LncRNA CAI2 Contributes to Poor Prognosis of Glioma through the PI3K-Akt Signaling Pathway
- Authors: Jiang Y.1, Zhang J.1, Yu S.1, Zheng L.1, Shen Y.1, Ju W.1, Lin L.1
-
Affiliations:
- Institute of Molecular Medicine, Medical College of Liaodong University
- Issue: Vol 27, No 3 (2024)
- Pages: 420-427
- Section: Chemistry
- URL: https://kazanmedjournal.ru/1386-2073/article/view/644682
- DOI: https://doi.org/10.2174/1386207326666230519115845
- ID: 644682
Cite item
Full Text
Abstract
Aims:We aim to explore new potential therapeutic targets and markers in human glioma
Background:Gliomas are the most common malignant primary tumor in the brain.
Objective:In the present research, we evaluated the effect of CAI2, a long non-coding RNA, on the biological behaviors of glioma and explored the related molecular mechanism.
Methods:The expression of CAI2 was analyzed using qRT-PCR in 65 cases of glioma patients. The cell proliferation was determined with MTT and colony formation assays, and the PI3K-AKt signaling pathway was analyzed using western blot.
Results:CAI2 was upregulated in human glioma tissue compared with the matched, adjacent nontumor tissue and was correlated with WHO grade. Survival analyses proved that the overall survival of patients with high CAI2 expression was poor compared to that of patients with low CAI2 expression. High CAI2 expression was an independent prognostic factor in glioma. The absorbance values in the MTT assay after 96 h were .712 ± .031 for the si-control and .465 ± .018 for the si- CAI2-transfected cells, and si-CAI2 inhibited colony formation in U251 cells by approximately 80%. The levels of PI3K, p-AKt, and AKt in si-CAI2-treated cells were decreased.
Conclusion:CAI2 may promote glioma growth through the PI3K-AKt signaling pathway. This research provided a novel potential diagnostic marker for human glioma.
Keywords
About the authors
Yu Jiang
Institute of Molecular Medicine, Medical College of Liaodong University
Email: info@benthamscience.net
Jinhui Zhang
Institute of Molecular Medicine, Medical College of Liaodong University
Email: info@benthamscience.net
Shengjin Yu
Institute of Molecular Medicine, Medical College of Liaodong University
Email: info@benthamscience.net
Linlin Zheng
Institute of Molecular Medicine, Medical College of Liaodong University
Email: info@benthamscience.net
Yue Shen
Institute of Molecular Medicine, Medical College of Liaodong University
Email: info@benthamscience.net
Weiwei Ju
Institute of Molecular Medicine, Medical College of Liaodong University
Email: info@benthamscience.net
Lijuan Lin
Institute of Molecular Medicine, Medical College of Liaodong University
Author for correspondence.
Email: info@benthamscience.net
References
- Yan, Y.; Xu, Z.; Li, Z.; Sun, L.; Gong, Z. An insight into the increasing role of LncRNAs in the pathogenesis of gliomas. Front. Mol. Neurosci., 2017, 10, 53. doi: 10.3389/fnmol.2017.00053 PMID: 28293170
- Dahlin, A.M.; Wibom, C.; Ghasimi, S.; Brännström, T.; Andersson, U.; Melin, B. Relation between established glioma risk variants and DNA methylation in the tumor. PLoS One, 2016, 11(10), e0163067. doi: 10.1371/journal.pone.0163067 PMID: 27780202
- Guo, Q.; Guan, G.F.; Cheng, W.; Zou, C.Y.; Zhu, C.; Cheng, P.; Wu, A.H. Integrated profiling identifies caveolae‐associated protein 1 as a prognostic biomarker of malignancy in glioblastoma patients. CNS Neurosci. Ther., 2019, 25(3), 343-354. doi: 10.1111/cns.13072 PMID: 30311408
- Liang, M.; Gao, C.; Wang, Y.; Gong, W.; Fu, S.; Cui, L.; Zhou, Z.; Chu, X.; Zhang, Y.; Liu, Q.; Zhao, X.; Zhao, B.; Yang, M.; Li, Z.; Yang, C.; Xie, X.; Yang, Y.; Gao, C. Enhanced bloodbrain barrier penetration and glioma therapy mediated by T7 peptide-modified low-density lipoprotein particles. Drug Deliv., 2018, 25(1), 1652-1663. doi: 10.1080/10717544.2018.1494223 PMID: 30394123
- Wang, F.; Zheng, Z.; Guan, J.; Qi, D.; Zhou, S.; Shen, X.; Wang, F.; Wenkert, D.; Kirmani, B.; Solouki, T.; Fonkem, E.; Wong, E.T.; Huang, J.H.; Wu, E. Identification of a panel of genes as a prognostic biomarker for glioblastoma. E Bio. Med., 2018, 37, 68-77. doi: 10.1016/j.ebiom.2018.10.024 PMID: 30341039
- Dahariya, S.; Paddibhatla, I.; Kumar, S.; Raghuwanshi, S.; Pallepati, A.; Gutti, R.K. Long non-coding RNA: Classification, biogenesis and functions in blood cells. Mol. Immunol., 2019, 112, 82-92. doi: 10.1016/j.molimm.2019.04.011 PMID: 31079005
- Wang, L.; Yu, Z.; Sun, S.; Peng, J.; Xiao, R.; Chen, S.; Zuo, X.; Cheng, Q.; Xia, Y. Long non-coding RNAs: potential molecular biomarkers for gliomas diagnosis and prognosis. Rev. Neurosci., 2017, 28(4), 375-380. doi: 10.1515/revneuro-2016-0066 PMID: 28107175
- Zhang, R.; Jin, H.; Lou, F. The long non-coding RNA TP73-AS1 interacted with miR-142 to modulate brain glioma growth through HMGB1/RAGE pathway. J. Cell. Biochem., 2018, 119(4), 3007-3016. doi: 10.1002/jcb.26021 PMID: 28379612
- He, Z.; Wang, Y.; Huang, G.; Wang, Q.; Zhao, D.; Chen, L. The lncRNA UCA1 interacts with miR-182 to modulate glioma proliferation and migration by targeting iASPP. Arch. Biochem. Biophys., 2017, 623-624, 1-8. doi: 10.1016/j.abb.2017.01.013 PMID: 28137422
- Barnhill, L.M.; Williams, R.T.; Cohen, O.; Kim, Y.; Batova, A.; Mielke, J.A.; Messer, K.; Pu, M.; Bao, L.; Yu, A.L.; Diccianni, M.B. High expression of CAI2, a 9p21-embedded long noncoding RNA, contributes to advanced-stage neuroblastoma. Cancer Res., 2014, 74(14), 3753-3763. doi: 10.1158/0008-5472.CAN-13-3447 PMID: 25028366
- Mohamed, E.; Kumar, A.; Zhang, Y.; Wang, A.S.; Chen, K.; Lim, Y.; Shai, A.; Taylor, J.W.; Clarke, J.; Hilz, S.; Berger, M.S.; Solomon, D.A.; Costello, J.F.; Molinaro, A.M.; Phillips, J.J. PI3K/AKT/mTOR signaling pathway activity in IDH-mutant diffuse glioma and clinical implications. Neuro-oncol., 2022, 24(9), 1471-1481. doi: 10.1093/neuonc/noac064 PMID: 35287169
- Johnson, B.E.; Mazor, T.; Hong, C.; Barnes, M.; Aihara, K.; McLean, C.Y.; Fouse, S.D.; Yamamoto, S.; Ueda, H.; Tatsuno, K.; Asthana, S.; Jalbert, L.E.; Nelson, S.J.; Bollen, A.W.; Gustafson, W.C.; Charron, E.; Weiss, W.A.; Smirnov, I.V.; Song, J.S.; Olshen, A.B.; Cha, S.; Zhao, Y.; Moore, R.A.; Mungall, A.J.; Jones, S.J.M.; Hirst, M.; Marra, M.A.; Saito, N.; Aburatani, H.; Mukasa, A.; Berger, M.S.; Chang, S.M.; Taylor, B.S.; Costello, J.F. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science, 2014, 343(6167), 189-193. doi: 10.1126/science.1239947 PMID: 24336570
- Zhang, Y.; Kwok-Shing Ng, P.; Kucherlapati, M.; Chen, F.; Liu, Y.; Tsang, Y.H.; de Velasco, G.; Jeong, K.J.; Akbani, R.; Hadjipanayis, A.; Pantazi, A.; Bristow, C.A.; Lee, E.; Mahadeshwar, H.S.; Tang, J.; Zhang, J.; Yang, L.; Seth, S.; Lee, S.; Ren, X.; Song, X.; Sun, H.; Seidman, J.; Luquette, L.J.; Xi, R.; Chin, L.; Protopopov, A.; Westbrook, T.F.; Shelley, C.S.; Choueiri, T.K.; Ittmann, M.; Van Waes, C.; Weinstein, J.N.; Liang, H.; Henske, E.P.; Godwin, A.K.; Park, P.J.; Kucherlapati, R.; Scott, K.L.; Mills, G.B.; Kwiatkowski, D.J.; Creighton, C.J. A Pan-Cancer Proteogenomic Atlas of PI3K/AKT/mTOR Pathway Alterations. Cancer Cell, 2017, 31(6), 820-832.e3. doi: 10.1016/j.ccell.2017.04.013 PMID: 28528867
- Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 2008, 455(7216), 1061-1068. doi: 10.1038/nature07385 PMID: 18772890
- Pollack, I.F.; Hamilton, R.L.; Burger, P.C.; Brat, D.J.; Rosenblum, M.K.; Murdoch, G.H.; Nikiforova, M.N.; Holmes, E.J.; Zhou, T.; Cohen, K.J.; Jakacki, R.I. Akt activation is a common event in pediatric malignant gliomas and a potential adverse prognostic marker: A report from the Childrens Oncology Group. J. Neurooncol., 2010, 99(2), 155-163. doi: 10.1007/s11060-010-0297-3 PMID: 20607350
- Liu, C.; Wu, H.; Li, Y.; Shen, L.; Yu, R.; Yin, H.; Sun, T.; Sun, C.; Zhou, Y.; Du, Z. SALL4 suppresses PTEN expression to promote glioma cell proliferation viaPI3K/AKT signaling pathway. J. Neurooncol., 2017, 135(2), 263-272. doi: 10.1007/s11060-017-2589-3 PMID: 28887597
- Zhang, Z.Q.; Wang, X.; Xue, B.H.; Zhao, Y.; Xie, F.; Wang, S.D.; Xue, C.; Wang, Y.; Zhang, Y.S.; Qian, L.J. Chronic stress promotes glioma cell proliferation via the PI3K/Akt signaling pathway. Oncol. Rep., 2021, 46(3), 202. doi: 10.3892/or.2021.8153 PMID: 34296295
- Zhu, Y.; Liu, X.; Zhao, P.; Zhao, H.; Gao, W.; Wang, L. Celastrol suppresses glioma vasculogenic mimicry formation and angiogenesis by blocking the PI3K/Akt/mTOR signaling pathway. Front. Pharmacol., 2020, 11, 25. doi: 10.3389/fphar.2020.00025 PMID: 32116702
- Gu, Y.; Chen, T.; Li, G.; Yu, X.; Lu, Y.; Wang, H.; Teng, L. LncRNAs: emerging biomarkers in gastric cancer. Future Oncol., 2015, 11(17), 2427-2441. doi: 10.2217/fon.15.175 PMID: 26289363
- Mitra, S.A.; Mitra, A.P.; Triche, T.J. A central role for long non-coding RNA in cancer. Front. Genet., 2012, 3, 17. doi: 10.3389/fgene.2012.00017 PMID: 22363342
- Ellis, B.C.; Molloy, P.L.; Graham, L.D. CRNDE: A long non-coding RNA involved in cancer, neurobiology, and development. Front. Genet., 2012, 3, 270. doi: 10.3389/fgene.2012.00270 PMID: 23226159
- Diccianni, M.B.; Omura-Minamisawa, M.; Batova, A.; Le, T.; Bridgeman, L.; Yu, A.L. Frequent deregulation ofp16 and thep16/G1 cell cycle-regulatory pathway in neuroblastoma. Int. J. Cancer, 1999, 80(1), 145-154. doi: 10.1002/(SICI)1097-0215(19990105)80:13.0.CO;2-G PMID: 9935245
- Diccianni, M.B.; Chau, L.S.; Batova, A.; Vu, T.Q.; Yu, A.L. The p16 and p18 tumor suppressor genes in neuroblastoma: implications for drug resistance. Cancer Lett., 1996, 104(2), 183-192. doi: 10.1016/0304-3835(96)04250-4 PMID: 8665486
- Williams, R.T.; Barnhill, L.M.; Kuo, H.H.; Lin, W.D.; Batova, A.; Yu, A.L.; Diccianni, M.B. Chimeras of p14ARF and p16: functional hybrids with the ability to arrest growth. PLoS One, 2014, 9(2), e88219. doi: 10.1371/journal.pone.0088219 PMID: 24505435
- Yang, Y.; Ren, M.; Song, C.; Li, D.; Soomro, S.H.; Xiong, Y.; Zhang, H.; Fu, H. LINC00461, a long non-coding RNA, is important for the proliferation and migration of glioma cells. Oncotarget, 2017, 8(48), 84123-84139. doi: 10.18632/oncotarget.20340 PMID: 29137410
- Li, F.; Jin, D.; Tang, C.; Gao, D. CEP55 promotes cell proliferation and inhibits apoptosis via the PI3K/Akt/p21 signaling pathway in human glioma U251 cells. Oncol. Lett., 2018, 15(4), 4789-4796. doi: 10.3892/ol.2018.7934 PMID: 29552118
- Song, Y.; Zheng, S.; Wang, J.; Long, H.; Fang, L.; Wang, G.; Li, Z.; Que, T.; Liu, Y.; Li, Y.; Zhang, X.; Fang, W.; Qi, S. Hypoxia induced PLOD2 promotes proliferation, migration and in vasion via PI3K/Akt signaling in glioma. Oncotarget, 2017, 8(26), 41947-41962. doi: 10.18632/oncotarget.16710 PMID: 28410212
- Chen, H.; Gao, J.; Du, Z.; Zhang, X.; Yang, F.; Gao, W. Expression of factors and key components associated with the PI3K signaling pathway in colon cancer. Oncol. Lett., 2018, 15(4), 5465-5472. doi: 10.3892/ol.2018.8044 PMID: 29552187
Supplementary files
