Vicatia thibetica de Boiss: Botany, Traditional Uses, Phytochemistry, Quantitative Analysis, and Pharmacology

  • Authors: Wang Q.1, He N.2, Qiu Y.2, Jiang W.2, Zhong G.2, Sang Z.3, Ma Q.1, Wei R.2
  • Affiliations:
    1. Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education,, Jiangxi University of Traditional Chinese Medicine
    2. Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Jiangxi University of Traditional Chinese Medicine
    3. College of Chemistry and Pharmaceutical Engineering,, Nanyang Normal University
  • Issue: Vol 27, No 5 (2024)
  • Pages: 679-687
  • Section: Chemistry
  • URL: https://kazanmedjournal.ru/1386-2073/article/view/644801
  • DOI: https://doi.org/10.2174/1386207326666230531144220
  • ID: 644801

Cite item

Full Text

Abstract

Background:Vicatia thibetica de Boiss is a common Tibetan medicine used for both medicine and food, belonging to the family Apiaceae. This plant has the functions of dispelling wind, removing dampness, dispersing cold, and relieving pain. It has great development potential and application prospects in food development and medicinal value.

Methods:The related references on botany, traditional uses, phytochemistry, quantitative analysis, and pharmacology of V. thibetica de Boiss had been retrieved from both online and offline databases, including PubMed, ScienceDirect, Web of Science, Elsevier, Willy, SpringLink, SciFinder, Google Scholar, Baidu Scholar, ACS publications, SciHub, Scopus, and CNKI.

Results:V. thibetica de Boiss exerts nourishing, appetizing, and digestive effects according to the theory of Tibetan medicine. Phytochemical reports have revealed that V. thibetica de Boiss contains flavonoids, coumarins, sterols, and organic acids. Meanwhile, the quantitative analysis of the chemical constituents of V. thibetica de Boiss has been done by means of UPLC-Q-TOF-MS. It has also been found that V. thibetica de Boiss possesses multiple pharmacological activities, including anti-fatigue, anti-oxidant, anti-aging, and non-toxic activities.

Conclusion:This paper has comprehensively summarized botany, traditional uses, phytochemistry, quantitative analysis, and pharmacology of V. thibetica de Boiss. It will not only provide an important clue for further studying V. thibetica de Boiss, but also offer an important theoretical basis and valuable reference for in-depth research and exploitation of this plant in the future.

About the authors

Qin-Yuan Wang

Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education,, Jiangxi University of Traditional Chinese Medicine

Email: info@benthamscience.net

Neng-Xin He

Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Jiangxi University of Traditional Chinese Medicine

Email: info@benthamscience.net

Yong-Wei Qiu

Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Jiangxi University of Traditional Chinese Medicine

Email: info@benthamscience.net

Wei Jiang

Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Jiangxi University of Traditional Chinese Medicine

Email: info@benthamscience.net

Guo-Yue Zhong

Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Jiangxi University of Traditional Chinese Medicine

Email: info@benthamscience.net

Zhi-Pei Sang

College of Chemistry and Pharmaceutical Engineering,, Nanyang Normal University

Author for correspondence.
Email: info@benthamscience.net

Qin-Ge Ma

Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education,, Jiangxi University of Traditional Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

Rong-Rui Wei

Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Jiangxi University of Traditional Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

References

  1. Li, Y.; Yu, X.H.; Guo, M.; Du, T. Optimization of ultrasound-assisted extraction process for total flavonoids from Vicatia thibetica de Boiss. Zhongchengyao, 2022, 44, 362-366.
  2. Cai, R.N.J.; Duo, J.R.Q.; Wen, C.D.Z.; Meng, X.L. Application of Vicatia thibetica de Boiss. in Tibetan medicine. Zhonghua Zhongyiyao Zazhi, 2021, 36, 535-537.
  3. Zhan, D.; Wei, R.R.; Ma, Q.G.; He, J.W.; Duo, J.J.; Ren, Z.P.C.; Se, Z. Acute and subacute toxicity study of extracts from roots and leaves of Vicatia thibetica de Boiss. Nat. Prod. Res. Dev., 2020, 32, 1228-1234.
  4. Zhu, M.N.; Wu, G.; Chen, J.; Qiu, Y.W.; Zhu, C.Q.; Wu, Y.Z.; Ma, Q.G.; Zhong, G.Y.; Wei, R.R. Ethnopharmacology, phytochemistry, and pharmacology of highland barley Monascus purpureus Went: A comprehensive review. Comb. Chem. High Throughput Screen., 2023, 26, 1083-1092. doi: 10.2174/1386207325666220818153054 PMID: 35984024
  5. Ma, X.; Zhou, H. Hovenia acerba Lindl.: An insight into botany, phytochemistry, bioactivity, quality control, and exploitation. J. Food Biochem., 2022, 46(12), e14434. doi: 10.1111/jfbc.14434 PMID: 36183216
  6. Wang, T.Z.; Li, T. Studies on the chemical constituents of Tibetan medicine "Jiawa". Nat. Prod. Res. Dev., 1988, 10, 19-25.
  7. Cai, R.N.J.; Duo, J.R.Q.; Meng, X.L. Research on herbal textual and artificial cultivation of Tibetan medicine "Jiawa". Lishizhen Med. Mater. Med. Res, 2020, 31, 2741-2744.
  8. Wang, R.S.; Luo, J.; Wang, W.X.; Ze, W.Y.Z.; Wang, J.R.Z.; Zhang, Y. The enlightenment of traditional Chinese medicine theory of "symptom-based prescription" on Tibetan medicine safety. Pharm. Clin. Chin. Mater. Med., 2020, 11, 23-29.
  9. Puncog, R.J.; Tashi, D.; Hai, M.R. Development of traditional Tibetan medicine research. J. Med. Pharm. Chin. Minor., 2019, 25, 66-69.
  10. Li, J.F.; Kang, X.Y.; Yang, X.Q.; Zhang, H. Development of Tibetan medicine and research progress of animal source medicine. Jilin J. Chin. Med., 2018, 38, 1299-1301.
  11. Ou, Z.; Baima, Y.Z.; Yang, B.; Tudan, J.R.; Lu, W.L.; Li, S.P. Analysis of chemical constituents and quantitative analysis of Vicatia thibeticu by UPLC-Q-TOF-MS. Food Nutr. China, 2022, 28, 17-21.
  12. Chen, Q.; Zhou, W.; Huang, Y.; Tian, Y.; Wong, S.Y.; Lam, W.K.; Ying, K.Y.; Zhang, J.; Chen, H. Umbelliferone and scopoletin target tyrosine kinases on fibroblast-like synoviocytes to block NF-κB signaling to combat rheumatoid arthritis. Front. Pharmacol., 2022, 13, 946210. doi: 10.3389/fphar.2022.946210 PMID: 35959425
  13. Liang, Y.; Xie, L.; Liu, K.; Cao, Y.; Dai, X.; Wang, X.; Lu, J.; Zhang, X.; Li, X. Bergapten: A review of its pharmacology, pharmacokinetics, and toxicity. Phytother. Res., 2021, 35(11), 6131-6147. doi: 10.1002/ptr.7221 PMID: 34347307
  14. Rahmani, A.H.; Alsahli, M.A.; Almatroudi, A.; Almogbel, M.A.; Khan, A.A.; Anwar, S.; Almatroodi, S.A. The potential role of apigenin in cancer prevention and treatment. Molecules, 2022, 27(18), 6051. doi: 10.3390/molecules27186051 PMID: 36144783
  15. Chen, C.; Shen, J.L.; Liang, C.S.; Sun, Z.C.; Jiang, H.F. First discovery of beta-sitosterol as a novel antiviral agent against white spot syndrome virus. Int. J. Mol. Sci., 2022, 23(18), 10448. doi: 10.3390/ijms231810448 PMID: 36142360
  16. Gu, Y.; Yang, X.; Shang, C.; Thao, T.T.P.; Koyama, T. Inhibition and interactions of alpha-amylase by daucosterol from the peel of Chinese water chestnut (Eleocharis dulcis). Food Funct., 2021, 12(18), 8411-8424. doi: 10.1039/D1FO00887K PMID: 34369540
  17. Loahavilai, P.; Datta, S.; Prasertsuk, K.; Jintamethasawat, R.; Rattanawan, P.; Chia, J.Y.; Kingkan, C.; Thanapirom, C.; Limpanuparb, T. Chemometric analysis of a ternary mixture of caffeine, quinic acid, and nicotinic acid by terahertz spectroscopy. ACS Omega, 2022, 7(40), 35783-35791. doi: 10.1021/acsomega.2c03808 PMID: 36249363
  18. Jiao, H.; Xu, W.; Hu, Y.; Tian, R.; Wang, Z. Citric acid in rice root exudates enhanced the colonization and plant growth-promoting ability of Bacillus altitudinis LZP02. Microbiol. Spectr., 2022, 10(6), e01002-e01022. doi: 10.1128/spectrum.01002-22 PMID: 36264248
  19. Gawenda-Kempczyńska, D.; Olech, M.; Balcerek, M.; Nowak, R.; Załuski, T.; Załuski, D. Phenolic acids as chemotaxonomic markers able to differentiate the Euphrasia species. Phytochemistry, 2022, 203, 113342. doi: 10.1016/j.phytochem.2022.113342 PMID: 35948137
  20. Chong, H.; Xi, Y.; Zhou, Y.; Wang, G. Protective effects of chlorogenic acid on isoflurane‐induced cognitive impairment of aged mice. Food Sci. Nutr., 2022, 10(10), 3492-3500. doi: 10.1002/fsn3.2952 PMID: 36249964
  21. El-Askary, H.; Salem, H.H.; Abdel Motaal, A. Potential mechanisms involved in the protective effect of dicaffeoylquinic acids from Artemisia annua L. leaves against diabetes and its complications. Molecules, 2022, 27(3), 857. doi: 10.3390/molecules27030857 PMID: 35164118
  22. Ming, D.S.; Jiang, R.W.; But, P.P.H.; Towers, G.H.N.; Yu, D.Q. A new compound from Geum rivale L. J. Asian Nat. Prod. Res., 2002, 4(3), 217-220. doi: 10.1080/10286020290024022 PMID: 12118512
  23. Lin, H.; Tello, E.; Simons, C.T.; Peterson, D.G. Identification of non-volatile compounds generated during storage that impact flavor stability of ready-to-drink coffee. Molecules, 2022, 27(7), 2120. doi: 10.3390/molecules27072120 PMID: 35408521
  24. Zhu, Y.; Wei, S.; Cao, X.; Wang, S.; Chang, Y.; Ouyang, H.; He, J. Multi-component pharmacokinetic study of prunus mume fructus extract after oral administration in rats using UPLC-MS/MS. Front. Pharmacol., 2022, 13, 954692. doi: 10.3389/fphar.2022.954692 PMID: 36210842
  25. Sedeek, M.S.; Afifi, S.M.; Mansour, M.K.; Hassan, M.; Mehaya, F.M.; Naguib, I.A.; Abourehab, M.A.S.; Farag, M.A. Unveiling antimicrobial and antioxidant compositional differences between Dukkah and Za’atar via SPME-GCMS and HPLC-DAD. Molecules, 2022, 27(19), 6471. doi: 10.3390/molecules27196471 PMID: 36235006
  26. Li, Y.P.; Yang, K.; Meng, H.; Shen, T.; Zhang, H. Polyhydroxylated eudesmane sesquiterpenoids and sesquiterpenoid glucoside from the flower buds of Tussilago farfara. Chin. J. Nat. Med., 2022, 20(4), 301-308. doi: 10.1016/S1875-5364(21)60120-6 PMID: 35487600
  27. Zhang, L.; Tu, Z.; Xie, X.; Wang, H.; Wang, H.; Wang, Z.; Sha, X.; Lu, Y. Jackfruit (Artocarpus heterophyllus Lam.) peel: A better source of antioxidants and a -glucosidase inhibitors than pulp, flake and seed, and phytochemical profile by HPLC-QTOF-MS/MS. Food Chem., 2017, 234, 303-313. doi: 10.1016/j.foodchem.2017.05.003 PMID: 28551240
  28. Liu, W.J.; Tu, P.F.; Yu, J.; Song, Y.L.; Cao, L.B.; Li, J.; Si, D.D.; Gong, X.C. Rapid qualitative analysis of chemical constituents of Lonicera japonica by DI-MS/MSALL. Zhongguo Zhongyao Zazhi, 2021, 46, 2220-2228. PMID: 34047124
  29. Gao, X.L.; Shen, H.; Zhou, M.L. Determination of phenols in flowers, leaves and stems of Chrysanthemum morifolium by HPLC-MS/MS. Nat. Prod. Res. Dev., 2013, 25, 637-640.
  30. Wang, Z.; Clifford, M.N. Comparison of the profiles of chlorogenic acids and their derivatives from three Chinese traditional herbs by LC-MSn. Yao Xue Xue Bao, 2008, 43(2), 185-190. PMID: 18507347
  31. Clifford, M.N.; Wu, W.; Kuhnert, N. The chlorogenic acids of Hemerocallis. Food Chem., 2006, 95(4), 574-578. doi: 10.1016/j.foodchem.2005.01.045
  32. Wang, X.; Li, N.; Qi, J.H.; Li, X.H.; Lin, B.B. Study on extraction technology of chlorogenic acid from Lonicera japonica. J. Heilongjiang Hydr. Eng. Coll, 2020, 11, 36-39.
  33. Wang, J.J.; Qin, X.M.; Gao, X.X.; Zhang, B.; Wang, P.Y.; Hao, J.Q.; Du, G.H. Research progress on chemical compounds, pharmacological action, and quality status of Eucommia Ulmoides. Chin. Tradit. Herbal Drugs, 2017, 48, 3228-3237.
  34. Zhu, W.Q.; Ren, H.S.; Zhen, Y.Y.; Zhang, L.; Zhang, P.; Zhneg, Z.J. Research progress on functional components and biological activities of Lonicera japonica. Sci. Technol. Food Ind., 2021, 42, 412-426.
  35. Yang, X.L.; Zhang, J.L.; Wang, J.F.; Li, X.Q.; Lv, J.T. Research progress in anti-tumor effect and mechanism of chlorogenic acid. China J. Exp. Tradit. Med. Formulae, 2018, 24, 229-234.
  36. Pang, M.R.; Liu, L.Y.; Gao, W.L.; Zhang, Y. Research progress on the mechanism of chlorogenic acid regulating glucose and lipid metabolism. Chin. Tradit. Herbal Drugs, 2015, 46, 305-311.
  37. Kang, D.Z.; Hong, H.D.; Kim, K.I.; Choi, S.Y. Anti-fatigue effects of fermented Rhodiola rosea extract in mice. Prev. Nutr. Food Sci., 2015, 20(1), 38-42. doi: 10.3746/pnf.2015.20.1.38 PMID: 25866748
  38. Zhang, M.R.; Zhao, J.L.; Sun, F.Y. Research progress on chemical constituents and pharmacological effects of Vicatia thibetica de Boiss. Chin. J. Pharmacol. Toxicol., 2021, 35(10), 804.
  39. Lu, A.; Chen, Z.Z.; Wu, X.M.; Ma, X.Y.; Zhao, Y. QSAR analysis of flavonoid compounds and their anti-DPPH radical activities based on substructure fingerprints. Chem. Bull, 2022, 85, 1261-1266.
  40. Corrêa, H.L.; Raab, A.T.O.; Araújo, T.M.; Deus, L.A.; Reis, A.L.; Honorato, F.S.; Rodrigues-Silva, P.L.; Neves, R.V.P.; Brunetta, H.S.; Mori, M.A.S.; Franco, O.L.; Rosa, T.S. A systematic review and meta-analysis demonstrating Klotho as an emerging exerkine. Sci. Rep., 2022, 12(1), 17587. doi: 10.1038/s41598-022-22123-1 PMID: 36266389
  41. Liu, W.; Guan, Y.; Qiao, S.; Wang, J.; Bao, K.; Mao, Z.; Liao, L.; Moskalev, A.; Jiang, B.; Zhu, J.; Xia, C.; Li, J.; Hu, Z. Antiaging effects of Vicatia thibetica de Boiss root extract on Caenorhabditis elegans and doxorubicin-induced premature aging in adult mice. Oxid. Med. Cell. Longev., 2021, 2021, 9942090. doi: 10.1155/2021/9942090 PMID: 34413931

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers