Key Mutant Genes and Biological Pathways Involved in Aspirin Resistance in the Residents of the Chinese Plateau Area


Цитировать

Полный текст

Аннотация

Introduction:Aspirin is used to prevent and treat cardiovascular diseases; however, some patients develop aspirin resistance.

Aim:We aimed to explore the potential molecular mechanisms underlying aspirin resistance in people living in the Chinese plateau area.

Methods:In total, 91 participants receiving aspirin treatment from the Qinghai plateau area were divided into the aspirin resistance and aspirin sensitivity groups. Genotyping was performed using the Sequence MASSarray. Differentially mutated genes between the two groups were analyzed using MAfTools. The annotation of differentially mutated genes was conducted based on the Metascape database.

Results and Discussion:In total, 48 differential SNP and 22 differential InDel mutant genes between the aspirin resistance and aspirin sensitivity groups were screened using Fisher’s exact test (p < 0.05). After the χ2 test, a total of 21 SNP mutant genes, including ZFPL1 and TLR3, and 19 InDel mutant genes were found to be differentially expressed between the two groups (p < 0.05). Functional analysis revealed that these differential SNP mutations were mainly enriched in aspirin resistance pathways, such as the Wnt signaling pathway. Furthermore, these genes were related to many diseases, including various aspirin indications.

Conclusion:This study identified several genes and pathways that could be involved in arachidonic acid metabolic processes and aspirin resistance progression, which will provide a theoretical understanding of the molecular mechanism of aspirin resistance.

Об авторах

Jinchun Wu

Department of Cardiology, Qinghai Provincial People's Hospital

Автор, ответственный за переписку.
Email: info@benthamscience.net

Rong Chang

Department of Cardiology, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Yanmin Liu

Department of Cardiology, Qinghai Provincial People's Hospital

Email: info@benthamscience.net

Список литературы

  1. Al-Sofiani, M.E.; Derenbecker, R.; Quartuccio, M.; Kalyani, R.R. Aspirin for primary prevention of cardiovascular disease in diabetes: A review of the evidence. Curr. Diab. Rep., 2019, 19(10), 107. doi: 10.1007/s11892-019-1206-6 PMID: 31544224
  2. Nudy, M.; Cooper, J.; Ghahramani, M.; Ruzieh, M.; Mandrola, J.; Foy, A.J. Aspirin for primary atherosclerotic cardiovascular disease prevention as baseline risk increases: A meta-regression analysis. Am. J. Med., 2020, 133(9), 1056-1064. doi: 10.1016/j.amjmed.2020.04.028 PMID: 32445718
  3. Rocca, B.; Patrono, C. Aspirin in the primary prevention of cardiovascular disease in diabetes mellitus: A new perspective. Diabetes Res. Clin. Pract., 2020, 160, 108008. doi: 10.1016/j.diabres.2020.108008 PMID: 31926190
  4. Wiśniewski, A.; Sikora, J.; Sławińska, A.; Filipska, K.; Karczmarska-Wódzka, A.; Serafin, Z.; Kozera, G. High on-treatment platelet reactivity affects the extent of ischemic lesions in stroke patients due to large-vessel disease. J. Clin. Med., 2020, 9(1), 251. doi: 10.3390/jcm9010251 PMID: 31963511
  5. Khodadi, E. Platelet function in cardiovascular disease: Activation of molecules and activation by molecules. Cardiovasc. Toxicol., 2020, 20(1), 1-10. doi: 10.1007/s12012-019-09555-4 PMID: 31784932
  6. Barbarawi, M.; Kheiri, B.; Zayed, Y.; Gakhal, I.; Al-Abdouh, A.; Barbarawi, O.; Rashdan, L.; Rizk, F.; Bachuwa, G.; Alkotob, M.L. Aspirin efficacy in primary prevention: A meta-analysis of randomized controlled trials. High Blood Press. Cardiovasc. Prev., 2019, 26(4), 283-291. doi: 10.1007/s40292-019-00325-5 PMID: 31280451
  7. Wang, J.; Liu, J.; Zhou, Y.; Wang, F.; Xu, K.; Kong, D.; Bai, J.; Chen, J.; Gong, X.; Meng, H.; Li, C. Association among PlA1/A2 gene polymorphism, laboratory aspirin resistance and clinical outcomes in patients with coronary artery disease: An updated meta-analysis. Sci. Rep., 2019, 9(1), 13177. doi: 10.1038/s41598-019-49123-y PMID: 31511539
  8. Taco-Vasquez, E.D.; Barrera, F.; Serrano-Duenas, M.; Jimenez, E.; Rocuts, A.; Riveros Perez, E. Association between blood viscosity and cardiovascular risk factors in patients with arterial hypertension in a high altitude setting. Cureus, 2019, 11(1), e3925. doi: 10.7759/cureus.3925 PMID: 30937231
  9. Sun, Y.; Zhang, J.; Zhao, A.; Li, W.; Feng, Q.; Wang, R. Effects of intestinal flora on the pharmacokinetics and pharmacodynamics of aspirin in high-altitude hypoxia. PLoS One, 2020, 15(3), e0230197. doi: 10.1371/journal.pone.0230197 PMID: 32163488
  10. McCullough, P.A.; Vasudevan, A.; Sathyamoorthy, M.; Schussler, J.M.; Velasco, C.E.; Lopez, L.R.; Swift, C.; Peterson, M.; Bennett-Firmin, J.; Schiffmann, R.; Bottiglieri, T. Urinary 11-dehydro-thromboxane B2 and mortality in patients with stable coronary artery disease. Am. J. Cardiol., 2017, 119(7), 972-977. doi: 10.1016/j.amjcard.2016.12.004 PMID: 28139223
  11. Xu, T.; Hu, X.X.; Liu, X.X.; Wang, H.J.; Lin, K.; Pan, Y.Q.; Sun, H.L.; Peng, H.X.; Chen, X.X.; Wang, S.K.; He, B.S. Association between SNPs in long non-coding RNAs and the risk of female breast cancer in a Chinese population. J. Cancer, 2017, 8(7), 1162-1169. doi: 10.7150/jca.18055 PMID: 28607590
  12. Fang, B.; Li, Y.; Chen, C.; Wei, Q.; Zheng, J.; Liu, Y.; He, W.; Lin, D.; Li, G.; Hou, Y.; Xu, L. Huo Xue Tong Luo capsule ameliorates osteonecrosis of femoral head through inhibiting lncRNA-Miat. J. Ethnopharmacol., 2019, 238, 111862. doi: 10.1016/j.jep.2019.111862 PMID: 30970282
  13. Liu, L.; Huang, J.; Wei, B.; Mo, J.; Wei, Q.; Chen, C.; Yan, W.; Huang, X.; He, F.; Qin, L.; Huang, H.; Li, X.; Pan, X. Multiomics analysis of genetics and epigenetics reveals pathogenesis and therapeutic targets for atrial fibrillation. BioMed Res. Int., 2021, 2021, 1-36. doi: 10.1155/2021/6644827 PMID: 33834070
  14. Odumpatta, R.; Mohanapriya, A. Next generation sequencing exome data analysis aids in the discovery of SNP and INDEL patterns in Parkinson’s disease. Genomics, 2020, 112(5), 3722-3728. doi: 10.1016/j.ygeno.2020.04.025 PMID: 32348865
  15. Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun., 2019, 10(1), 1523. doi: 10.1038/s41467-019-09234-6 PMID: 30944313
  16. Yi, X; Zhou, Q; Lin, J; Chi, L; Han, Z Platelet response to aspirin in Chinese stroke patients is independent of genetic polymorphisms of COX-1 C50T and COX-2 G765C. J. Atheroscler. Thromb., 2013, 20(1), 65-72. doi: 10.5551/jat.14092 PMID: 22972377
  17. Fong, J.; Cheng-Ching, E.; Hussain, M.S.; Katzan, I.; Gupta, R. Predictors of biochemical aspirin and clopidogrel resistance in patients with ischemic stroke. J. Stroke Cerebrovasc. Dis., 2011, 20(3), 227-230. doi: 10.1016/j.jstrokecerebrovasdis.2009.12.004 PMID: 20621513
  18. Xie, Y.Z.; Ma, W.L.; Meng, J.M.; Ren, X.Q. Knockdown of ZFPL1 results in increased autophagy and autophagy-related cell death in NCI-N87 and BGC-823 human gastric carcinoma cell lines. Mol. Med. Rep., 2017, 15(5), 2633-2642. doi: 10.3892/mmr.2017.6300 PMID: 28447717
  19. Chen, J.; Wang, L.; Liu, W.H.; Shi, J.; Zhong, Y.; Liu, S.J.; Liu, S.M. Aspirin protects human coronary artery endothelial cells by inducing autophagy. Physiol. Int., 2020, 107(2), 294-305. doi: 10.1556/2060.2020.00029 PMID: 32750030
  20. Ranjith-Kumar, C.T.; Miller, W.; Sun, J.; Xiong, J.; Santos, J.; Yarbrough, I.; Lamb, R.J.; Mills, J.; Duffy, K.E.; Hoose, S.; Cunningham, M.; Holzenburg, A.; Mbow, M.L.; Sarisky, R.T.; Kao, C.C. Effects of single nucleotide polymorphisms on Toll-like receptor 3 activity and expression in cultured cells. J. Biol. Chem., 2007, 282(24), 17696-17705. doi: 10.1074/jbc.M700209200 PMID: 17434873
  21. Månsson, A.; Fransson, M.; Adner, M.; Benson, M.; Uddman, R.; Björnsson, S.; Cardell, L.O. TLR3 in human eosinophils: Functional effects and decreased expression during allergic rhinitis. Int. Arch. Allergy Immunol., 2010, 151(2), 118-128. doi: 10.1159/000236001 PMID: 19752565
  22. Palikhe, N.S.; Kim, S.H.; Kim, J.H.; Losol, P.; Ye, Y.M.; Park, H.S. Role of toll-like receptor 3 variants in aspirin-exacerbated respiratory disease. Allergy Asthma Immunol. Res., 2011, 3(2), 123-127. doi: 10.4168/aair.2011.3.2.123 PMID: 21461252
  23. Ruipérez, V.; Astudillo, A.M.; Balboa, M.A. Balsinde, J Coordinate regulation of TLR-mediated arachidonic acid mobilization in macrophages by group IVA and group V phospholipase A2s. J. Immunol., 2009, 182(6), 3877-3883.
  24. Salvi, V.; Vaira, X.; Gianello, V.; Vermi, W.; Bugatti, M.; Sozzani, S.; Bosisio, D. TLR signalling pathways diverge in their ability to induce PGE 2. Mediators Inflamm., 2016, 2016, 1-10. doi: 10.1155/2016/5678046 PMID: 27630451
  25. Pindado, J.; Balsinde, J.; Balboa, M.A. TLR3-dependent induction of nitric oxide synthase in RAW 264.7 macrophage-like cells via a cytosolic phospholipase A2/cyclooxygenase-2 pathway. J. Immunol., 2007, 179(7), 4821-4828.
  26. Khan, P.; Bhattacharya, A.; Sengupta, D.; Banerjee, S.; Adhikary, A.; Das, T. Aspirin enhances cisplatin sensitivity of resistant non-small cell lung carcinoma stem-like cells by targeting mTOR-Akt axis to repress migration. Sci. Rep., 2019, 9(1), 16913. doi: 10.1038/s41598-019-53134-0 PMID: 31729456
  27. Jiang, W.; Yan, Y.; Chen, M.; Luo, G.; Hao, J.; Pan, J.; Hu, S.; Guo, P.; Li, W.; Wang, R.; Zuo, Y.; Sun, Y.; Sui, S.; Yu, W.; Pan, Z.; Zou, K.; Zheng, Z.; Deng, W.; Wu, X.; Guo, W. Aspirin enhances the sensitivity of colon cancer cells to cisplatin by abrogating the binding of NF-κB to the COX-2 promoter. Aging, 2020, 12(1), 611-627. doi: 10.18632/aging.102644 PMID: 31905343
  28. Zhang, X.; Chen, B.; Wu, J.; Sha, J.; Yang, B.; Zhu, J.; Sun, J.; Hartung, J.; Bao, E. Aspirin enhances the protection of Hsp90 from heat-stressed injury in cardiac microvascular endothelial cells through PI3K-Akt and PKM2 pathways. Cells, 2020, 9(1), 243. doi: 10.3390/cells9010243 PMID: 31963688
  29. Cheng, P.; Liao, H.Y.; Zhang, H.H. The role of Wnt/mTOR signaling in spinal cord injury. J. Clin. Orthop. Trauma, 2022, 25, 101760. doi: 10.1016/j.jcot.2022.101760 PMID: 35070684
  30. Lee, S.H.; Kim, M.H.; Han, H.J. Arachidonic acid potentiates hypoxia-induced VEGF expression in mouse embryonic stem cells: involvement of Notch, Wnt, and HIF-1α. Am. J. Physiol. Cell Physiol., 2009, 297(1), C207-C216. doi: 10.1152/ajpcell.00579.2008 PMID: 19339510
  31. Apte, R.S.; Chen, D.S.; Ferrara, N. VEGF in signaling and disease: Beyond discovery and development. Cell, 2019, 176(6), 1248-1264. doi: 10.1016/j.cell.2019.01.021 PMID: 30849371
  32. Li, L.; Wang, H.; Liu, H.; Liu, Z.; Li, L.; Ding, K.; Wang, G.; Song, J.; Fu, R. Gene mutations associated with thrombosis detected by whole‐exome sequencing in paroxysmal nocturnal hemoglobinuria. Int. J. Lab. Hematol., 2019, 41(3), 424-432. doi: 10.1111/ijlh.13018 PMID: 30970179

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024