Transcriptomic and Metabolomic Analysis of Liver Cirrhosis


Цитировать

Полный текст

Аннотация

Background:Liver cirrhosis is one of the leading causes of decreased life expectancy worldwide. However, the molecular mechanisms underlying liver cirrhosis remain unclear. In this study, we performed a comprehensive analysis using transcriptome and metabolome sequencing to explore the genes, pathways, and interactions associated with liver cirrhosis.

Methods:We performed transcriptome and metabolome sequencing of blood samples from patients with cirrhosis and healthy controls (1:1 matched for sex and age). We validated the differentially expressed microRNA (miRNA) and mRNAs using real-time quantitative polymerase chain reaction.

Results:For transcriptome analysis, we screened for differentially expressed miRNAs and mRNAs, analyzed mRNAs to identify possible core genes and pathways, and performed coanalysis of miRNA and mRNA sequencing results. In terms of the metabolome, we screened five pathways that were substantially enriched in the differential metabolites. Next, we identified the metabolites with the most pronounced differences among these five metabolic pathways. We performed receiver operating characteristic (ROC) curve analysis of these five metabolites to determine their diagnostic efficacy for cirrhosis. Finally, we explored possible links between the transcriptome and metabolome.

Conclusion:Based on sequencing and bioinformatics, we identified miRNAs and genes that were differentially expressed in the blood of patients with liver cirrhosis. By exploring pathways and disease-specific networks, we identified unique biological mechanisms. In terms of metabolomes, we identified novel biomarkers and explored their diagnostic efficacy. We identified possible common pathways in the transcriptome and metabolome that could serve as candidates for further studies.

Об авторах

Xiao Kuang

Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The Second Affiliated Hospital of Kunming Medical University

Email: info@benthamscience.net

Jinyu Li

Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The Second Affiliated Hospital of Kunming Medical University

Email: info@benthamscience.net

Yiheng Xu

Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The Second Affiliated Hospital of Kunming Medical University

Email: info@benthamscience.net

Lihong Yang

Department of Gastroenterology, Yunnan Research for Liver Diseases, The Second Affiliated Hospital of Kunming Medical University

Email: info@benthamscience.net

Xiaoxiao Liu

Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The Second Affiliated Hospital of Kunming Medical University

Email: info@benthamscience.net

Jinhui Yang

Department of Gastroenterology, Yunnan Research for Liver Diseases, The Second Affiliated Hospital of Kunming Medical University

Email: info@benthamscience.net

Wenlin Tai

Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The Second Affiliated Hospital of Kunming Medical University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; AlMazroa, M.A.; Alvarado, M.; Anderson, H.R.; Anderson, L.M.; Andrews, K.G.; Atkinson, C.; Baddour, L.M.; Barker-Collo, S.; Bartels, D.H.; Bell, M.L.; Benjamin, E.J.; Bennett, D.; Bhalla, K.; Bikbov, B.; Abdulhak, A.B.; Birbeck, G.; Blyth, F.; Bolliger, I.; Boufous, S.; Bucello, C.; Burch, M.; Burney, P.; Carapetis, J.; Chen, H.; Chou, D.; Chugh, S.S.; Coffeng, L.E.; Colan, S.D.; Colquhoun, S.; Colson, K.E.; Condon, J.; Connor, M.D.; Cooper, L.T.; Corriere, M.; Cortinovis, M.; de Vaccaro, K.C.; Couser, W.; Cowie, B.C.; Criqui, M.H.; Cross, M.; Dabhadkar, K.C.; Dahodwala, N.; De Leo, D.; Degenhardt, L.; Delossantos, A.; Denenberg, J.; Des Jarlais, D.C.; Dharmaratne, S.D.; Dorsey, E.R.; Driscoll, T.; Duber, H.; Ebel, B.; Erwin, P.J.; Espindola, P.; Ezzati, M.; Feigin, V.; Flaxman, A.D.; Forouzanfar, M.H.; Fowkes, F.G.R.; Franklin, R.; Fransen, M.; Freeman, M.K.; Gabriel, S.E.; Gakidou, E.; Gaspari, F.; Gillum, R.F.; Gonzalez-Medina, D.; Halasa, Y.A.; Haring, D.; Harrison, J.E.; Havmoeller, R.; Hay, R.J.; Hoen, B.; Hotez, P.J.; Hoy, D.; Jacobsen, K.H.; James, S.L.; Jasrasaria, R.; Jayaraman, S.; Johns, N.; Karthikeyan, G.; Kassebaum, N.; Keren, A.; Khoo, J-P.; Knowlton, L.M.; Kobusingye, O.; Koranteng, A.; Krishnamurthi, R.; Lipnick, M.; Lipshultz, S.E.; Ohno, S.L.; Mabweijano, J.; MacIntyre, M.F.; Mallinger, L.; March, L.; Marks, G.B.; Marks, R.; Matsumori, A.; Matzopoulos, R.; Mayosi, B.M.; McAnulty, J.H.; McDermott, M.M.; McGrath, J.; Memish, Z.A.; Mensah, G.A.; Merriman, T.R.; Michaud, C.; Miller, M.; Miller, T.R.; Mock, C.; Mocumbi, A.O.; Mokdad, A.A.; Moran, A.; Mulholland, K.; Nair, M.N.; Naldi, L.; Narayan, K.M.V.; Nasseri, K.; Norman, P.; O’Donnell, M.; Omer, S.B.; Ortblad, K.; Osborne, R.; Ozgediz, D.; Pahari, B.; Pandian, J.D.; Rivero, A.P.; Padilla, R.P.; Perez-Ruiz, F.; Perico, N.; Phillips, D.; Pierce, K.; Pope, C.A., III; Porrini, E.; Pourmalek, F.; Raju, M.; Ranganathan, D.; Rehm, J.T.; Rein, D.B.; Remuzzi, G.; Rivara, F.P.; Roberts, T.; De León, F.R.; Rosenfeld, L.C.; Rushton, L.; Sacco, R.L.; Salomon, J.A.; Sampson, U.; Sanman, E.; Schwebel, D.C.; Segui-Gomez, M.; Shepard, D.S.; Singh, D.; Singleton, J.; Sliwa, K.; Smith, E.; Steer, A.; Taylor, J.A.; Thomas, B.; Tleyjeh, I.M.; Towbin, J.A.; Truelsen, T.; Undurraga, E.A.; Venketasubramanian, N.; Vijayakumar, L.; Vos, T.; Wagner, G.R.; Wang, M.; Wang, W.; Watt, K.; Weinstock, M.A.; Weintraub, R.; Wilkinson, J.D.; Woolf, A.D.; Wulf, S.; Yeh, P-H.; Yip, P.; Zabetian, A.; Zheng, Z-J.; Lopez, A.D.; Murray, C.J.L. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the global burden of disease study 2010. Lancet, 2012, 380(9859), 2095-2128. doi: 10.1016/S0140-6736(12)61728-0 PMID: 23245604
  2. Mokdad, A.A.; Lopez, A.D.; Shahraz, S.; Lozano, R.; Mokdad, A.H.; Stanaway, J.; Murray, C.J.L.; Naghavi, M. Liver cirrhosis mortality in 187 countries between 1980 and 2010: A systematic analysis. BMC Med., 2014, 12(1), 145. doi: 10.1186/s12916-014-0145-y PMID: 25242656
  3. Safaei, A.; Rezaei Tavirani, M.; Arefi Oskouei, A.; Zamanian Azodi, M.; Mohebbi, S.R.; Nikzamir, A.R. Protein-protein interaction network analysis of cirrhosis liver disease. Gastroenterol. Hepatol. Bed Bench, 2016, 9(2), 114-123. PMID: 27099671
  4. Ozsolak, F.; Milos, P.M. RNA sequencing: Advances, challenges and opportunities. Nat. Rev. Genet., 2011, 12(2), 87-98. doi: 10.1038/nrg2934 PMID: 21191423
  5. Garber, M.; Grabherr, M.G.; Guttman, M.; Trapnell, C. Computational methods for transcriptome annotation and quantification using RNA-seq. Nat. Methods, 2011, 8(6), 469-477. doi: 10.1038/nmeth.1613 PMID: 21623353
  6. Arakaki, A.K.; Skolnick, J.; McDonald, J.F. Marker metabolites can be therapeutic targets as well. Nature, 2008, 456(7221), 443. doi: 10.1038/456443c PMID: 19037294
  7. Wang, X.; Zhang, A.; Han, Y.; Wang, P.; Sun, H.; Song, G.; Dong, T.; Yuan, Y.; Yuan, X.; Zhang, M.; Xie, N.; Zhang, H.; Dong, H.; Dong, W. Urine metabolomics analysis for biomarker discovery and detection of jaundice syndrome in patients with liver disease. Mol. Cell. Proteomics, 2012, 11(8), 370-380. doi: 10.1074/mcp.M111.016006 PMID: 22505723
  8. Kivioja, T.; Vähärautio, A.; Karlsson, K.; Bonke, M.; Enge, M.; Linnarsson, S.; Taipale, J. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods, 2012, 9(1), 72-74. doi: 10.1038/nmeth.1778 PMID: 22101854
  9. Wang, L.; Feng, Z.; Wang, X.; Wang, X.; Zhang, X. DEGseq: An R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics, 2010, 26(1), 136-138. doi: 10.1093/bioinformatics/btp612 PMID: 19855105
  10. Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 2014, 15(12), 550. doi: 10.1186/s13059-014-0550-8 PMID: 25516281
  11. Abdi, H. The bonferonni and šidák corrections for multiple comparisons. 2007.
  12. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet, 2015, 385(9963), 117-171. doi: 10.1016/S0140-6736(14)61682-2 PMID: 25530442
  13. Tsochatzis, E.A.; Bosch, J.; Burroughs, A.K. Liver cirrhosis. Lancet, 2014, 383(9930), 1749-1761. doi: 10.1016/S0140-6736(14)60121-5 PMID: 24480518
  14. Pan, B.T.; Johnstone, R.M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor. Cell, 1983, 33(3), 967-978. doi: 10.1016/0092-8674(83)90040-5 PMID: 6307529
  15. Chaput, N.; Théry, C. Exosomes: Immune properties and potential clinical implementations. Semin. Immunopathol., 2011, 33(5), 419-440. doi: 10.1007/s00281-010-0233-9 PMID: 21174094
  16. Chen, L.; Charrier, A.; Zhou, Y.; Chen, R.; Yu, B.; Agarwal, K.; Tsukamoto, H.; Lee, L.J.; Paulaitis, M.E.; Brigstock, D.R. Epigenetic regulation of connective tissue growth factor by MicroRNA-214 delivery in exosomes from mouse or human hepatic stellate cells. Hepatology, 2014, 59(3), 1118-1129. doi: 10.1002/hep.26768 PMID: 24122827
  17. Saito, T.; Harada, K.; Nakanuma, Y. Granulomatous phlebitis of small hepatic vein. J. Gastroenterol. Hepatol., 2002, 17(12), 1334-1339. doi: 10.1046/j.1440-1746.2002.02786.x PMID: 12423283
  18. Glass, L.M.; Su, G.L.C. Metabolic Bone Disease in Primary Biliary Cirrhosis. Gastroenterol. Clin. North Am., 2016, 45(2), 333-343. doi: 10.1016/j.gtc.2016.02.009 PMID: 27261902
  19. Guañabens, N.; Parés, A.; Mariñoso, L.; Brancós, M.A.; Piera, C.; Serrano, S.; Rivera, F.; Rodés, J. Factors influencing the development of metabolic bone disease in primary biliary cirrhosis. Am. J. Gastroenterol., 1990, 85(10), 1356-1362. PMID: 2220729
  20. Qamar, A.A.; Grace, N.D.; Groszmann, R.J.; Garcia-Tsao, G.; Bosch, J.; Burroughs, A.K.; Ripoll, C.; Maurer, R.; Planas, R.; Escorsell, A.; Garcia-Pagan, J.C.; Patch, D.; Matloff, D.S.; Makuch, R.; Rendon, G. Incidence, prevalence, and clinical significance of abnormal hematologic indices in compensated cirrhosis. Clin. Gastroenterol. Hepatol., 2009, 7(6), 689-695. doi: 10.1016/j.cgh.2009.02.021 PMID: 19281860
  21. Li, B.; Bailey, A.S.; Jiang, S.; Liu, B.; Goldman, D.C.; Fleming, W.H. Endothelial cells mediate the regeneration of hematopoietic stem cells. Stem Cell Res., 2010, 4(1), 17-24. doi: 10.1016/j.scr.2009.08.001 PMID: 19720572
  22. Guillerey, C.; Harjunpää, H.; Carrié, N.; Kassem, S.; Teo, T.; Miles, K.; Krumeich, S.; Weulersse, M.; Cuisinier, M.; Stannard, K.; Yu, Y.; Minnie, S.A.; Hill, G.R.; Dougall, W.C.; Avet-Loiseau, H.; Teng, M.W.L.; Nakamura, K.; Martinet, L.; Smyth, M.J. TIGIT immune checkpoint blockade restores CD8+ T-cell immunity against multiple myeloma. Blood, 2018, 132(16), 1689-1694. doi: 10.1182/blood-2018-01-825265 PMID: 29986909
  23. Baniyash, M.; Sade-Feldman, M.; Kanterman, J. Chronic inflammation and cancer: Suppressing the suppressors. Cancer Immunol. Immunother., 2014, 63(1), 11-20. doi: 10.1007/s00262-013-1468-9 PMID: 23990173
  24. Choi, W.M.; Ryu, T.; Lee, J.H.; Shim, Y.R.; Kim, M.H.; Kim, H.H.; Kim, Y.E.; Yang, K.; Kim, K.; Choi, S.E.; Kim, W.; Kim, S.H.; Eun, H.S.; Jeong, W.I. Metabotropic Glutamate Receptor 5 in Natural Killer Cells Attenuates Liver Fibrosis by Exerting Cytotoxicity to Activated Stellate Cells. Hepatology, 2021, 74(4), 2170-2185. doi: 10.1002/hep.31875 PMID: 33932306
  25. Li, S.; Ma, D.; Zhang, L.; Li, X.; Deng, C.; Qin, X.; Zhang, T.; Wang, L.; Shi, Q.; Wang, Q.; Wu, Q.; Zhang, X.; Zhang, F.; Li, Y. High levels of FCγR3A and PRF1 expression in peripheral blood mononuclear cells from patients with primary biliary cirrhosis. Dig. Dis. Sci., 2013, 58(2), 458-464. doi: 10.1007/s10620-012-2456-1 PMID: 23179144
  26. Fang, S.S.; Guo, J.C.; Zhang, J.H.; Liu, J.N.; Hong, S.; Yu, B.; Gao, Y.; Hu, S.P.; Liu, H.Z.; Sun, L.; Zhao, Y.A. P53‐related microRNA model for predicting the prognosis of hepatocellular carcinoma patients. J. Cell. Physiol., 2020, 235(4), 3569-3578. doi: 10.1002/jcp.29245 PMID: 31556110
  27. Jeong, S.; Kim, S.A.; Ahn, S.G. HOXC6-Mediated miR-188-5p Expression Induces Cell Migration through the Inhibition of the Tumor Suppressor FOXN2. Int. J. Mol. Sci., 2021, 23(1), 9. doi: 10.3390/ijms23010009 PMID: 35008435
  28. Deng, J.; Li, Y.Q.; Liu, Y.; Li, Q.; Hu, Y.; Xu, J.Q.; Sun, T.Y.; Xie, L.X. Exosomes derived from plasma of septic patients inhibit apoptosis of T lymphocytes by down-regulating bad via hsa-miR-7-5p. Biochem. Biophys. Res. Commun., 2019, 513(4), 958-966. doi: 10.1016/j.bbrc.2019.04.051 PMID: 31003766
  29. Wei, D.; Sun, L.; Feng, W. hsa_circ_0058357 acts as a ceRNA to promote non small cell lung cancer progression via the hsa miR 24 3p/AVL9 axis. Mol. Med. Rep., 2021, 23(6), 470. doi: 10.3892/mmr.2021.12109 PMID: 33880595
  30. Wang, D. Zhang, Q.; Li, F.; Wang, C.; Yang, C.; Yu, H. β-TrCP-mediated ubiquitination and degradation of Dlg5 regulates hepatocellular carcinoma cell proliferation. Cancer Cell Int., 2019, 19(1), 298. doi: 10.1186/s12935-019-1029-1 PMID: 31787846
  31. Weber-Boyvat, M.; Zhong, W.; Yan, D.; Olkkonen, V.M. Oxysterol-binding proteins: Functions in cell regulation beyond lipid metabolism. Biochem. Pharmacol., 2013, 86(1), 89-95. doi: 10.1016/j.bcp.2013.02.016 PMID: 23428468
  32. Hancock, W.W.; Wang, L.; Ye, Q.; Han, R.; Lee, I. Chemokines and their receptors as markers of allograft rejection and targets for immunosuppression. Curr. Opin. Immunol., 2003, 15(5), 479-486. doi: 10.1016/S0952-7915(03)00103-1 PMID: 14499253
  33. Heijne, W.H.M.; Lamers, R.J.A.N.; van Bladeren, P.J.; Groten, J.P.; van Nesselrooij, J.H.J.; van Ommen, B. Profiles of metabolites and gene expression in rats with chemically induced hepatic necrosis. Toxicol. Pathol., 2005, 33(4), 425-433. doi: 10.1080/01926230590958146 PMID: 16036859
  34. Yang, J.; Xu, G.; Zheng, Y.; Kong, H.; Pang, T.; Lv, S.; Yang, Q. Diagnosis of liver cancer using HPLC-based metabonomics avoiding false-positive result from hepatitis and hepatocirrhosis diseases. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004, 813(1-2), 59-65. doi: 10.1016/j.jchromb.2004.09.032 PMID: 15556516
  35. Nagana Gowda, G.A.; Shanaiah, N.; Cooper, A.; Maluccio, M.; Raftery, D. Visualization of bile homeostasis using (1)H-NMR spectroscopy as a route for assessing liver cancer. Lipids, 2009, 44(1), 27-35. doi: 10.1007/s11745-008-3254-6 PMID: 18982376
  36. Attili, A.F.; Angelico, M.; Cantafora, A.; Alvaro, D.; Capocaccia, L. Bile acid-induced liver toxicity: Relation to the hydrophobic-hydrophilic balance of bile acids. Med. Hypotheses, 1986, 19(1), 57-69. doi: 10.1016/0306-9877(86)90137-4 PMID: 2871479
  37. Wang, S.; Sheng, F.; Zou, L.; Xiao, J.; Li, P. Hyperoside attenuates non-alcoholic fatty liver disease in rats via cholesterol metabolism and bile acid metabolism. J. Adv. Res., 2021, 34, 109-122. doi: 10.1016/j.jare.2021.06.001 PMID: 35024184
  38. Amor, F.; Vu Hong, A.; Corre, G.; Sanson, M.; Suel, L.; Blaie, S.; Servais, L.; Voit, T.; Richard, I.; Israeli, D. Cholesterol metabolism is a potential therapeutic target in Duchenne muscular dystrophy. J. Cachexia Sarcopenia Muscle, 2021, 12(3), 677-693. doi: 10.1002/jcsm.12708 PMID: 34037326
  39. Li, G.; Huang, M.; Cai, Y.; Yang, Y.; Sun, X.; Ke, Y. Circ‐U2AF1 promotes human glioma via derepressing neuro‐oncological ventral antigen 2 by sponging hsa‐miR‐7‐5p. J. Cell. Physiol., 2019, 234(6), 9144-9155. doi: 10.1002/jcp.27591 PMID: 30341906

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024