The Protective Effect of Sanggenol L Against DMBA-induced Hamster Buccal Pouch Carcinogenesis Induces Apoptosis and Inhibits Cell Proliferative Signalling Pathway


Citar

Texto integral

Resumo

Background:Oral squamous cell carcinoma (OSCC) has a poor prognosis when treated with surgery and chemotherapy. Therefore, a new therapy and preventative strategy for OSCC and its underlying mechanisms are desperately needed. The purpose of this study was to examine the chemopreventive effects of sanggenol L on oral squamous cell carcinoma (OSCC). The research focused on molecular signalling pathways in 7,12-dimethylbenz(a)anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis.

Aim:The purpose of this study was to look at the biochemical and chemopreventive effects of sanggenol L on 7,12-dimethylbenz(a)anthracene (DMBA)-induced HBP (hamster buccal pouch) carcinogenesis via cell proliferation and the apoptotic pathway.

Methods:After developing squamous cell carcinoma, oral tumours continued to progress leftward into the pouch 3 times per week for 10 weeks while being exposed to 0.5 % reactive DMBA three times per week. Tumour growth was caused by biochemical abnormalities that induced inflammation, increased cell proliferation, and decreased apoptosis.

Results:Oral sanggenol L (10 mg/kg bw) supplementation with cancer-induced model DMBApainted hamsters prevented tumour occurrences, improved biochemistry, inhibited inflammatory markers, decreased cell proliferation marker expression of tumour necrosis factor-alpha (TNF- α), nuclear factor (NF-κB), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and induced apoptosis.

Conclusion:Sanggenol L could be developed into a new medicine for the treatment of oral carcinogenesis.

Sobre autores

Qing Fu

Department of Stomatology, People's Hospital of Qijiang District

Email: info@benthamscience.net

Fangming Zhang

Department of Stomatology, The Fifth People’s Hospital Of Wuxi

Autor responsável pela correspondência
Email: info@benthamscience.net

Annamalai Vijayalakshmi

Department of Biochemistry, Rabiammal Ahamed Maideen College for Women

Email: info@benthamscience.net

Bibliografia

  1. Singh, R.K. Key heterocyclic cores for smart anticancer drug–design Part II. 2022. doi: 10.2174/97898150400741220101
  2. Ram, H.; Sarkar, J.; Kumar, H.; Konwar, R.; Bhatt, M.L.B.; Mohammad, S. Oral cancer: Risk factors and molecular pathogenesis. J. Maxillofac. Oral Surg., 2011, 10(2), 132-137. doi: 10.1007/s12663-011-0195-z PMID: 22654364
  3. Jiang, X.; Wu, J.; Wang, J.; Huang, R. Tobacco and oral squamous cell carcinoma: A review of carcinogenic pathways. Tob. Induc. Dis., 2019, 17(1), 29. doi: 10.18332/tid/111652 PMID: 31582940
  4. Al-Jaber, A.; Al-Nasser, L.; El-Metwally, A. Epidemiology of oral cancer in Arab countries. Saudi Med. J., 2016, 37(3), 249-255. doi: 10.15537/smj.2016.3.11388 PMID: 26905345
  5. Tandon, P.; Dadhich, A.; Saluja, H.; Bawane, S.; Sachdeva, S. The prevalence of squamous cell carcinoma in different sites of oral cavity at our rural health care centre in loni, maharashtra: A retrospective 10-year study. Contemp. Oncol., 2017, 2(2), 178-183. doi: 10.5114/wo.2017.68628 PMID: 28947890
  6. Graham, S.; Dayal, H.; Rohrer, T.; Swanson, M.; Sultz, H.; Shedd, D.; Fischman, S. Dentition, diet, tobacco, and alcohol in the epidemiology of oral cancer. J. Natl. Cancer Inst., 1977, 59(6), 1611-1618. doi: 10.1093/jnci/59.6.1611 PMID: 926184
  7. Dhiman, A.; Sharma, R.; Singh, R.K. Target-based anticancer indole derivatives and insight into structure‒activity relationship: A mechanistic review update (2018–2021). Acta Pharm. Sin. B, 2022, 12(7), 3006-3027. doi: 10.1016/j.apsb.2022.03.021 PMID: 35865090
  8. Fogarty, C.E.; Diwanji, N.; Lindblad, J.L.; Tare, M.; Amcheslavsky, A.; Makhijani, K.; Brückner, K.; Fan, Y.; Bergmann, A. Extracellular reactive oxygen species drive apoptosis-induced proliferation via drosophila macrophages. Curr. Biol., 2016, 26(5), 575-584. doi: 10.1016/j.cub.2015.12.064 PMID: 26898463
  9. Oeckinghaus, A.; Ghosh, S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb. Perspect. Biol., 2009, 1(4), a000034. doi: 10.1101/cshperspect.a000034 PMID: 20066092
  10. Liu, B.; Qu, L.; Yan, S. Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity. Cancer Cell Int., 2015, 15(1), 106. doi: 10.1186/s12935-015-0260-7 PMID: 26549987
  11. Kyriakopoulos, A.M.; Nagl, M.; Baliou, S.; Zoumpourlis, V. Alleviating promotion of inflammation and cancer induced by nonsteroidal anti-inflammatory drugs. Int. J. Inflamm., 2017, 2017, 1-17. doi: 10.1155/2017/9632018 PMID: 28573063
  12. Olmos, G.; Lladó, J. Tumor necrosis factor alpha: A link between neuroinflammation and excitotoxicity. Mediators Inflamm., 2014, 2014, 1-12. doi: 10.1155/2014/861231 PMID: 24966471
  13. Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal., 2014, 20(7), 1126-1167. doi: 10.1089/ars.2012.5149 PMID: 23991888
  14. Xia, Y. Shen, S.; Verma, I.M. NF-κB, an active player in human cancers. Cancer Immunol. Res., 2014, 2(9), 823-830. doi: 10.1158/2326-6066.CIR-14-0112 PMID: 25187272
  15. Zhu, K.; Wu, Y.; He, P.; Fan, Y.; Zhong, X.; Zheng, H.; Luo, T. PI3K/AKT/mTOR-targeted therapy for breast cancer. Cells, 2022, 11(16), 2508. doi: 10.3390/cells11162508 PMID: 36010585
  16. Wang, Y.Y.; Chen, Y.K.; Lo, S.; Chi, T.C.; Chen, Y.H.; Hu, S.C.S.; Chen, Y.W.; Jiang, S.S.; Tsai, F.Y.; Liu, W.; Li, R.N.; Hsieh, Y.C.; Huang, C.J.; Yuan, S.S.F. MRE11 promotes oral cancer progression through RUNX2/CXCR4/AKT/FOXA2 signaling in a nuclease-independent manner. Oncogene, 2021, 40(20), 3510-3532. doi: 10.1038/s41388-021-01698-5 PMID: 33927349
  17. Vairaktaris, E.; Spyridonidou, S.; Papakosta, V.; Vylliotis, A.; Lazaris, A.; Perrea, D.; Yapijakis, C.; Patsouris, E. The hamster model of sequential oral oncogenesis. Oral Oncol., 2008, 44(4), 315-324. doi: 10.1016/j.oraloncology.2007.08.015 PMID: 18061531
  18. Nagini, S.; Letchoumy, P.V. A, T.; Cr, R. Of humans and hamsters: A comparative evaluation of carcinogen activation, DNA damage, cell proliferation, apoptosis, invasion, and angiogenesis in oral cancer patients and hamster buccal pouch carcinomas. Oral Oncol., 2009, 45(6), e31-e37. doi: 10.1016/j.oraloncology.2009.01.006 PMID: 19250857
  19. Mehta, S.; Sharma, A.K.; Singh, R.K. Advances in ethnobotany, synthetic phytochemistry and pharmacology of endangered herb Picrorhiza kurroa (Kutki): A comprehensive review (2010-2020). Mini Rev. Med. Chem., 2021, 21(19), 2976-2995. doi: 10.2174/1389557521666210401090028 PMID: 33797375
  20. Mehta, S.; Sharma, A.K.; Singh, R.K. Therapeutic journey of Andrographis paniculata (Burm.f.) nees from natural to synthetic and nanoformulations. Mini Rev. Med. Chem., 2021, 21(12), 1556-1577. doi: 10.2174/1389557521666210315162354 PMID: 33719961
  21. Greenwell, M.; Rahman, P.K. Medicinal plants: Their use in anticancer treatment. Int. J. Pharm. Sci. Res., 2015, 6(11), 4103-4112. doi: 10.13040/IJPSR.0975-8232.6(10).4103-12 PMID: 26594645
  22. Desai, A.; Qazi, G.; Ganju, R.; El-Tamer, M.; Singh, J.; Saxena, A.; Bedi, Y.; Taneja, S.; Bhat, H. Medicinal plants and cancer chemoprevention. Curr. Drug Metab., 2008, 9(7), 581-591. doi: 10.2174/138920008785821657 PMID: 18781909
  23. Nam, M.S.; Jung, D.B.; Seo, K.H.; Kim, B.I.; Kim, J.H.; Kim, J.H.; Kim, B.; Baek, N.I.; Kim, S.H. Apoptotic Effect of Sanggenol L via caspase activation and inhibition of NF-κB signaling in ovarian cancer cells. Phytother. Res., 2016, 30(1), 90-96. doi: 10.1002/ptr.5505 PMID: 26555861
  24. Won, Y.S.; Seo, K.I.; Sanggenol, L. Sanggenol L induces apoptosis and cell cycle arrest via activation of p53 and suppression of PI3K/Akt/mTOR signaling in human prostate cancer cells. Nutrients, 2020, 12(2), 488. doi: 10.3390/nu12020488 PMID: 32075054
  25. Mandel, I.D.; Shklar, G. Development of experimental oral carcinogenesis and its impact on current oral cancer research. J. Dent. Res., 1999, 78(12), 1768-1772. doi: 10.1177/00220345990780120101 PMID: 10598904
  26. Kakkar, P.; Das, B.; Viswanathan, P.N. A modified spectrophotometric assay of superoxide dismutase. Indian J. Biochem. Biophys., 1984, 21(2), 130-132. PMID: 6490072
  27. Sinha, A.K. Colorimetric assay of catalase. Anal. Biochem., 1972, 47(2), 389-394. doi: 10.1016/0003-2697(72)90132-7 PMID: 4556490
  28. Beutler, E.; Duron, O.; Kelly, B.M. Improved method for the determination of blood glutathione. J. Lab. Clin. Med., 1963, 61, 882-888. PMID: 13967893
  29. Desai, I.D. Vitamin E analysis methods for animal tissues. Methods Enzymol., 1984, 105, 138-147. doi: 10.1016/S0076-6879(84)05019-9 PMID: 6727662
  30. Palan, P.R.; Mikhail, M.S.; Basu, J.; Romney, S.L. Plasma levels of antioxidant β ‐carotene and α‐tocopherol in uterine cervix dysplasias and cancer. Nutr. Cancer, 1991, 15(1), 13-20. doi: 10.1080/01635589109514106 PMID: 2017395
  31. Rotruck, J.T.; Pope, A.L.; Ganther, H.E.; Swanson, A.B.; Hafeman, D.G.; Hoekstra, W.G. Selenium: Biochemical role as a component of glutathione peroxidase. Science, 1973, 179(4073), 588-590. doi: 10.1126/science.179.4073.588 PMID: 4686466
  32. Singh, R.K.; Kumar, S.; Prasad, D.N.; Bhardwaj, T.R. Therapeutic journery of nitrogen mustard as alkylating anticancer agents: Historic to future perspectives. Eur. J. Med. Chem., 2018, 151, 401-433. doi: 10.1016/j.ejmech.2018.04.001 PMID: 29649739
  33. Liu, L.; Chen, J.; Cai, X.; Yao, Z.; Huang, J. Progress in targeted therapeutic drugs for oral squamous cell carcinoma. Surg. Oncol., 2019, 31, 90-97. doi: 10.1016/j.suronc.2019.09.001 PMID: 31550560
  34. Mehta, S.; Sharma, A.K.; Singh, R.K. Pharmacological activities and molecular mechanisms of pure and crude extract of andrographis paniculata: An update. Phytomedicine Plus, 2021, 1(4), 100085.
  35. Ijaz, S.; Akhtar, N.; Khan, M.S.; Hameed, A.; Irfan, M.; Arshad, M.A.; Ali, S.; Asrar, M. Plant derived anticancer agents: A green approach towards skin cancers. Biomed. Pharmacother., 2018, 103, 1643-1651. doi: 10.1016/j.biopha.2018.04.113 PMID: 29864953
  36. Mehta, S; Sharma, AK; Singh, RK Ethnobotany, pharmacological activities and bioavailability studies on "King of Bitters" (Kalmegh): A Review (2010-2020). Comb. Chem. High Throughput Screen., 2022, 25(5), 788-807. doi: 10.2174/1386207324666210310140611
  37. Koirala, P.; Seong, S.; Zhou, Y.; Shrestha, S.; Jung, H.; Choi, J. structure–activity relationship of the tyrosinase inhibitors kuwanon g, Mulberrofuran G, and Albanol B from morus species: A kinetics and molecular docking study. Molecules, 2018, 23(6), 1413. doi: 10.3390/molecules23061413 PMID: 29891812
  38. Zhao, P.; Inoue, K.; Kouno, I.; Yamamoto, H. Characterization of leachianone G 2"-dimethylallyltransferase, a novel prenyl side-chain elongation enzyme for the formation of the lavandulyl group of sophoraflavanone G in Sophora flavescens Ait. cell suspension cultures. Plant Physiol., 2003, 133(3), 1306-1313. doi: 10.1104/pp.103.025213 PMID: 14551337
  39. Zeisel, S.H. Antioxidants suppress apoptosis. J. Nutr., 2004, 134(11), 3179S-3180S. doi: 10.1093/jn/134.11.3179S PMID: 15514296
  40. Møller, P.; Loft, S. Dietary antioxidants and beneficial effect on oxidatively damaged DNA. Free Radic. Biol. Med., 2006, 41(3), 388-415. doi: 10.1016/j.freeradbiomed.2006.04.001 PMID: 16843820
  41. Galadari, S.; Rahman, A.; Pallichankandy, S.; Thayyullathil, F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic. Biol. Med., 2017, 104, 144-164. doi: 10.1016/j.freeradbiomed.2017.01.004 PMID: 28088622
  42. Parrish, A.B.; Freel, C.D.; Kornbluth, S. Cellular mechanisms controlling caspase activation and function. Cold Spring Harb. Perspect. Biol., 2013, 5(6), a008672. doi: 10.1101/cshperspect.a008672 PMID: 23732469
  43. Roberti, A. Chaffey, L.E.; Greaves, D.R. NF-κB signaling and inflammation—drug repurposing to treat inflammatory disorders? Biology, 2022, 11(3), 372. doi: 10.3390/biology11030372 PMID: 35336746
  44. Liu, T. Zhang, L; Joo, D; Sun, SC NF-κB signaling in inflammation. Signal Transduct. Target. Ther., 2017, 2, 17023. doi: 10.1038/sigtrans.2017.23
  45. Tak, P.P. Firestein, G.S. NF-κB: A key role in inflammatory diseases. J. Clin. Invest., 2001, 107(1), 7-11. doi: 10.1172/JCI11830 PMID: 11134171
  46. Sehajpal, S.; Prasad, D.N.; Singh, R.K. Novel ketoprofen–antioxidants mutual codrugs as safer nonsteroidal anti‐inflammatory drugs: Synthesis, kinetic and pharmacological evaluation. Arch. Pharm., 2019, 352(7), 1800339. doi: 10.1002/ardp.201800339 PMID: 31231875
  47. Balakrishnan, V.; Ganapathy, S.; Veerasamy, V.; Duraisamy, R.; Sathiavakoo, V.A.; Krishnamoorthy, V.; Lakshmanan, V. Anticancer and antioxidant profiling effects of Nerolidol against DMBA induced oral experimental carcinogenesis. J. Biochem. Mol. Toxicol., 2022, 36(6), e23029. doi: 10.1002/jbt.23029 PMID: 35243731
  48. Gurpinar, E.; Grizzle, W.E.; Piazza, G.A. COX-independent mechanisms of cancer chemoprevention by anti-inflammatory drugs. Front. Oncol., 2013, 3, 181. doi: 10.3389/fonc.2013.00181 PMID: 23875171
  49. Greenhough, A.; Smartt, H.J.M.; Moore, A.E.; Roberts, H.R.; Williams, A.C.; Paraskeva, C.; Kaidi, A. The COX-2/PGE2 pathway: Key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis, 2009, 30(3), 377-386. doi: 10.1093/carcin/bgp014 PMID: 19136477

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024