Liver Metabolomics Analysis Revealing Key Metabolites Associated with Different Stages of Nonalcoholic Fatty Liver Disease in Hamsters


Cite item

Full Text

Abstract

Background and Aim:Nonalcoholic fatty liver disease (NAFLD) is not only the top cause of liver diseases but also a hepatic-correlated metabolic syndrome. This study performed untargeted metabolomics analysis of NAFLD hamsters to identify the key metabolites to discriminate different stages of NAFLD.

Methods:Hamsters were fed a high-fat diet (HFD) to establish the NAFLD model with different stages (six weeks named as the NAFLD1 group and twelve weeks as the NAFLD2 group, respectively). Those liver samples were analyzed by untargeted metabolomics (UM) analysis to investigate metabolic changes and metabolites to discriminate different stages of NAFLD.

Results:The significant liver weight gain in NAFLD hamsters was observed, accompanied by significantly increased levels of serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Moreover, the levels of TG, LDL-C, ALT, and AST were significantly higher in the NAFLD2 group than in the NAFLD1 group. The UM analysis also revealed the metabolic changes; 27 differently expressed metabolites were detected between the NAFLD2 and NAFLD1 groups. More importantly, the levels of N-methylalanine, allantoin, glucose, and glutamylvaline were found to be significantly different between any two groups (control, NAFLD2 and NAFLD1). Receiver operating characteristic curve (ROC) curve results also showed that these four metabolites are able to distinguish control, NAFLD1 and NAFLD2 groups.

Conclusion:This study indicated that the process of NAFLD in hamsters is accompanied by different metabolite changes, and these key differently expressed metabolites may be valuable diagnostic biomarkers and responses to therapeutic interventions.

About the authors

Shan-Shan Gao

Department of Ultrasound, Ningbo No. 2 Hospital, University of Chinese Academy of Sciences

Email: info@benthamscience.net

Yue-Liang Shen

Department of Pathology and Pathophysiology,, Zhejiang University School of Medicine

Email: info@benthamscience.net

Yun-Wen Chen

Department of Ultrasound, Ningbo No. 2 Hospital, University of Chinese Academy of Sciences

Email: info@benthamscience.net

Xiu-Zhi Wei

Department of Ultrasound, Ningbo No. 2 Hospital, University of Chinese Academy of Sciences

Email: info@benthamscience.net

Jing-Jing Hu

Department of Ultrasound, Ningbo No. 2 Hospital,, University of Chinese Academy of Sciences

Email: info@benthamscience.net

Jue Wang

Department of Ultrasound, Ningbo No. 2 Hospital,, University of Chinese Academy of Sciences

Email: info@benthamscience.net

Wen-Jing Wu

Department of Ultrasound, Ningbo No. 2 Hospital, University of Chinese Academy of Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Paul, S.; Davis, A.M. Diagnosis and management of nonalcoholic fatty liver disease. JAMA, 2018, 320(23), 2474-2475. doi: 10.1001/jama.2018.17365 PMID: 30476962
  2. Diehl, A.M.; Day, C. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. N. Engl. J. Med., 2017, 377(21), 2063-2072. doi: 10.1056/NEJMra1503519 PMID: 29166236
  3. Nobili, V.; Alisi, A.; Valenti, L.; Miele, L.; Feldstein, A.E.; Alkhouri, N. NAFLD in children: New genes, new diagnostic modalities and new drugs. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(9), 517-530. doi: 10.1038/s41575-019-0169-z PMID: 31278377
  4. Younossi, Z.M.; Otgonsuren, M.; Henry, L.; Venkatesan, C.; Mishra, A.; Erario, M.; Hunt, S. Association of nonalcoholic fatty liver disease (NAFLD) with hepatocellular carcinoma (HCC) in the United States from 2004 to 2009. Hepatology, 2015, 62(6), 1723-1730. doi: 10.1002/hep.28123 PMID: 26274335
  5. Pais, R.; Barritt, A.S., IV; Calmus, Y.; Scatton, O.; Runge, T.; Lebray, P.; Poynard, T.; Ratziu, V.; Conti, F. NAFLD and liver transplantation: Current burden and expected challenges. J. Hepatol., 2016, 65(6), 1245-1257. doi: 10.1016/j.jhep.2016.07.033 PMID: 27486010
  6. Hashimoto, E.; Taniai, M.; Tokushige, K. Characteristics and diagnosis of NAFLD/NASH. J. Gastroenterol. Hepatol., 2013, 28(Suppl. 4), 64-70. doi: 10.1111/jgh.12271 PMID: 24251707
  7. Treeprasertsuk, S.; Björnsson, E.; Enders, F.; Suwanwalaikorn, S.; Lindor, K.D. NAFLD fibrosis score: A prognostic predictor for mortality and liver complications among NAFLD patients. World J. Gastroenterol., 2013, 19(8), 1219-1229. doi: 10.3748/wjg.v19.i8.1219 PMID: 23482703
  8. Ekstedt, M.; Hagström, H.; Nasr, P.; Fredrikson, M.; Stål, P.; Kechagias, S.; Hultcrantz, R. Fibrosis stage is the strongest predictor for disease‐specific mortality in NAFLD after up to 33 years of follow‐up. Hepatology, 2015, 61(5), 1547-1554. doi: 10.1002/hep.27368 PMID: 25125077
  9. Wishart, D.S. Emerging applications of metabolomics in drug discovery and precision medicine. Nat. Rev. Drug Discov., 2016, 15(7), 473-484. doi: 10.1038/nrd.2016.32 PMID: 26965202
  10. Chen, G. The link between hepatic vitamin A metabolism and nonalcoholic fatty liver disease. Curr. Drug Targets, 2015, 16(12), 1281-1292. doi: 10.2174/1389450116666150325231015 PMID: 25808650
  11. Wang, G.E.; Li, Y.F.; Zhai, Y.J.; Gong, L.; Tian, J.Y.; Hong, M.; Yao, N.; Wu, Y.P.; Kurihara, H.; He, R.R. Theacrine protects against nonalcoholic fatty liver disease by regulating acylcarnitine metabolism. Metabolism, 2018, 85, 227-239. doi: 10.1016/j.metabol.2018.04.011 PMID: 29727630
  12. Onorato, A.; Fiore, E.; Bayo, J.; Casali, C.; Fernandez-Tomé, M.; Rodríguez, M.; Domínguez, L.; Argemi, J.; Hidalgo, F.; Favre, C.; García, M.; Atorrasagasti, C.; Mazzolini, G.D. SPARC inhibition accelerates NAFLD‐associated hepatocellular carcinoma development by dysregulating hepatic lipid metabolism. Liver Int., 2021, 41(7), 1677-1693. doi: 10.1111/liv.14857 PMID: 33641248
  13. Elbadawy, M.; Yamanaka, M.; Goto, Y.; Hayashi, K.; Tsunedomi, R.; Hazama, S.; Nagano, H.; Yoshida, T.; Shibutani, M.; Ichikawa, R.; Nakahara, J.; Omatsu, T.; Mizutani, T.; Katayama, Y.; Shinohara, Y.; Abugomaa, A.; Kaneda, M.; Yamawaki, H.; Usui, T.; Sasaki, K. Efficacy of primary liver organoid culture from different stages of non-alcoholic steatohepatitis (NASH) mouse model. Biomaterials, 2020, 237, 119823. doi: 10.1016/j.biomaterials.2020.119823 PMID: 32044522
  14. Han, L.; Zhao, L.H.; Zhang, M.L.; Li, H.T.; Gao, Z.Z.; Zheng, X.J.; Wang, X.M.; Wu, H.R.; Zheng, Y.J.; Jiang, X.T.; Ding, Q.Y.; Yang, H.Y.; Jia, W.P.; Tong, X.L. A novel antidiabetic monomers combination alleviates insulin resistance through bacteria-cometabolism-inflammation responses. Front. Microbiol., 2020, 11, 173. doi: 10.3389/fmicb.2020.00173 PMID: 32132984
  15. Estes, C.; Anstee, Q.M.; Arias-Loste, M.T.; Bantel, H.; Bellentani, S.; Caballeria, J.; Colombo, M.; Craxi, A.; Crespo, J.; Day, C.P.; Eguchi, Y.; Geier, A.; Kondili, L.A.; Kroy, D.C.; Lazarus, J.V.; Loomba, R.; Manns, M.P.; Marchesini, G.; Nakajima, A.; Negro, F.; Petta, S.; Ratziu, V.; Romero-Gomez, M.; Sanyal, A.; Schattenberg, J.M.; Tacke, F.; Tanaka, J.; Trautwein, C.; Wei, L.; Zeuzem, S.; Razavi, H. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J. Hepatol., 2018, 69(4), 896-904. doi: 10.1016/j.jhep.2018.05.036 PMID: 29886156
  16. Estes, C.; Razavi, H.; Loomba, R.; Younossi, Z.; Sanyal, A.J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology, 2018, 67(1), 123-133. doi: 10.1002/hep.29466 PMID: 28802062
  17. Carreres, L.; Jílková, Z.M.; vial, G.; Marche, P.N.; Decaens, T.; Lerat, H. Modeling diet-induced NAFLD and NASH in rats: A comprehensive review. Biomedicines, 2021, 9(4), 378. doi: 10.3390/biomedicines9040378 PMID: 33918467
  18. Maciejewska, D.; Łukomska, A.; Dec, K.; Skonieczna-Żydecka, K.; Gutowska, I.; Skórka-Majewicz, M.; Styburski, D.; Misiakiewicz-Has, K.; Pilutin, A.; Palma, J.; Sieletycka, K.; Marlicz, W.; Stachowska, E. Diet-induced rat model of gradual development of Non-Alcoholic Fatty Liver Disease (NAFLD) with Lipopolysaccharides (LPS) secretion. Diagnostics, 2019, 9(4), 205. doi: 10.3390/diagnostics9040205 PMID: 31783667
  19. Gauthier, M.S.; Favier, R.; Lavoie, J.M. Time course of the development of non-alcoholic hepatic steatosis in response to high-fat diet-induced obesity in rats. Br. J. Nutr., 2006, 95(2), 273-281. doi: 10.1079/BJN20051635 PMID: 16469142
  20. Sookoian, S.; Pirola, C.J. Alanine and aspartate aminotransferase and glutamine-cycling pathway: Their roles in pathogenesis of metabolic syndrome. World J. Gastroenterol., 2012, 18(29), 3775-3781. doi: 10.3748/wjg.v18.i29.3775 PMID: 22876026
  21. De Chiara, F.; Heebøll, S.; Marrone, G.; Montoliu, C.; Hamilton-Dutoit, S.; Ferrandez, A.; Andreola, F.; Rombouts, K.; Grønbæk, H.; Felipo, V.; Gracia-Sancho, J.; Mookerjee, R.P.; Vilstrup, H.; Jalan, R.; Thomsen, K.L. Urea cycle dysregulation in non-alcoholic fatty liver disease. J. Hepatol., 2018, 69(4), 905-915. doi: 10.1016/j.jhep.2018.06.023 PMID: 29981428
  22. Mashek, D.G.; Coleman, R.A. Cellular fatty acid uptake: The contribution of metabolism. Curr. Opin. Lipidol., 2006, 17(3), 274-278. doi: 10.1097/01.mol.0000226119.20307.2b PMID: 16680032
  23. Mashek, D.G. Hepatic lipid droplets: A balancing act between energy storage and metabolic dysfunction in NAFLD. Mol. Metab., 2021, 50, 101115. doi: 10.1016/j.molmet.2020.101115 PMID: 33186758
  24. Nascimento-Ferreira, M.V.; Rendo-Urteaga, T.; Vilanova-Campelo, R.C.; Carvalho, H.B.; da Paz Oliveira, G.; Paes Landim, M.B.; Torres-Leal, F.L. The lipid accumulation product is a powerful tool to predict metabolic syndrome in undiagnosed Brazilian adults. Clin. Nutr., 2017, 36(6), 1693-1700. doi: 10.1016/j.clnu.2016.12.020 PMID: 28081980
  25. Motamed, N.; Razmjou, S.; Hemmasi, G.; Maadi, M.; Zamani, F. Lipid accumulation product and metabolic syndrome: A population-based study in northern Iran, Amol. J. Endocrinol. Invest., 2016, 39(4), 375-382. doi: 10.1007/s40618-015-0369-5 PMID: 26319991
  26. Nita, C.; Rusu, A.; Hancu, N.; Roman, G.; Bala, C. Hypertensive waist and lipid accumulation product as predictors of metabolic syndrome. Metab. Syndr. Relat. Disord., 2018, 16(10), 505-506. doi: 10.1089/met.2018.0098 PMID: 30300092
  27. Agius, L. Dietary carbohydrate and control of hepatic gene expression: Mechanistic links from ATP and phosphate ester homeostasis to the carbohydrate-response element-binding protein. Proc. Nutr. Soc., 2016, 75(1), 10-18. doi: 10.1017/S0029665115002451 PMID: 26264689
  28. Félix, D.R.; Costenaro, F.; Gottschall, C.B.A.; Coral, G.P. Non-alcoholic fatty liver disease (Nafld) in obese children- effect of refined carbohydrates in diet. BMC Pediatr., 2016, 16(1), 187. doi: 10.1186/s12887-016-0726-3 PMID: 27846831
  29. Pompili, S.; Vetuschi, A.; Gaudio, E.; Tessitore, A.; Capelli, R.; Alesse, E.; Latella, G.; Sferra, R.; Onori, P. Long-term abuse of a high-carbohydrate diet is as harmful as a high-fat diet for development and progression of liver injury in a mouse model of NAFLD/NASH. Nutrition, 2020, 75-76, 110782. doi: 10.1016/j.nut.2020.110782 PMID: 32268264
  30. López-Bautista, F.; Barbero-Becerra, V.J.; Ríos, M.Y.; Ramírez-Cisneros, M.Á.; Sánchez-Pérez, C.A.; Ramos-Ostos, M.H.; Uribe, M.; Chávez-Tapia, N.C.; Juárez-Hernández, E. Dietary consumption and serum pattern of bioactive fatty acids in NAFLD patients. Ann. Hepatol., 2020, 19(5), 482-488. doi: 10.1016/j.aohep.2020.06.008 PMID: 32717363
  31. Balaban, S.; Lee, L.S.; Schreuder, M.; Hoy, A.J. Obesity and cancer progression: Is there a role of fatty acid metabolism? BioMed Res. Int., 2015, 2015, 1-17. doi: 10.1155/2015/274585 PMID: 25866768
  32. Yamada, K.; Mizukoshi, E.; Sunagozaka, H.; Arai, K.; Yamashita, T.; Takeshita, Y.; Misu, H.; Takamura, T.; Kitamura, S.; Zen, Y.; Nakanuma, Y.; Honda, M.; Kaneko, S. Characteristics of hepatic fatty acid compositions in patients with nonalcoholic steatohepatitis. Liver Int., 2015, 35(2), 582-590. doi: 10.1111/liv.12685 PMID: 25219574
  33. Sitarek, K.; Gromadzińska, J.; Stetkiewicz, J.; Lutz, P.; Król, M.; Domeradzka-Gajda, K.; Wąsowicz, W. Developmental toxicity of N-methylaniline following prenatal oral administration in rats. Int. J. Occup. Med. Environ. Health, 2016, 29(3), 479-492. doi: 10.13075/ijomeh.1896.00571 PMID: 26988886
  34. Ma, J.; Meng, X.; Liu, Y.; Yin, C.; Zhang, T.; Wang, P.; Park, Y.K.; Jung, H.W. Effects of a rhizome aqueous extract of Dioscorea batatas and its bioactive compound, allantoin in high fat diet and streptozotocin-induced diabetic mice and the regulation of liver, pancreas and skeletal muscle dysfunction. J. Ethnopharmacol., 2020, 259, 112926. doi: 10.1016/j.jep.2020.112926 PMID: 32380247
  35. Komeili Movahhed, T.; Moslehi, A.; Golchoob, M.; Ababzadeh, S. Allantoin improves methionine-choline deficient diet-induced nonalcoholic steatohepatitis in mice through involvement in endoplasmic reticulum stress and hepatocytes apoptosis-related genes expressions. Iran. J. Basic Med. Sci., 2019, 22(7), 736-744. PMID: 32373294
  36. Jimba, S.; Nakagami, T.; Takahashi, M.; Wakamatsu, T.; Hirota, Y.; Iwamoto, Y.; Wasada, T. Prevalence of non-alcoholic fatty liver disease and its association with impaired glucose metabolism in Japanese adults. Diabet. Med., 2005, 22(9), 1141-1145. doi: 10.1111/j.1464-5491.2005.01582.x PMID: 16108839
  37. Ochi, T.; Kawaguchi, T.; Nakahara, T.; Ono, M.; Noguchi, S.; Koshiyama, Y.; Munekage, K.; Murakami, E.; Hiramatsu, A.; Ogasawara, M.; Hirose, A.; Mizuta, H.; Masuda, K.; Okamoto, N.; Suganuma, N.; Chayama, K.; Yamaguchi, M.; Torimura, T.; Saibara, T. Differences in characteristics of glucose intolerance between patients with NAFLD and chronic hepatitis C as determined by CGMS. Sci. Rep., 2017, 7(1), 10146. doi: 10.1038/s41598-017-09256-4 PMID: 28860506
  38. Xing, L.; Zhang, H.; Majumder, K.; Zhang, W.; Mine, Y. γ-glutamylvaline prevents low-grade chronic inflammation via activation of a calcium-sensing receptor pathway in 3T3-L1Mouse adipocytes. J. Agric. Food Chem., 2019, 67(30), 8361-8369. doi: 10.1021/acs.jafc.9b02334 PMID: 31339708
  39. Mishra, P.; Pandey, C.; Singh, U.; Keshri, A.; Sabaretnam, M. Selection of appropriate statistical methods for data analysis. Ann. Card. Anaesth., 2019, 22(3), 297-301. doi: 10.4103/aca.ACA_248_18 PMID: 31274493
  40. Ali, Z.; Bhaskar, S.B. Basic statistical tools in research and data analysis. Indian J. Anaesth., 2016, 60(9), 662-669. doi: 10.4103/0019-5049.190623 PMID: 27729694

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers