Recent Advances in Biologically Active Ingredients from Natural Drugs for Sepsis Treatment


Citar

Texto integral

Resumo

Sepsis refers to the dysregulated host response to infection; its incidence and mortality rates are high. It is a worldwide medical problem but there is no specific drug for it. In recent years, clinical and experimental studies have found that many monomer components of traditional Chinese medicine have certain effects on the treatment of sepsis. This paper reviews the advances in research on the active ingredients of traditional Chinese medicine involved in the treatment of sepsis in recent years according to their chemical structure; it could provide ideas and references for further research and development in Chinese materia medica for the treatment of sepsis.

Sobre autores

Zhenzhen Zheng

, Affiliated Zhongshan Hospital of Dalian University

Email: info@benthamscience.net

Xiayinan Song

Innovation Institute of Chinese Medicine and Pharmacy,, Shandong University of Traditional Chinese Medicine

Email: info@benthamscience.net

Yanmei Shi

Department of Cardiology,, Affiliated Hospital of Shandong University of Traditional Chinese Medicine

Email: info@benthamscience.net

Xiaofeng Long

, Affiliated Zhongshan Hospital of Dalian University

Email: info@benthamscience.net

Jie Li

Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine

Autor responsável pela correspondência
Email: info@benthamscience.net

Min Zhang

, Affiliated Zhongshan Hospital of Dalian University

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Martin, G.S.; Mannino, D.M.; Eaton, S.; Moss, M. The epidemiology of sepsis in the United States from 1979 through 2000. N. Engl. J. Med., 2003, 348(16), 1546-1554. doi: 10.1056/NEJMoa022139 PMID: 12700374
  2. Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; Hotchkiss, R.S.; Levy, M.M.; Marshall, J.C.; Martin, G.S.; Opal, S.M.; Rubenfeld, G.D.; van der Poll, T.; Vincent, J.L.; Angus, D.C. The third international consensus definitions for sepsis and septic shock (Sepsis-3) JAMA, 2016, 315(8), 801-810. doi: 10.1001/jama.2016.0287 PMID: 26903338
  3. Walkey, A.J.; Lagu, T.; Lindenauer, P.K. Reply: Trends in sepsis and infection sources in the United States. A population-based study. Ann. Am. Thorac. Soc., 2015, 12(5), 785. doi: 10.1513/AnnalsATS.201503-158LE PMID: 25965544
  4. Herrán-Monge, R.; Muriel-Bombín, A.; García-García, M.M.; Merino-García, P.A.; Martínez-Barrios, M.; Andaluz, D.; Ballesteros, J.C.; Domínguez-Berrot, A.M.; Moradillo-Gonzalez, S.; Macías, S.; Álvarez-Martínez, B.; Fernández-Calavia, M.J.; Tarancón, C.; Villar, J.; Blanco, J. Epidemiology and changes in mortality of sepsis after the implementation of surviving sepsis campaign guidelines. J. Intensive Care Med., 2019, 34(9), 740-750. doi: 10.1177/0885066617711882 PMID: 28651474
  5. Ming, J.; Zhuoneng, L.; Guangxun, Z. Protective role of flavonoid baicalin from Scutellaria baicalensis in periodontal disease pathogenesis: A literature review. Complement. Ther. Med., 2018, 38, 11-18. doi: 10.1016/j.ctim.2018.03.010 PMID: 29857875
  6. Dou, W.; Mukherjee, S.; Li, H.; Venkatesh, M.; Wang, H.; Kortagere, S.; Peleg, A.; Chilimuri, S.S.; Wang, Z.T.; Feng, Y.; Fearon, E.R.; Mani, S. Alleviation of gut inflammation by Cdx2/Pxr pathway in a mouse model of chemical colitis. PLoS One, 2012, 7(7), e36075. doi: 10.1371/journal.pone.0036075 PMID: 22815676
  7. Jingmin, O.; Xiping, Z.; Chun, W.; Ping, Y.; Qian, Y. Study of dexamethasone, baicalin and octreotide on brain injury of rats with severe acute pancreatitis. Inflamm. Res., 2012, 61(3), 265-275. doi: 10.1007/s00011-011-0408-4 PMID: 22166920
  8. Xiping, Z.; Guanghua, F.; Jinxian, H.; Weihong, W.; Rujun, X.; Wei, Z.; Jing, Y.; Qijun, Y.; Meijuan, Y.; Qing, W.; Lini, F. Baicalin protects thymus of rats with severe acute pancreatitis. Inflammation, 2010, 33(3), 157-165. doi: 10.1007/s10753-009-9169-4 PMID: 19953313
  9. Yu, Y.; Pei, M.; Li, L. Baicalin induces apoptosis in hepatic cancer cells in vitro and suppresses tumor growth in vivo. Int. J. Clin. Exp. Med., 2015, 8(6), 8958-8967. PMID: 26309548
  10. Kim, S.; Joo, Y.E. Theaflavin inhibits LPS-induced IL-6, MCP-1, and ICAM-1 expression in bone marrow-derived macrophages through the blockade of NF-κB and MAPK signaling pathways. Chonnam Med. J., 2011, 47(2), 104-110. doi: 10.4068/cmj.2011.47.2.104 PMID: 22111069
  11. Tam, I.; Stępień, K. Secretion of proinflammatory cytokines by normal human melanocytes in response to lipopolysaccharide. Acta Biochim. Pol., 2011, 58(4), 507-511. doi: 10.18388/abp.2011_2217 PMID: 22132371
  12. Zhang, Q.; Sun, J.; Wang, Y.; He, W.; Wang, L.; Zheng, Y.; Wu, J.; Zhang, Y.; Jiang, X. Antimycobacterial and anti-inflammatory mechanisms of baicalin via induced autophagy in macrophages infected with Mycobacterium tuberculosis. Front. Microbiol., 2017, 8, 2142. doi: 10.3389/fmicb.2017.02142 PMID: 29163427
  13. Feng, A.; Zhou, G.; Yuan, X.; Huang, X.; Zhang, Z.; Zhang, T. Inhibitory effect of baicalin on iNOS and NO expression in intestinal mucosa of rats with acute endotoxemia. PLoS One, 2013, 8(12), e80997. doi: 10.1371/journal.pone.0080997 PMID: 24312512
  14. Chen, C.; Zhang, C.; Cai, L.; Xie, H.; Hu, W.; Wang, T.; Lu, D.; Chen, H. Baicalin suppresses IL-1β-induced expression of inflammatory cytokines via blocking NF-κB in human osteoarthritis chondrocytes and shows protective effect in mice osteoarthritis models. Int. Immunopharmacol., 2017, 52, 218-226. doi: 10.1016/j.intimp.2017.09.017 PMID: 28942223
  15. Cheng, P.; Wang, T.; Li, W.; Muhammad, I.; Wang, H.; Sun, X.; Yang, Y.; Li, J.; Xiao, T.; Zhang, X. Baicalin alleviates lipopolysaccharide-induced liver inflammation in chicken by suppressing TLR4-mediated NF-κB pathway. Front. Pharmacol., 2017, 8, 547. doi: 10.3389/fphar.2017.00547 PMID: 28868036
  16. Zhu, J.; Wang, J.; Sheng, Y.; Zou, Y.; Bo, L.; Wang, F.; Lou, J.; Fan, X.; Bao, R.; Wu, Y.; Chen, F.; Deng, X.; Li, J. Baicalin improves survival in a murine model of polymicrobial sepsis via suppressing inflammatory response and lymphocyte apoptosis. PLoS One, 2012, 7(5), e35523. doi: 10.1371/journal.pone.0035523 PMID: 22590504
  17. Zhu, Y.; Fu, Y.; Lin, H. Baicalin inhibits renal cell apoptosis and protects against acute kidney injury in pediatric sepsis. Med. Sci. Monit., 2016, 22, 5109-5115.
  18. Lee, D.U.; Ko, Y.S.; Kim, H.J.; Chang, K.C. 13-Ethylberberine reduces HMGB1 release through AMPK activation in LPS-activated RAW264.7 cells and protects endotoxemic mice from organ damage. Biomed. Pharmacother., 2017, 86, 48-56. doi: 10.1016/j.biopha.2016.11.099 PMID: 27939519
  19. Murakami, Y.; Kawata, A.; Ito, S.; Katayama, T.; Fujisawa, S. Radical-scavenging and anti-inflammatory activity of quercetin and related compounds and their combinations against RAW264.7 Cells stimulated with porphyromonas gingivalis fimbriae. Relationships between anti-inflammatory activity and quantum chemical parameters. In vivo, 2015, 29(6), 701-710. PMID: 26546527
  20. Lin, J.; Gwyneth Tan, Y.X.; Leong, L.P.; Zhou, W. Steamed bread enriched with quercetin as an antiglycative food product: Its quality attributes and antioxidant properties. Food Funct., 2018, 9(6), 3398-3407. doi: 10.1039/C8FO00818C PMID: 29872802
  21. Wu, W.; Li, R.; Li, X.; He, J.; Jiang, S.; Liu, S.; Yang, J. Quercetin as an antiviral agent inhibits Influenza A Virus (IAV) entry. Viruses, 2015, 8(1), 6. doi: 10.3390/v8010006 PMID: 26712783
  22. Chang, H.C.; Yang, Y.R.; Wang, P.S.; Wang, R.Y. Quercetin enhances exercise-mediated neuroprotective effects in brain ischemic rats. Med. Sci. Sports Exerc., 2014, 46(10), 1908-1916. doi: 10.1249/MSS.0000000000000310 PMID: 24561812
  23. Chekalina, N.I.; Shut, S.V.; Trybrat, T.A.; Burmak, Y.H.; Petrov, Y.Y.; Manusha, Y.I.; Kazakov, Y.M. Effect of quercetin on parameters of central hemodynamics and myocardial ischemia in patients with stable coronary heart disease. Wiad. Lek., 2017, 70(4), 707-711. PMID: 29064791
  24. Calixto-Campos, C.; Corrêa, M.P.; Carvalho, T.T.; Zarpelon, A.C.; Hohmann, M.S.N.; Rossaneis, A.C.; Coelho-Silva, L.; Pavanelli, W.R.; Pinge-Filho, P.; Crespigio, J.; Bernardy, C.C.F.; Casagrande, R.; Verri, W.A., Jr Quercetin reduces Ehrlich tumor-induced cancer pain in mice. Anal. Cell. Pathol. (Amst.), 2015, 2015, 1-18. doi: 10.1155/2015/285708 PMID: 26351625
  25. Dajas, F.; Abin-Carriquiry, J.A.; Arredondo, F.; Blasina, F.; Echeverry, C.; Martínez, M.; Rivera, F.; Vaamonde, L. Quercetin in brain diseases: Potential and limits. Neurochem. Int., 2015, 89, 140-148. doi: 10.1016/j.neuint.2015.07.002 PMID: 26160469
  26. Chang, Y.C.; Tsai, M.H.; Sheu, W.H.H.; Hsieh, S.C.; Chiang, A.N. The therapeutic potential and mechanisms of action of quercetin in relation to lipopolysaccharide-induced sepsis in vitro and in vivo. PLoS One, 2013, 8(11), e80744. doi: 10.1371/journal.pone.0080744 PMID: 24260470
  27. Wei, X.; Meng, X.; Yuan, Y.; Shen, F.; Li, C.; Yang, J. Quercetin exerts cardiovascular protective effects in LPS-induced dysfunction in vivo by regulating inflammatory cytokine expression, NF-κB phosphorylation, and caspase activity. Mol. Cell. Biochem., 2018, 446(1-2), 43-52. doi: 10.1007/s11010-018-3271-6 PMID: 29322353
  28. Wang, L.; Chen, J.; Wang, B.; Wu, D.; Li, H.; Lu, H.; Wu, H.; Chai, Y. Protective effect of quercetin on lipopolysaccharide-induced acute lung injury in mice by inhibiting inflammatory cell influx. Exp. Biol. Med. (Maywood), 2014, 239(12), 1653-1662. doi: 10.1177/1535370214537743 PMID: 24912504
  29. Gerin, F.; Sener, U.; Erman, H.; Yilmaz, A.; Aydin, B.; Armutcu, F.; Gurel, A. The effects of quercetin on acute lung injury and biomarkers of inflammation and oxidative stress in the rat model of sepsis. Inflammation, 2016, 39, 700-705.
  30. Meng, L.; Lv, Z.; Yu, Z.Z.; Xu, D.; Yan, X. Protective effect of quercetin on acute lung injury in rats with sepsis and its influence on ICAM-1 and MIP-2 expression. Genet. Mol. Res., 2016, 15(3), 15. doi: 10.4238/gmr.15037265 PMID: 27525872
  31. Kim, B.C.; Kim, H.G.; Lee, S.A.; Lim, S.; Park, E.H.; Kim, S.J.; Lim, C.J. Genipin-induced apoptosis in hepatoma cells is mediated by reactive oxygen species/c-Jun NH2-terminal kinase-dependent activation of mitochondrial pathway. Biochem. Pharmacol., 2005, 70(9), 1398-1407. doi: 10.1016/j.bcp.2005.07.025 PMID: 16143311
  32. Hu, X.; Yu, D.; Zhuang, L.; Zhou, M.; Shi, Z.; Jin, G.; Zhang, X. Geniposide improves hepatic inflammation in diabetic db/db mice. Int. Immunopharmacol., 2018, 59, 141-147. doi: 10.1016/j.intimp.2018.03.035 PMID: 29655055
  33. Su, Q.; Yao, J.; Sheng, C. Geniposide Attenuates LPS-Induced Injury via Up-Regulation of miR-145 in H9c2 Cells. Inflammation, 2018, 41(4), 1229-1237. doi: 10.1007/s10753-018-0769-8 PMID: 29611016
  34. Wei, H.; Duan, G.; He, J.; Meng, Q.; Liu, Y.; Chen, W.; Meng, Y. Geniposide attenuates epilepsy symptoms in a mouse model through the PI3K/Akt/GSK-3β signaling pathway. Exp. Ther. Med., 2018, 15(1), 1136-1142. PMID: 29399113
  35. Koo, H.J.; Lee, S.; Shin, K.H.; Kim, B.C.; Lim, C.J.; Park, E.H. Geniposide, an anti-angiogenic compound from the fruits of Gardenia jasminoides. Planta Med., 2004, 70(5), 467-469. doi: 10.1055/s-2004-818978 PMID: 15124095
  36. Koo, H.J.; Lim, K.H.; Jung, H.J.; Park, E.H. Anti-inflammatory evaluation of gardenia extract, geniposide and genipin. J. Ethnopharmacol., 2006, 103(3), 496-500. doi: 10.1016/j.jep.2005.08.011 PMID: 16169698
  37. Koo, H.J.; Song, Y.S.; Kim, H.J.; Lee, Y.H.; Hong, S.M.; Kim, S.J.; Kim, B.C.; Jin, C.; Lim, C.J.; Park, E.H. Antiinflammatory effects of genipin, an active principle of gardenia. Eur. J. Pharmacol., 2004, 495(2-3), 201-208. doi: 10.1016/j.ejphar.2004.05.031 PMID: 15249171
  38. Zheng, X.; Yang, D.; Liu, X.; Wang, N.; Li, B.; Cao, H.; Lu, Y.; Wei, G.; Zhou, H.; Zheng, J. Identification of a new anti-LPS agent, geniposide, from Gardenia jasminoides Ellis, and its ability of direct binding and neutralization of lipopolysaccharide in vitro and in vivo. Int. Immunopharmacol., 2010, 10(10), 1209-1219. doi: 10.1016/j.intimp.2010.07.001 PMID: 20655404
  39. Cho, H.I.; Kim, S.J.; Choi, J.W.; Lee, S.M. Genipin alleviates sepsis-induced liver injury by restoring autophagy. Br. J. Pharmacol., 2016, 173(6), 980-991. doi: 10.1111/bph.13397 PMID: 26660048
  40. Kim, T.H.; Yoon, S.J.; Lee, S.M. Genipin attenuates sepsis by inhibiting Toll-like receptor signaling. Mol. Med., 2012, 18(3), 455-465. doi: 10.2119/molmed.2011.00308 PMID: 22252713
  41. Hsu, F.L.; Lai, C.W.; Cheng, J.T. Antihyperglycemic effects of paeoniflorin and 8-debenzoylpaeoniflorin, glucosides from the root of Paeonia lactiflora. Planta Med., 1997, 63(4), 323-325. doi: 10.1055/s-2006-957692 PMID: 9270377
  42. Zheng, Y.Q.; Wei, W.; Zhu, L.; Liu, J.X. Effects and mechanisms of Paeoniflorin, a bioactive glucoside from paeony root, on adjuvant arthritis in rats. Inflamm. Res., 2007, 56(5), 182-188. doi: 10.1007/s00011-006-6002-5 PMID: 17588133
  43. Zuo, Z.Y.; Zhan, S.Y.; Huang, X.; Ding, B.Y.; Liu, Y.Q.; Ruan, Y.E.; Jiang, N.H. Research progress of pharmacokinetics and pharmacodynamics of total glucosides of peony in hepatoprotective effects. Zhongguo Zhongyao Zazhi, 2017, 42(20), 3860-3865. PMID: 29243418
  44. Liu, J.; Jin, D.Z.; Xiao, L.; Zhu, X.Z. Paeoniflorin attenuates chronic cerebral hypoperfusion-induced learning dysfunction and brain damage in rats. Brain Res., 2006, 1089(1), 162-170. doi: 10.1016/j.brainres.2006.02.115 PMID: 16678139
  45. Wu, H.; Li, W.; Wang, T.; Shu, Y.; Liu, P. Paeoniflorin suppress NF-κB activation through modulation of IκBα and enhances 5-fluorouracil-induced apoptosis in human gastric carcinoma cells. Biomed. Pharmacother., 2008, 62(9), 659-666. doi: 10.1016/j.biopha.2008.08.002 PMID: 18809274
  46. Jiang, W.L.; Chen, X.G.; Zhu, H.B.; Gao, Y.B.; Tian, J.W.; Fu, F.H. Paeoniflorin inhibits systemic inflammation and improves survival in experimental sepsis. Basic Clin. Pharmacol. Toxicol., 2009, 105(1), 64-71. doi: 10.1111/j.1742-7843.2009.00415.x PMID: 19371254
  47. Zhai, J.; Guo, Y. Paeoniflorin attenuates cardiac dysfunction in endotoxemic mice via the inhibition of nuclear factor-κ. B. Biomed. Pharmacother., 2016, 80, 200-206. doi: 10.1016/j.biopha.2016.03.032 PMID: 27133057
  48. Zhang, Q.; Zhou, J.; Huang, M.; Bi, L.; Zhou, S. Experimental immunology Paeoniflorin reduced BLP-induced inflammatory response by inhibiting the NF-κB signal transduction in pathway THP-1 cells. Cent. Eur. J. Immunol., 2014, 4(4), 461-467. doi: 10.5114/ceji.2014.47729 PMID: 26155163
  49. Cao, W.; Zhang, W.; Liu, J.; Wang, Y.; Peng, X.; Lu, D.; Qi, R.; Wang, Y.; Wang, H. Paeoniflorin improves survival in LPS-challenged mice through the suppression of TNF-α and IL-1β release and augmentation of IL-10 production. Int. Immunopharmacol., 2011, 11(2), 172-178. doi: 10.1016/j.intimp.2010.11.012 PMID: 21094290
  50. Liu, X.R.; Xu, J.; Wang, Y.M.; Ji, M.S.; Liu, F.S. The effects of paeoniflorin injection on soluble triggering receptor expressed on myeloid-1 (sTREM-1) levels in severe septic rats. Korean J. Physiol. Pharmacol., 2016, 20(6), 565-571. doi: 10.4196/kjpp.2016.20.6.565 PMID: 27847433
  51. Hu, Y.; Ehli, E.A.; Kittelsrud, J.; Ronan, P.J.; Munger, K.; Downey, T.; Bohlen, K.; Callahan, L.; Munson, V.; Jahnke, M.; Marshall, L.L.; Nelson, K.; Huizenga, P.; Hansen, R.; Soundy, T.J.; Davies, G.E. Lipid-lowering effect of berberine in human subjects and rats. Phytomedicine, 2012, 19(10), 861-867. doi: 10.1016/j.phymed.2012.05.009 PMID: 22739410
  52. Lee, C.H.; Chen, J.C.; Hsiang, C.Y.; Wu, S.L.; Wu, H.C.; Ho, T.Y. Berberine suppresses inflammatory agents-induced interleukin-1β and tumor necrosis factor-α productions via the inhibition of IκB degradation in human lung cells. Pharmacol. Res., 2007, 56(3), 193-201. doi: 10.1016/j.phrs.2007.06.003 PMID: 17681786
  53. He, Y.; Yuan, X.; Zuo, H.; Sun, Y.; Feng, A. Berberine exerts a protective effect on gut-vascular barrier via the modulation of the wnt/beta-catenin signaling pathway during sepsis. Cell. Physiol. Biochem., 2018, 49(4), 1342-1351. doi: 10.1159/000493412 PMID: 30205381
  54. He, Y.; Yuan, X.; Zhou, G.; Feng, A. Activation of IGF-1/IGFBP-3 signaling by berberine improves intestinal mucosal barrier of rats with acute endotoxemia. Fitoterapia, 2018, 124, 200-205. doi: 10.1016/j.fitote.2017.11.012 PMID: 29154866
  55. Li, G.; Wang, X.; Jiang, T.; Gong, J.; Niu, L.; Li, N. Berberine prevents intestinal mucosal barrier damage during early phase of sepsis in rat through the toll-like receptors signaling pathway. Korean J. Physiol. Pharmacol., 2015, 19(1), 1-7. doi: 10.4196/kjpp.2015.19.1.1 PMID: 25605990
  56. Li, G.; Wang, X.; Jiang, T.; Gong, J.; Niu, L.; Li, N. Berberine prevents damage to the intestinal mucosal barrier during early phase of sepsis in rat through mechanisms independent of the NOD-like receptors signaling pathway. Eur. J. Pharmacol., 2014, 730, 1-7. doi: 10.1016/j.ejphar.2014.02.006 PMID: 24530556
  57. Li, H.; Wang, Y.; Wang, H.; Cao, W.; Yu, X.; Lu, D.; Qi, R.; Hu, C.; Yan, Y. Berberine protects against lipopolysaccharide-induced intestinal injury in mice via alpha 2 adrenoceptor-independent mechanisms. Acta Pharmacol. Sin., 2011, 32(11), 1364-1372. doi: 10.1038/aps.2011.102 PMID: 21963898
  58. Gao, M.; Chen, L.; Yang, L.; Yu, X.; Kou, J.; Yu, B. Berberine inhibits LPS-induced TF procoagulant activity and expression through NF-κB/p65, Akt and MAPK pathway in THP-1 cells. Pharmacol. Rep., 2014, 66(3), 480-484. doi: 10.1016/j.pharep.2013.12.004 PMID: 24905527
  59. Feng, A.W.; Gao, W.; Zhou, G.R.; Yu, R.; Li, N.; Huang, X.L.; Li, Q.R.; Li, J.S. Berberine ameliorates COX-2 expression in rat small intestinal mucosa partially through PPARγ pathway during acute endotoxemia. Int. Immunopharmacol., 2012, 12(1), 182-188. doi: 10.1016/j.intimp.2011.11.009 PMID: 22155099
  60. Feng, A.W.; Yu, C.; Mao, Q.; Li, N.; Li, Q.R.; Li, J.S. Berberine hydrochloride attenuates cyclooxygenase-2 expression in rat small intestinal mucosa during acute endotoxemia. Fitoterapia, 2011, 82(7), 976-982. doi: 10.1016/j.fitote.2011.05.013 PMID: 21641970
  61. Zhang, H.; Wang, H.; Lu, D.; Qi, R.; Wang, Y.; Yan, Y.; Fu, Y. Berberine inhibits cytosolic phospholipase a2 and protects against LPS-induced lung injury and lethality independent of the α2-adrenergic receptor in mice. Shock, 2008, 29(5), 617-622. doi: 10.1097/SHK.0b013e318157ea14 PMID: 18414236
  62. Zhang, M.; Wang, X.; Bai, B.; Zhang, R.; Li, Y.; Wang, Y. Oxymatrine protects against sepsis-induced myocardial injury via inhibition of the TNF-α/p38-MAPK/caspase-3 signaling pathway. Mol. Med. Rep., 2016, 14(1), 551-559. doi: 10.3892/mmr.2016.5250 PMID: 27177246
  63. Zhang, M.H.; Li, G.Z.; Xu, H.; Zhang, J.; Cao, J. Effect of oxymatrine on NF-kappaB and other cell factors in rats lung tissue with septic shock. Zhongguo Zhongyao Zazhi, 2008, 33(20), 2390-2394. PMID: 19157136
  64. Wang, X.Y.; Zhang, M.H.; Yang, M.L.; Jiang, Y.D.; Li, G.Z.; Yang, X.L.; Xu, H.; Cao, J. Effect of oxymatrine on JAK2/STAT3 signaling in renal tissues of rats with septic shock. Zhongguo Zhongyao Zazhi, 2013, 38(16), 2696-2700. PMID: 24228589
  65. Zhang, M.; Wang, X.; Wang, X.; Hou, X.; Teng, P.; Jiang, Y.; Zhang, L.; Yang, X.; Tian, J.; Li, G.; Cao, J.; Xu, H.; Li, Y.; Wang, Y. Oxymatrine protects against myocardial injury via inhibition of JAK2/STAT3 signaling in rat septic shock. Mol. Med. Rep., 2013, 7(4), 1293-1299. doi: 10.3892/mmr.2013.1315 PMID: 23404057
  66. Zhang, M.; Li, G.; Cao, J. Effect of oxymatrine on JAK/STAT iteral in rat lung tissue with sepsis. Zhongguo Zhongyao Zazhi, 2010, 35(1), 103-107. PMID: 20349727
  67. Xu, Q.; Xia, P.; Li, X.; Wang, W.; Liu, Z.; Gao, X. Tetramethylpyrazine ameliorates high glucose-induced endothelial dysfunction by increasing mitochondrial biogenesis. PLoS One, 2014, 9(2), e88243. doi: 10.1371/journal.pone.0088243 PMID: 24505445
  68. Yu, B.; Ruan, M.; Liang, T.; Huang, S.W.; Liu, S.J.; Cheng, H.B.; Shen, X.C. Tetramethylpyrazine phosphate and borneol combination therapy synergistically attenuated ischemia-reperfusion injury of the hypothalamus and striatum via regulation of apoptosis and autophagy in a rat model. Am. J. Transl. Res., 2017, 9(11), 4807-4820. PMID: 29218081
  69. Shao, Z.; Wang, L.; Liu, S.; Wang, X. Tetramethylpyrazine protects neurons from oxygen-glucose deprivation-induced death. Med. Sci. Monit., 2017, 23, 5277-5282. doi: 10.12659/MSM.904554 PMID: 29104282
  70. Sheng, Y.; Wang, J.; Tao, X.; Zhang, L.; Fang, X.; Ni, H.; Li, W. Study on the protective effect of ligustrazine on the transporting function of hepatocellular mitochondria membrane in the septic rats. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2018, 30(10), 996-1000. PMID: 30439325
  71. Wang, J.; Zhang, L.; Tao, X.; Wei, L.; Liu, B.; Huang, L.; Chen, Y. Tetramethylpyrazine upregulates the aquaporin 8 expression of hepatocellular mitochondria in septic rats. J. Surg. Res., 2013, 185(1), 286-293. doi: 10.1016/j.jss.2013.05.106 PMID: 23830368
  72. Liu, W.; Liu, K.; Zhang, S.; Shan, L.; Tang, J. Tetramethylpyrazine showed therapeutic effects on sepsis-induced acute lung injury in rats by inhibiting endoplasmic reticulum stress Protein Kinase RNA-Like Endoplasmic Reticulum Kinase (PERK) signaling-induced apoptosis of pulmonary microvascular endothelial cells. Med. Sci. Monit., 2018, 24, 1225-1231. doi: 10.12659/MSM.908616 PMID: 29488473
  73. Wang, H.; Chen, Y.; Li, W.; Li, C.; Zhang, X.; Peng, H.; Gao, C. Ligustrazine effect on lipopolysaccharide-induced pulmonary damage in rats. Burns, 2015, 41(6), 1235-1241. doi: 10.1016/j.burns.2015.02.010 PMID: 26088147
  74. Hou, Y.C.; Wu, J.M.; Wang, M.Y.; Wu, M.H.; Chen, K.Y.; Yeh, S.L.; Lin, M.T. Modulatory effects of Astragalus polysaccharides on T-Cell polarization in mice with polymicrobial sepsis. Mediators Inflamm., 2015, 2015, 1-10. doi: 10.1155/2015/826319 PMID: 26693207
  75. Liu, Q.; Yao, Y.; Yu, Y.; Dong, N.; Sheng, Z. Astragalus polysaccharides attenuate postburn sepsis via inhibiting negative immunoregulation of CD4+ CD25(high) T cells. PLoS One, 2011, 6(6), e19811. doi: 10.1371/journal.pone.0019811 PMID: 21698274
  76. Pari, L.; Tewas, D.; Eckel, J. Role of curcumin in health and disease. Arch. Physiol. Biochem., 2008, 114(2), 127-149. doi: 10.1080/13813450802033958 PMID: 18484280
  77. Zhong, W.; Qian, K.; Xiong, J.; Ma, K.; Wang, A.; Zou, Y. Curcumin alleviates lipopolysaccharide induced sepsis and liver failure by suppression of oxidative stress-related inflammation via PI3K/AKT and NF-κB related signaling. Biomed. Pharmacother., 2016, 83, 302-313. doi: 10.1016/j.biopha.2016.06.036 PMID: 27393927
  78. Liu, Y.F.; Yang, C.W.; Liu, H.; Sui, S.G.; Li, X.D. Efficacy and therapeutic potential of curcumin against sepsis-induced chronic lung injury in male albino rats. J. Nutr. Health Aging, 2017, 21(3), 307-313. doi: 10.1007/s12603-016-0722-1 PMID: 28244571
  79. Poylin, V.; Fareed, M.U.; O’Neal, P.; Alamdari, N.; Reilly, N.; Menconi, M.; Hasselgren, P.O. The NF-kappaB inhibitor curcumin blocks sepsis-induced muscle proteolysis. Mediators Inflamm., 2008, 2008, 1-13. doi: 10.1155/2008/317851 PMID: 18389075
  80. Wu, Y.; Liu, Z.; Wu, W.; Lin, S.; Zhang, N.; Wang, H.; Tan, S.; Lin, P.; Chen, X.; Wu, L.; Xu, J. Effects of FM0807, a novel curcumin derivative, on lipopolysaccharide-induced inflammatory factor release via the ROS/JNK/p53 pathway in RAW264.7 cells. Biosci. Rep., 2018, 38(5), BSR20180849. doi: 10.1042/BSR20180849 PMID: 30249753
  81. Ma, F.; Liu, F.; Ding, L.; You, M.; Yue, H.; Zhou, Y.; Hou, Y. Anti-inflammatory effects of curcumin are associated with down regulating microRNA-155 in LPS-treated macrophages and mice. Pharm. Biol., 2017, 55(1), 1263-1273. doi: 10.1080/13880209.2017.1297838 PMID: 28264607
  82. Silva, L.S.; Catalão, C.H.R.; Felippotti, T.T.; Oliveira- Pelegrin, G.R.; Petenusci, S.; de Freitas, L.A.P.; Rocha, M.J.A. Curcumin suppresses inflammatory cytokines and heat shock protein 70 release and improves metabolic parameters during experimental sepsis. Pharm. Biol., 2017, 55(1), 269-276. doi: 10.1080/13880209.2016.1260598 PMID: 27927067
  83. Gong, Z.; Zhou, J.; Li, H.; Gao, Y.; Xu, C.; Zhao, S.; Chen, Y.; Cai, W.; Wu, J. Curcumin suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock. Mol. Nutr. Food Res., 2015, 59(11), 2132-2142. doi: 10.1002/mnfr.201500316 PMID: 26250869
  84. Wang, J.; Wang, H.; Zhu, R.; Liu, Q.; Fei, J.; Wang, S. Anti-inflammatory activity of curcumin-loaded solid lipid nanoparticles in IL-1β transgenic mice subjected to the lipopolysaccharide-induced sepsis. Biomaterials, 2015, 53, 475-483. doi: 10.1016/j.biomaterials.2015.02.116 PMID: 25890744
  85. Lu, W.; Jiang, J.P.; Hu, J.; Wang, J.; Zheng, M.Z. Curcumin protects against lipopolysaccharide-induced vasoconstriction dysfunction via inhibition of thrombospondin-1 and transforming growth factor-β1. Exp. Ther. Med., 2015, 9(2), 377-383. doi: 10.3892/etm.2014.2105 PMID: 25574201
  86. Xu, F.; Lin, S.; Yang, Y.; Guo, R.; Cao, J.; Liu, Q. The effect of curcumin on sepsis-induced acute lung injury in a rat model through the inhibition of the TGF-β1/SMAD3 pathway. Int. Immunopharmacol., 2013, 16(1), 1-6. doi: 10.1016/j.intimp.2013.03.014 PMID: 23541743
  87. Tao, P.; Yin, H.; Ma, Y. Study of the mechanisms of curcumin on mitochondrial permeability transition of hepatocytes in rats with sepsis. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2014, 26(9), 666-670. PMID: 25230870
  88. Ahn, M.Y.; Hwang, J.S.; Lee, S.B.; Ham, S.A.; Hur, J.; Kim, J.T.; Seo, H.G. Curcumin longa extract-loaded nanoemulsion improves the survival of endotoxemic mice by inhibiting nitric oxide-dependent HMGB1 release. PeerJ, 2017, 5, e3808. doi: 10.7717/peerj.3808 PMID: 28929026
  89. Ni, X.J.; Xu, Z.Q.; Jin, H.; Zheng, S.L.; Cai, Y.; Wang, J.J. Ginsenoside Rg1 protects human renal tubular epithelial cells from lipopolysaccharide-induced apoptosis and inflammation damage. Braz. J. Med. Biol. Res., 2018, 51(2), e6611. doi: 10.1590/1414-431x20176611 PMID: 29267498
  90. Bao, S.; Zou, Y.; Wang, B.; Li, Y.; Zhu, J.; Luo, Y.; Li, J. Ginsenoside Rg1 improves lipopolysaccharide-induced acute lung injury by inhibiting inflammatory responses and modulating infiltration of M2 macrophages. Int. Immunopharmacol., 2015, 28(1), 429-434. doi: 10.1016/j.intimp.2015.06.022 PMID: 26122136
  91. Ji, Q.J.; Sun, Z.R.; Yang, Z.Z.; Zhang, W.; Ren, Y.; Cao, L.P.; Li, L.; Nie, S.N. Effects of Rg_1 on LPS-induced apoptosis and autophagy of lung epithelial cells. Zhongguo Zhongyao Zazhi, 2019, 44(8), 1648-1653. PMID: 31090330
  92. Zhang, Y.; Sun, K.; Liu, Y.Y.; Zhang, Y.P.; Hu, B.H.; Chang, X.; Yan, L.; Pan, C.S.; Li, Q.; Fan, J.Y.; He, K.; Mao, X.W.; Tu, L.; Wang, C.S.; Han, J.Y. Ginsenoside Rb1 ameliorates lipopolysaccharide-induced albumin leakage from rat mesenteric venules by intervening in both trans- and paracellular pathway. Am. J. Physiol. Gastrointest. Liver Physiol., 2014, 306(4), G289-G300. doi: 10.1152/ajpgi.00168.2013 PMID: 24356882
  93. Wang, Q.L.; Yang, L.; Peng, Y.; Gao, M.; Yang, M.S.; Xing, W.; Xiao, X.Z. Ginsenoside Rg1 regulates SIRT1 to ameliorate sepsis-induced lung inflammation and injury via inhibiting endoplasmic reticulum stress and inflammation. Mediators Inflamm., 2019, 2019, 1-10. doi: 10.1155/2019/6453296 PMID: 30918470
  94. Wu, L.L.; Jia, B.H.; Sun, J.; Chen, J.X.; Liu, Z.Y.; Liu, Y. Protective effects of ginsenoside Rb1 on septic rats and its mechanism. Biomed. Environ. Sci., 2014, 27(4), 300-303. PMID: 24758759
  95. Xing, W.; Yang, L.; Peng, Y.; Wang, Q.; Gao, M.; Yang, M.; Xiao, X. Ginsenoside Rg3 attenuates sepsis-induced injury and mitochondrial dysfunction in liver via AMPK-mediated autophagy flux. Biosci. Rep., 2017, 37(4), BSR20170934. doi: 10.1042/BSR20170934 PMID: 28779013
  96. Lee, W.; Cho, S.H.; Kim, J.E.; Lee, C.; Lee, J.H.; Baek, M.C.; Song, G.Y.; Bae, J.S. Suppressive effects of ginsenoside Rh1 on HMGB1-mediated septic responses. Am. J. Chin. Med., 2019, 47(1), 119-133. doi: 10.1142/S0192415X1950006X PMID: 30630344
  97. Kim, J.E.; Lee, W.; Yang, S.; Cho, S.H.; Baek, M.C.; Song, G.Y.; Bae, J.S. Suppressive effects of rare ginsenosides, Rk1 and Rg5, on HMGB1-mediated septic responses. Food Chem. Toxicol., 2019, 124, 45-53. doi: 10.1016/j.fct.2018.11.057 PMID: 30496780
  98. He, D.; Lee, L.; Yang, J.; Wang, X. Preventive effects and mechanisms of rhein on renal interstitial fibrosis in obstructive nephropathy. Biol. Pharm. Bull., 2011, 34(8), 1219-1226. doi: 10.1248/bpb.34.1219 PMID: 21804209
  99. Yu, C.; Qi, D.; Sun, J.F.; Li, P.; Fan, H.Y. Rhein prevents endotoxin-induced acute kidney injury by inhibiting NF-κB activities. Sci. Rep., 2015, 5(1), 11822. doi: 10.1038/srep11822 PMID: 26149595
  100. Li, H.; Yang, T.; Zhou, H.; Du, J.; Zhu, B.; Sun, Z. Emodin combined with nanosilver inhibited sepsis by anti-inflammatory protection. Front. Pharmacol., 2017, 7, 536. doi: 10.3389/fphar.2016.00536 PMID: 28119611
  101. Zhu, T.; Zhang, W.; Feng, S.; Yu, H. Emodin suppresses LPS-induced inflammation in RAW264.7 cells through a PPARγ-dependent pathway. Int. Immunopharmacol., 2016, 34, 16-24. doi: 10.1016/j.intimp.2016.02.014 PMID: 26910236
  102. Zhang, K.; Jiao, X.F.; Li, J.X.; Wang, X.W. Rhein inhibits lipopolysaccharide-induced intestinal injury during sepsis by blocking the toll-like receptor 4 nuclear factor-κB pathway. Mol. Med. Rep., 2015, 12(3), 4415-4421. doi: 10.3892/mmr.2015.3925 PMID: 26081522
  103. Li, A.; Dong, L.; Duan, M.L.; Sun, K.; Liu, Y.Y.; Wang, M.X.; Deng, J.N.; Fan, J.Y.; Wang, B.E.; Han, J.Y. Emodin improves lipopolysaccharide-induced microcirculatory disturbance in rat mesentery. Microcirculation, 2013, 20(7), 617-628. doi: 10.1111/micc.12061 PMID: 23551520
  104. Meng, G.; Liu, Y.; Lou, C.; Yang, H. Emodin suppresses lipopolysaccharide-induced pro-inflammatory responses and NF-κB activation by disrupting lipid rafts in CD14-negative endothelial cells. Br. J. Pharmacol., 2010, 161(7), 1628-1644. doi: 10.1111/j.1476-5381.2010.00993.x PMID: 20726986
  105. Lee, G.; Choi, T.W.; Kim, C.; Nam, D.; Lee, S.G.; Jang, H.J.; Lee, J.H.; Um, J.Y.; Jung, S.H.; Shim, B.S.; Ahn, K.S.; Ahn, K.S. Anti-inflammatory activities of Reynoutria elliptica through suppression of mitogen-activated protein kinases and nuclear factor-κB activation pathways. Immunopharmacol. Immunotoxicol., 2012, 34(3), 454-464. doi: 10.3109/08923973.2011.619195 PMID: 21961440
  106. Yanni, S.; Lijing, S.; Shuqing, L.; Juan, S.; Jiejing, C.; Jun, L. Effect of emodin on Aquaporin 5 expression in rats with sepsis-induced acute lung injury. J. Tradit. Chin. Med., 2015, 35(6), 679-684. doi: 10.1016/S0254-6272(15)30159-X PMID: 26742314
  107. Yin, J.T.; Wan, B.; Liu, D.D.; Wan, S.X.; Fu, H.Y.; Wan, Y.; Zhang, H.; Chen, Y. Emodin alleviates lung injury in rats with sepsis. J. Surg. Res., 2016, 202(2), 308-314. doi: 10.1016/j.jss.2015.12.049 PMID: 27229105
  108. Chen, Y.; Xu, Y.; Zhang, H.; Yin, J.; Fan, X.; Liu, D.; Fu, H.; Wan, B. Emodin alleviates jejunum injury in rats with sepsis by inhibiting inflammation response. Biomed. Pharmacother., 2016, 84, 1001-1007. doi: 10.1016/j.biopha.2016.10.031 PMID: 27768925
  109. Perner, A.; Cecconi, M.; Cronhjort, M.; Darmon, M.; Jakob, S.M.; Pettilä, V.; van der Horst, I.C.C. Expert statement for the management of hypovolemia in sepsis. Intensive Care Med., 2018, 44(6), 791-798. doi: 10.1007/s00134-018-5177-x PMID: 29696295
  110. Prescott, H.C.; Angus, D.C. Postsepsis morbidity. JAMA, 2018, 319(1), 91. doi: 10.1001/jama.2017.19809 PMID: 29297079
  111. Reinhart, K.; Daniels, R.; Kissoon, N.; Machado, F.R.; Schachter, R.D.; Finfer, S. Recognizing sepsis as a global health priority-A WHO resolution. N. Engl. J. Med., 2017, 377(5), 414-417. doi: 10.1056/NEJMp1707170 PMID: 28658587
  112. Kupetz, M.; Sacher, B.; Becker, T. Impact of flavouring substances on the aggregation behaviour of dissolved barley β-glucans in a model beer. Carbohydr. Polym., 2016, 143, 204-211. doi: 10.1016/j.carbpol.2016.01.070 PMID: 27083361
  113. Li, A.; Li, J.; Bao, Y.; Yuan, D.; Huang, Z. Xuebijing injection alleviates cytokine-induced inflammatory liver injury in CLP-induced septic rats through induction of suppressor of cytokine signaling 1. Exp. Ther. Med., 2016, 12(3), 1531-1536. doi: 10.3892/etm.2016.3476 PMID: 27602076
  114. Jiang, M.; Zhou, M.; Han, Y.; Xing, L.; Zhao, H.; Dong, L.; Bai, G.; Luo, G. Identification of NF-κB Inhibitors in Xuebijing injection for sepsis treatment based on bioactivity-integrated UPLC-Q/TOF. J. Ethnopharmacol., 2013, 147(2), 426-433. doi: 10.1016/j.jep.2013.03.032 PMID: 23524166
  115. Yang, Q.X.; Lyu, H.J.; Wang, X.B.; Jiang, L.; Zeng, N. Molecular mechanism of cinnamomi ramulus-paeoniae radix alba drug pair against sepsis based on integrative pharmacology platform of traditional Chinese medicine. Zhongguo Zhongyao Zazhi, 2019, 44(13), 2691-2700. PMID: 31359679
  116. Giza, D.E.; Fuentes-Mattei, E.; Bullock, M.D.; Tudor, S.; Goblirsch, M.J.; Fabbri, M.; Lupu, F.; Yeung, S.C.J.; Vasilescu, C.; Calin, G.A. Cellular and viral microRNAs in sepsis: Mechanisms of action and clinical applications. Cell Death Differ., 2016, 23(12), 1906-1918. doi: 10.1038/cdd.2016.94 PMID: 27740627

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024