Osteoblast Biospecific Extraction Conjugated with HPLC Analysis for Screening Bone Regeneration Active Components from Moutan Cortex
- Авторы: Yao F.1, Chen W.1, Gu W.1, Xu H.1, Hou W.1, Liang G.2, Zhang Zhu R.3, Jiang G.2, Zhang L.2
-
Учреждения:
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine,
- School of Medical Imaging, Xuzhou Medical University
- Выпуск: Том 27, № 6 (2024)
- Страницы: 834-844
- Раздел: Chemistry
- URL: https://kazanmedjournal.ru/1386-2073/article/view/644865
- DOI: https://doi.org/10.2174/1386207326666230607155913
- ID: 644865
Цитировать
Полный текст
Аннотация
Introduction:The function of promoting bone regeneration of Moutan Cortex (MC), a traditional Chinese medicine, has been widely known but, the effective components of MC in promoting osteoblast-mediated bone regeneration were still unclear.
Objective:The method of osteoblast membrane bio-specific extraction conjugated with HPLC analysis was established to screen bone regeneration active components from MC.
Methods:The fingerprints, washing eluate and desorption eluate of MC extract were analyzed by the established HPLC-DAD method. The established MC3T3-E1 cells membrane chromatography method was used for the bio-specific extraction of MC. The isolated compounds were identified by MS spectrometry. The effects and possible mechanisms of the isolated compounds were evaluated by molecular docking, ALP activity, cell viability by MTT Assay and proteins expression by Western Blot Analysis.
Results:The active compound responsible for bone regeneration from MC was isolated using the established method of osteoblast membrane bio-specific extraction conjugated with HPLC analysis, and it was identified as 1,2,3,4,6-penta-O-β-galloyl-D-glucose (PGG) by MS spectrometry. It was further demonstrated through molecular docking that PGG could fit well into the functional ALP, BMP2, and Samd1 binding pocket. The proliferation of osteoblasts was promoted, the level of ALP was increased, and the protein expression of BMP2 and Smad1 was increased as shown by further pharmacological verification.
Conclusion:It was concluded that PGG, the bone regeneration active compound from MC, could stimulate the proliferation of osteoblasts to promote osteoblast differentiation, and its mechanism might be related to the BMP/Smad1 pathway.
Об авторах
Fei Yao
Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine
Email: info@benthamscience.net
Wei Chen
Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine
Email: info@benthamscience.net
Weiwei Gu
Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine
Email: info@benthamscience.net
Heng Xu
Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine
Email: info@benthamscience.net
Wenyue Hou
Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine
Email: info@benthamscience.net
Guoqiang Liang
Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine,
Email: info@benthamscience.net
Ruixian Zhang Zhu
School of Medical Imaging, Xuzhou Medical University
Email: info@benthamscience.net
Guorong Jiang
Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine,
Email: info@benthamscience.net
Lurong Zhang
Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine,
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Chen, W.; Lv, H.; Liu, S.; Liu, B.; Zhu, Y.; Chen, X.; Yang, G.; Liu, L.; Zhang, T.; Wang, H.; Yin, B.; Guo, J.; Zhang, X.; Li, Y.; Smith, D.; Hu, P.; Sun, J.; Zhang, Y. National incidence of traumatic fractures in China: A retrospective survey of 512 187 individuals. Lancet Glob. Health, 2017, 5(8), e807-e817. doi: 10.1016/S2214-109X(17)30222-X PMID: 28666814
- Neagu, T.P. Ţigliş, M.; Cocoloş, I.; Jecan, C.R. The relationship between periosteum and fracture healing. Rom. J. Morphol. Embryol., 2016, 57(4), 1215-1220. PMID: 28174786
- Guo, T.; Xing, Y.; Chen, Z.; Wang, X.; Zhu, H.; Yang, L.; Yan, Y. Core-binding factor beta is required for osteoblast differentiation during fibula fracture healing. J. Orthop. Surg. Res., 2021, 16(1), 313. doi: 10.1186/s13018-021-02410-9 PMID: 33990210
- Einhorn, T.A.; Gerstenfeld, L.C. Fracture healing: Mechanisms and interventions. Nat. Rev. Rheumatol., 2015, 11(1), 45-54. doi: 10.1038/nrrheum.2014.164 PMID: 25266456
- An, J.; Yang, H.; Zhang, Q.; Liu, C.; Zhao, J.; Zhang, L.; Chen, B. Natural products for treatment of osteoporosis: The effects and mechanisms on promoting osteoblast-mediated bone formation. Life Sci., 2016, 147, 46-58. doi: 10.1016/j.lfs.2016.01.024 PMID: 26796578
- Tseng, C.Y.; Huang, C.W.; Huang, H.C.; Tseng, W.C. Utilization pattern of traditional chinese medicine among fracture patients: A Taiwan Hospital-Based Cross-Sectional Study. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-9. doi: 10.1155/2018/1706517 PMID: 30363858
- Mukwaya, E.; Xu, F.; Wong, M.S.; Zhang, Y. Chinese herbal medicine for bone health. Pharm. Biol., 2014, 52(9), 1223-1228. doi: 10.3109/13880209.2014.884606 PMID: 24963946
- Zhang, K.; Niu, L.C.; Yuan, F.J.; Liu, S.P. Research on promotory effect of traditional Chinese medicine on fracture healing in cell and molecular level. Zhongguo Gu Shang, 2017, 30(8), 777-782. doi: 10.3969/j.issn.1003-0034.2017.08.021 PMID: 29455515
- Lu, Y.; Liu, W.; Zhang, M.; Deng, Y.; Jiang, M.; Bai, G. The Screening Research of NF- κ B Inhibitors from Moutan Cortex Based on Bioactivity-Integrated UPLC-Q/TOF-MS. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-7. doi: 10.1155/2019/6150357 PMID: 30941197
- Xiao, C.; Wu, M.; Chen, Y.; Zhang, Y.; Zhao, X.; Zheng, X. Revealing metabolomic variations in Cortex Moutan from different root parts using HPLC-MS method. Phytochem. Anal., 2015, 26(1), 86-93. doi: 10.1002/pca.2539 PMID: 25230378
- Park, K.R.; Lee, J.Y.; Cho, M.; Hong, J.T.; Yun, H.M. Paeonolide as a Novel regulator of core-binding factor subunit Alpha-1 in bone-forming cells. Int. J. Mol. Sci., 2021, 22(9), 4924. doi: 10.3390/ijms22094924 PMID: 34066458
- Zheng, Z.G.; Duan, T.T.; He, B.; Tang, D.; Jia, X.B.; Wang, R.S.; Zhu, J.X.; Xu, Y.H.; Zhu, Q.; Feng, L. Macrophage biospecific extraction and HPLCESI-MSn analysis for screening immunological active components in Smilacis Glabrae Rhizoma. J. Pharm. Biomed. Anal., 2013, 77, 44-48. doi: 10.1016/j.jpba.2013.01.003 PMID: 23384550
- Yan, X.; Wang, S.; Yu, A.; Shen, X.; Zheng, H.; Wang, L. Cell Chromatography-Based screening of the active components in buyang huanwu decoction promoting axonal regeneration. BioMed Res. Int., 2019, 2019, 1-13. doi: 10.1155/2019/6970198 PMID: 31662991
- Zheng, Z.; Xu, Y.; Liu, F.; Zhao, T. wang, R.; Huang, P.; Wang, R.; Yang, A.; Zhu, Q. Screening bioactive components of Glycyrrhiza uralensis Fisch. with isolated perfused lung extraction and HPLC-ESI-MSn analysis. J. Pharm. Biomed. Anal., 2019, 169, 127-132. doi: 10.1016/j.jpba.2019.03.007 PMID: 30861404
- Hong, M.; Ma, H.Y.; Wu, X.R.; Hua, Y.Q.; Zhu, Q.; Fan, H.W. A method of hepatocyte extraction conjugated with HPLC is established for screening potential active components in Chinese medicines--probing Herba Artemisiae Scopariae as an exemplifying approach. Molecules, 2012, 17(2), 1468-1482. doi: 10.3390/molecules17021468 PMID: 22310168
- He, L.C.; Wang, S.C.; Yang, G.D.; Zhang, Y.M.; Wang, C.H.; Yuan, B.X.; Hou, X.F. Progress in cell membrane chromatography. Drug Discov. Ther., 2007, 1(2), 104-107. PMID: 22504395
- Zhang, L.; Zhao, B.J.; Yuan, J.R.; Wang, C.F.; Feng, L.; Jia, X.B. Comparison of chemical compositions in Moutan Cortex, Paeoniae Rubra Radix and Paeoniae Alba Radix based on "component structure" theory. Zhongguo Zhongyao Zazhi, 2016, 41(10), 1835-1842. doi: 10.4268/cjcmm20161012 PMID: 28895329
- Liu, Y.; Grimm, M.; Dai, W.; Hou, M.; Xiao, Z.X.; Cao, Y. CB-Dock: A web server for cavity detection-guided proteinligand blind docking. Acta Pharmacol. Sin., 2020, 41(1), 138-144. doi: 10.1038/s41401-019-0228-6 PMID: 31263275
- Cao, Y.; Li, L. Improved proteinligand binding affinity prediction by using a curvature-dependent surface-area model. Bioinformatics, 2014, 30(12), 1674-1680. doi: 10.1093/bioinformatics/btu104 PMID: 24563257
- Siller, A.F.; Whyte, M.P. Alkaline Phosphatase: Discovery and naming of our favorite enzyme. J. Bone Miner. Res., 2018, 33(2), 362-364. doi: 10.1002/jbmr.3225 PMID: 28727174
- Muljacić A.; Poljak-Guberina, R.; Zivković O.; Bilić V.; Guberina, M.; Crvenković D. Course and rate of post-fracture bone healing in correlation with bone-specific alkaline phosphatase and bone callus formation. Coll. Antropol., 2013, 37(4), 1275-1283. PMID: 24611345
- Lo, Y.C.; Chang, Y.H.; Wei, B.L.; Huang, Y.L.; Chiou, W.F. Betulinic acid stimulates the differentiation and mineralization of osteoblastic MC3T3-E1 cells: Involvement of BMP/Runx2 and beta-catenin signals. J. Agric. Food Chem., 2010, 58(11), 6643-6649. doi: 10.1021/jf904158k PMID: 20443623
- Sb, H.X.J.; Qh, Y.; Xr, Z.; Bb, Z.Kh.W.; Xy, S.; Yt, C.; Xr, R.; Jf, M.G.W.; Yh, P. The vicious circle between mitochondrial oxidative stress and dynamic abnormality mediates triethylene glycol dimethacrylate-induced preodontoblast apoptosis. Free Radic. Biol. Med., 2019, 134, 644-656. doi: 10.1016/j.freeradbiomed.2019.02.013 PMID: 30776408
- Peck, W.A.; Birge, S.J., Jr; Fedak, S.A. Bone cells: Biochemical and biological studies after enzymatic isolation. Science, 1964, 146(3650), 1476-1477. doi: 10.1126/science.146.3650.1476 PMID: 14208576
- Czekanska, E.M.; Stoddart, M.J.; Richards, R.G.; Hayes, J.S. In search of an osteoblast cell model for in vitro research. Eur. Cell. Mater., 2012, 24(4), 1-17. doi: 10.22203/eCM.v024a01 PMID: 22777949
- Ma, W.; Wang, C.; Liu, R.; Wang, N.; Lv, Y.; Dai, B.; He, L. Advances in cell membrane chromatography. J. Chromatogr. A, 2021, 1639, 461916. doi: 10.1016/j.chroma.2021.461916 PMID: 33548663
- Han, S.; Lv, Y.; Wei, F.; Fu, J.; Hu, Q.; Wang, S. Screening of bioactive components from traditional Chinese medicines using cell membrane chromatography coupled with mass spectrometry. Phytochem. Anal., 2018, 29(4), 341-350. doi: 10.1002/pca.2756 PMID: 29573482
- Muhammad, S.; Han, S.; Xie, X.; Wang, S.; Aziz, M.M. Overview of online two-dimensional liquid chromatography based on cell membrane chromatography for screening target components from traditional Chinese medicines. J. Sep. Sci., 2017, 40(1), 299-313. doi: 10.1002/jssc.201600773 PMID: 27506917
- Abe, Y.; Chiba, M.; Yaklai, S.; Pechayco, R.S.; Suzuki, H.; Takahashi, T. Increase in bone metabolic markers and circulating osteoblast-lineage cells after orthognathic surgery. Sci. Rep., 2019, 9(1), 20106. doi: 10.1038/s41598-019-56484-x PMID: 31882726
- Fennen, M.; Pap, T.; Dankbar, B. Smad-dependent mechanisms of inflammatory bone destruction. Arthritis Res. Ther., 2016, 18(1), 279. doi: 10.1186/s13075-016-1187-7 PMID: 27906049
- Corrado, A.; Maruotti, N.; Cantatore, F. Osteoblast role in Rheumatic Diseases. Int. J. Mol. Sci., 2017, 18(6), 1272. doi: 10.3390/ijms18061272 PMID: 28617323
- Chang, S.F.; Hsieh, R.Z.; Huang, K.C.; Chang, C.A.; Chiu, F.Y.; Kuo, H.C.; Chen, C.N.; Su, Y.P. Upregulation of bone morphogenetic protein-2 synthesis and consequent collagen II expression in leptin-stimulated human chondrocytes. PLoS One, 2015, 10(12), e0144252. doi: 10.1371/journal.pone.0144252 PMID: 26636769
- Zhao, B. TNF and Bone Remodeling. Curr. Osteoporos. Rep., 2017, 15(3), 126-134. doi: 10.1007/s11914-017-0358-z PMID: 28477234
- Aquino-Martínez, R.; Artigas, N.; Gámez, B.; Rosa, J.L.; Ventura, F. Extracellular calcium promotes bone formation from bone marrow mesenchymal stem cells by amplifying the effects of BMP-2 on SMAD signalling. PLoS One, 2017, 12(5), e0178158. doi: 10.1371/journal.pone.0178158 PMID: 28542453
- Wang, W.C.; Wang, C.; Song, X.Y.; Zhao, W.H.; Wang, Q. Determination of 1, 2, 3, 4, 6-penta-O-galloyl-D-glucose in forty four kinds of Chinese traditional medicines by HPLC. Zhongguo Zhongyao Zazhi, 2008, 33(6), 656-659. PMID: 18590194
- Xiang, Q.; Tang, J.; Luo, Q.; Xue, J.; Tao, Y.; Jiang, H.; Tian, J.; Fan, C. In vitro study of anti-ER positive breast cancer effect and mechanism of 1,2,3,4-6-pentyl-O-galloyl-beta-d-glucose (PGG). Biomed. Pharmacother., 2019, 111, 813-820. doi: 10.1016/j.biopha.2018.12.062 PMID: 30616080
- Kim, Y.H.; Yang, X.; Yamashita, S.; Kumazoe, M.; Huang, Y.; Nakahara, K.; Won, Y.S.; Murata, M.; Lin, I.C.; Tachibana, H. 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose increases a population of T regulatory cells and inhibits IgE production in ovalbumin-sensitized mice. Int. Immunopharmacol., 2015, 26(1), 30-36. doi: 10.1016/j.intimp.2015.02.025 PMID: 25737197
- Cryan, L.M.; Bazinet, L.; Habeshian, K.A.; Cao, S.; Clardy, J.; Christensen, K.A.; Rogers, M.S. 1,2,3,4,6-Penta-O-galloyl-β-D-glucopyranose inhibits angiogenesis via inhibition of capillary morphogenesis gene 2. J. Med. Chem., 2013, 56(5), 1940-1945. doi: 10.1021/jm301558t PMID: 23394144
- Hankenson, K.D.; Gagne, K.; Shaughnessy, M. Extracellular signaling molecules to promote fracture healing and bone regeneration. Adv. Drug Deliv. Rev., 2015, 94, 3-12. doi: 10.1016/j.addr.2015.09.008 PMID: 26428617
- Garg, P.; Mazur, M.M.; Buck, A.C.; Wandtke, M.E.; Liu, J.; Ebraheim, N.A. Prospective review of mesenchymal stem cells differentiation into Osteoblasts. Orthop. Surg., 2017, 9(1), 13-19. doi: 10.1111/os.12304 PMID: 28276640
Дополнительные файлы
