-sensing receptor pathway in 3T3-L1Mouse adipocytes. J. Agric. Food Chem., 2019, 67(30), 8361-8369. doi: 10.1021/acs.jafc.9b02334 PMID: 31339708
- Mishra, P.; Pandey, C.; Singh, U.; Keshri, A.; Sabaretnam, M. Selection of appropriate statistical methods for data analysis. Ann. Card. Anaesth., 2019, 22(3), 297-301. doi: 10.4103/aca.ACA_248_18 PMID: 31274493
- Ali, Z.; Bhaskar, S.B. Basic statistical tools in research and data analysis. Indian J. Anaesth., 2016, 60(9), 662-669. doi: 10.4103/0019-5049.190623 PMID: 27729694
Supplementary files
