Study for Some Eccentricity-based Topological Indices of Second Type of Dominating David-derived Network


Cite item

Full Text

Abstract

Background:Dominating David-derived networks are widely studied due to their fractal nature, with applications in topology, chemistry, and computer sciences. The use of molecular structure descriptors is a standard procedure that is used to correlate the biological activity of molecules with their chemical structures, which can be useful in the field of pharmacology.

Objective:This article's goal is to develop analytically closed computing formulas for eccentricitybased descriptors of the second type of dominating David-derived network. Thermodynamic characteristics, physicochemical properties, and chemical and biological activities of chemical graphs are just a few of the many properties that may be determined using these computation formulas.

Methods:Vertex sets were initially divided according to their degrees, eccentricities, and cardinalities of occurrence. The eccentricity-based indices are then computed using some combinatorics and these partitions.

Results:Total eccentricity, average eccentricity, and the Zagreb index are distance-based topological indices utilized in this study for the second type of dominating David-derived network, denoted as D2(m).

Conclusion:These calculations will assist the readers in estimating the fractal and difficult-tohandle thermodynamic and physicochemical aspects of chemical structure. Apart from configuration and impact resistance, the D2(m) design has been used for fundamental reasons in a variety of technical and scientific advancements.

About the authors

Jia-Bao Liu

School of Mathematics and Physics,, Anhui Jianzhu University

Email: info@benthamscience.net

Haidar Ali

Department of Mathematics,, Riphah International University

Author for correspondence.
Email: info@benthamscience.net

Didar Ali

Department of Mathematics, Faculty of Science,, University of Zakho

Email: info@benthamscience.net

Ayesha Umer

Department of Mathematics, Riphah International University

Email: info@benthamscience.net

Parvez Ali

Department of Mechanical Engineering, College of Engineering,, Qassim University

Email: info@benthamscience.net

Syed Ajaz Kirmani

Department of Electrical Engineering, College of Engineering, Qassim University,

Email: info@benthamscience.net

References

  1. Arney, D.C.; Wilhite, A.W. Modeling space system Architectures with graph theory. J. Spacecr. Rockets, 2014, 51(5), 1413-1429. doi: 10.2514/1.A32578
  2. Randić, M.; Trinajstić, N. In search for graph invariants of chemical interes. J. Mol. Struct., 1993, 300, 551-571. doi: 10.1016/0022-2860(93)87047-D
  3. Rong-Jun, B.; Siddiqui, M.K.; Razavi, R.; Taherkhani, M.; Najafi, M. Possibility of C38 and Si19Ge19 nanocages in anode of metal ion batteries: Computational examination. Acta Chim. Slov., 2018, 65(2), 303-311. PMID: 29993107
  4. Estrada, E. Generalization of topological indices. Chem. Phys. Lett., 2001, 336(3-4), 248-252. doi: 10.1016/S0009-2614(01)00127-0
  5. García-Domenech, R.; Gálvez, J.; de Julián-Ortiz, J.V.; Pogliani, L. Some new trends in chemical graph theory. Chem. Rev., 2008, 108(3), 1127-1169. doi: 10.1021/cr0780006 PMID: 18302420
  6. Sharma, V.; Goswami, R.; Madan, A.K. Eccentric connectivity index: A novel highly discriminating topological descriptor for structure-property and structure-activity studies. J. Chem. Inf. Comput. Sci., 1997, 37(2), 273-282. doi: 10.1021/ci960049h
  7. Sharma, S.; Bhat, V.K.; Lal, S. Multiplicative topological indices of the crystal cubic carbon structure. Cryst. Res. Technol., 2023, 58(3), 2200222. doi: 10.1002/crat.202200222
  8. Sharma, K.; Bhat, V.K. On topological descriptors of polycyclic aromatic benzenoid systems. Polycycl. Aromat. Compd., 2022, 1-20.
  9. Sharma, K.; Bhat, V.K.; Sharma, S.K. On degree-based topological indices of carbon nanocones. ACS Omega, 2022, 7(49), 45562-45573. doi: 10.1021/acsomega.2c06287 PMID: 36530320
  10. Farooq, R.; Malik , M.A. On some eccentricity based topological indices of nanostar dendrimers. Optoelectron. Adv. Mater. Rapid Commun., 2015, 9(5-6), 842-849.
  11. Butler, S. Induced-universal graphs for graphs with bounded maximum degree. Graphs Comb., 2009, 25(4), 461-468. doi: 10.1007/s00373-009-0860-x
  12. Dankelmann, P.; Goddard, W.; Swart, C.S. The average eccentricity of a graph and its subgraphs. Util. Math., 2004, 65, 41-52.
  13. Ikhdair, S.M.; Sever, R. Exact quantization rule to the Kratzer-type potentials: An application to the diatomic molecules. J. Math. Chem., 2009, 45(4), 1137-1152. doi: 10.1007/s10910-008-9438-8 PMID: 32214589
  14. Ilić, A. On the extremal properties of the average eccentricity. Comput. Math. Appl., 2012, 64(9), 2877-2885. doi: 10.1016/j.camwa.2012.04.023
  15. Tang, Y.; Zhou, B. On average eccentricity. MATCH Commun. Math. Comput. Chem., 2012, 67(2), 405.
  16. Bajaj, S.; Sambi, S.S.; Gupta, S.; Madan, A.K. Model for prediction of anti‐HIV activity of 2‐pyridinone derivatives using novel topological descriptor. QSAR Comb. Sci., 2006, 25(10), 813-823. doi: 10.1002/qsar.200430918
  17. Bajaj, S.; Sambi, S.S.; Madan, A.K. Topological models for prediction of anti-HIV activity of acylthiocarbamates. Bioorg. Med. Chem., 2005, 13(9), 3263-3268. doi: 10.1016/j.bmc.2005.02.033 PMID: 15809161
  18. Gutman, I.; Trinajstić, N. Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons. Chem. Phys. Lett., 1972, 17(4), 535-538. doi: 10.1016/0009-2614(72)85099-1
  19. Naeem, M.; Siddiqui, M. K.; Guirao, J. L. G.; Gao, W. New and modified eccentric indices of octagonal grid. Appl. Math. Nonlinear Sci., 2018, 3(21), 209-228.
  20. Zhang, X.; Siddiqui, M.; Naeem, M.; Baig, A. Computing eccentricity based topological indices of octagonal grid. Mathematics, 2018, 6(9), 153. doi: 10.3390/math6090153
  21. Imran, M.; Zobair, M.M.; Shaker, H. Eccentricity-based topological invariants of dominating david-derived networks. J. Chem., 2021, 2021, 1-10. doi: 10.1155/2021/8944080
  22. Abraham, S.; Weismann, C.G. Left ventricular end‐systolic eccentricity index for assessment of pulmonary hypertension in infants. Echocardiography, 2016, 33(6), 910-915. doi: 10.1111/echo.13171 PMID: 26773570
  23. De, N.; Pal, A.; Nayeem, S.A. Total eccentricity index of some composite graphs. Malaya. J. Mater., 2005, 3(4), 523-529.
  24. Farahani, M.R. The Ediz eccentric connectivity index and the total eccentricity index of a Benzenoid system. J. Chemica Acta, 2013, 2(1), 22-25.
  25. Xing, R.; Zhou, B.; Trinajstić, N. On Zagreb eccentricity indices. Croat. Chem. Acta, 2011, 84(4), 493-497. doi: 10.5562/cca1801
  26. Imran, M.; Baig, A.Q.; Ali, H. On topological properties of dominating David derived networks. Can. J. Chem., 2016, 94(2), 137-148. doi: 10.1139/cjc-2015-0185
  27. Babar, U.; Ali, H.; Hussain Arshad, S.; Sheikh, U. Multiplicative topological properties of graphs derived from honeycomb structure. AIMS Mathematics, 2020, 5(2), 1562-1587. doi: 10.3934/math.2020107
  28. Simonraj, F.; George, A. Embedding of poly honeycomb networks and the metric dimension of star of david network. Int. J. App. Graph Theory Wireless Ad Hoc Net. Sensor Net., 2012, 4(4), 11-28. doi: 10.5121/jgraphoc.2012.4402
  29. Liu, J.B.; Bao, Y.; Zheng, W.T.; Hayat, S. Network coherence analysis on a family of nested weighted n-polygon networks. Fractals, 2021, 29(8), 2150260. doi: 10.1142/S0218348X21502601
  30. Liu, J.B.; Wang, C.; Wang, S.; Wei, B. Zagreb indices and multiplicative Zagreb indices of eulerian graphs. Bull. Malays. Math. Sci. Soc., 2019, 42(1), 67-78. doi: 10.1007/s40840-017-0463-2
  31. Liu, J.B.; Zhao, J.; Cai, Z.Q. On the generalized adjacency, Laplacian and signless Laplacian spectra of the weighted edge corona networks. Physica A, 2020, 540, 123073. doi: 10.1016/j.physa.2019.123073
  32. Liu, J.B.; Zhao, J.; He, H.; Shao, Z. Valency-based topological descriptors and structural property of the generalized sierpiński networks. J. Stat. Phys., 2019, 177(6), 1131-1147. doi: 10.1007/s10955-019-02412-2
  33. Liu, J.B.; Zhang, T.; Wang, Y.; Lin, W. The Kirchhoff index and spanning trees of Möbius/cylinder octagonal chain. Discrete Appl. Math., 2022, 307, 22-31. doi: 10.1016/j.dam.2021.10.004

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers