High-throughput Second-generation Sequencing Technology Assisted Diagnosis of Familial Partial Lipodystrophy (Type 2 Kobberling-Dunnigan Syndrome): A Case Report


Cite item

Full Text

Abstract

Background:Whole exome sequencing (WES) provides support for clinical diagnosis and treatment of genetically related diseases based on specific probe capture and high-throughput second-generation sequencing technology. Familial partial lipodystrophy 2 (FPLD2; OMIM # 151660) or type 2 Köbberling-Dunnigan syndrome with insulin resistance syndrome is uncommon in mainland China and elsewhere.

Aims:We report the case in order to have a further understanding of FPLD2 or type 2 Kobberling- Dunnigan syndrome) with the assistance of WES and improve the clinical and genetic understanding and diagnosis of this disease.

Case Report:A 30-year-old woman was admitted to the cadre department of our hospital at 14:00 on July 11, 2021, because of hyperglycemia, a rapid heart rate, and excessive sweating during pregnancy. An oral glucose tolerance test (OGTT) showed that insulin and C-peptide increased slowly after glucose stimulation, and the peak value was extended backward (Table 1). It was suggested that the patient had developed insulin antibodies, resulting in insulin resistance. Her clinical features and familial inheritance were consistent with FPLD2 (type 2 Kobberling-Dunnigan syndrome). The results of WES indicated that a heterozygous mutation occurred in exon 8 of the LMNA gene, because the base C at position 1444 was mutated into T during transcription. This mutation changed the amino acid position 482 of the encoded protein from Arg to Trp. Type 2 Kobberling- Dunnigan syndrome is associated with an LMNA gene mutation. According to the patient's clinical manifestations, hypoglycemic and lipid-lowering therapy is recommended.

Conclusion:WES can assist in the simultaneous clinical investigation or confirmation of FPLD2 and help identify diseases with similar clinical phenotypes. This case demonstrates that familial partial lipodystrophy is associated with an LMNA gene mutation on chromosome 1q21-22. This is one of the few cases of familial partial lipodystrophy diagnosed by WES.

About the authors

Mingling Deng

Department of Cadre Ward Two, Chinese Medicine Hospital, Xinjiang Medical University

Email: info@benthamscience.net

Wen Chen

Department of Cadre Ward Two, Chinese Medicine Hospital, Xinjiang Medical University

Email: info@benthamscience.net

Yan Qi

Department of Cadre Ward Two, Chinese Medicine Hospital, Xinjiang Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Aggarwal, S. Role of whole exome sequencing for unidentified genetic syndromes. Curr. Opin. Obstet. Gynecol., 2021, 33(2), 112-122. doi: 10.1097/GCO.0000000000000688 PMID: 33620889
  2. Zehravi, M.; Wahid, M.; Ashraf, J.; Fatima, T. Whole-Exome sequencing identifies small mutations in Pakistani muscular dystrophy patients. Genet. Test. Mol. Biomarkers, 2021, 25(3), 218-226. doi: 10.1089/gtmb.2020.0246 PMID: 33734897
  3. Marsili, L.; Duque, K.R.; Bode, R.L.; Kauffman, M.A.; Espay, A.J. Uncovering essential tremor genetics: The promise of long-read sequencing. Front. Neurol., 2022, 13, 821189. doi: 10.3389/fneur.2022.821189 PMID: 35401394
  4. Hobeika, C.; Rached, G.; Chebly, A.; Chouery, E.; Kourie, H.R. Whole-exome and whole-genome sequencing in chronic lymphocytic leukemia: New biomarkers to target. Pharmacogenomics, 2020, 21(13), 957-962. doi: 10.2217/pgs-2020-0022 PMID: 32799640
  5. Vinkšel, M.; Writzl, K.; Maver, A.; Peterlin, B. Improving diagnostics of rare genetic diseases with NGS approaches. J. Community Genet., 2021, 12(2), 247-256. doi: 10.1007/s12687-020-00500-5 PMID: 33452619
  6. Babalola, F.; Ng, D.; Bulic, A.; Curtis, J. Successful treatment of severe hypertriglyceridemia with icosapent ethyl in a case of congenital generalized lipodystrophy type 4. J. Pediatr. Endocrinol. Metab., 2022, 35(7), 968-972. doi: 10.1515/jpem-2021-0718
  7. Unger, R.H.; Zhou, Y.T.; Orci, L. Regulation of fatty acid homeostasis in cells: Novel role of leptin. Proc. Natl. Acad. Sci. USA, 1999, 96(5), 2327-2332. doi: 10.1073/pnas.96.5.2327 PMID: 10051641
  8. Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; Voelkerding, K.; Rehm, H.L. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med., 2015, 17(5), 405-424. doi: 10.1038/gim.2015.30 PMID: 25741868
  9. Trakadis, Y.J.; Buote, C.; Therriault, J.F.; Jacques, P.É.; Larochelle, H.; Lévesque, S. PhenoVar: A phenotype-driven approach in clinical genomics for the diagnosis of polymalformative syndromes. BMC Med. Genomics, 2014, 7(1), 22. doi: 10.1186/1755-8794-7-22 PMID: 24884844
  10. Lightbourne, M.; Brown, R.J. Genetics of Lipodystrophy. Endocrinol. Metab. Clin. North Am., 2017, 46(2), 539-554. doi: 10.1016/j.ecl.2017.01.012 PMID: 28476236
  11. Ceccarini, G.; Magno, S.; Pelosini, C.; Ferrari, F.; Sessa, M.R.; Scabia, G.; Maffei, M.; Jéru, I.; Lascols, O.; Vigouroux, C.; Santini, F. Congenital Generalized Lipoatrophy (Berardinelli-Seip Syndrome) Type 1: Description of novel AGPAT2 homozygous variants showing the highly heterogeneous presentation of the disease. Front. Endocrinol., 2020, 11, 39. doi: 10.3389/fendo.2020.00039 PMID: 32117065
  12. Arshad Cheema, H.; Suleman Malik, H.; Waheed, N.; Mushtaq, I.; Fayyaz, Z.; Nadeem Anjum, M. Berardinelli-seip Congenital Generalised Lipodystrophy. J. Coll. Physicians Surg. Pak., 2018, 28(5), 406-408. doi: 10.29271/jcpsp.2018.05.406 PMID: 29690976
  13. Wildermuth, S.; Spranger, S.; Spranger, M.; Raue, F.; Meinck, H.M. Köbberling-Dunnigan syndrome: A rare cause of generalized muscular hypertrophy. Muscle Nerve, 1996, 19(7), 843-847. doi: 10.1002/(SICI)1097-4598(199607)19:73.0.CO;2-9 PMID: 8965837
  14. Jackson, S.N.J.; Howlett, T.A.; McNally, P.C.; O’Rahilly, S.; Trembath, R.C. Dunnigan-Köbberling syndrome: An autosomal dominant form of partial lipodystrophy. QJM, 1997, 90(1), 27-36. doi: 10.1093/qjmed/90.1.27 PMID: 9093586
  15. Morse, A.N.; Whitaker, M.D. Successful pregnancy in a woman with lipoatrophic diabetes mellitus. A case report. J. Reprod. Med., 2000, 45(10), 850-852. PMID: 11077638
  16. Corvillo, F.; Akinci, B. An overview of lipodystrophy and the role of the complement system. Mol. Immunol., 2019, 112, 223-232. doi: 10.1016/j.molimm.2019.05.011 PMID: 31177059
  17. Hübler, A.; Abendroth, K.; Keiner, T.; Stöcker, W.; Kauf, E.; Hein, G. Dysregulation of insulin-like growth factors in a case of generalized acquired lipoatrophic diabetes mellitus (Lawrence Syndrome) connected with autoantibodies against adipocyte membranes. Experimental and clinical endocrinology & diabetes: Official journal, German Society of Endocrinology. German Diabet Associat., 1998, 106, 79-84.
  18. Morel, C.F.; Thomas, M.A.; Cao, H.; O’Neil, C.H.; Pickering, J.G.; Foulkes, W.D.; Hegele, R.A. A LMNA splicing mutation in two sisters with severe Dunnigan-type familial partial lipodystrophy type 2. J. Clin. Endocrinol. Metab., 2006, 91(7), 2689-2695. doi: 10.1210/jc.2005-2746 PMID: 16636128
  19. Nabrdalik, K.; Strózik, A. Minkina-Pędras, M.; Jarosz-Chobot, P.; MMłynarski, W.; Grzeszczak, W.; Gumprecht, J. Dunnigan-type familial partial lipodystrophy associated with the heterozygous R482W mutation in LMNA gene - case study of three women from one family. Endokrynol. Pol., 2013, 64(4), 306-311. doi: 10.5603/EP.2013.0010 PMID: 24002959
  20. Dušková, L. Kopečková, L.; Jansová, E.; Tichý, L.; Freiberger, T.; Zapletalová, P.; Soška, V.; Ravčuková, B.; Fajkusová, L. An APEX-based genotyping microarray for the screening of 168 mutations associated with familial hypercholesterolemia. Atherosclerosis, 2011, 216(1), 139-145. doi: 10.1016/j.atherosclerosis.2011.01.023 PMID: 21310417
  21. Radhakrishnan, Y.; Duriseti, P.; Chebib, F.T. Management of autosomal dominant polycystic kidney disease in the era of disease-modifying treatment options. Kidney Res. Clin. Pract., 2022, 41(4), 422-431. doi: 10.23876/j.krcp.21.309 PMID: 35354242
  22. Park, J.; Levin, M.G.; Haggerty, C.M.; Hartzel, D.N.; Judy, R.; Kember, R.L.; Reza, N.; Ritchie, M.D.; Owens, A.T.; Damrauer, S.M.; Rader, D.J. A genome-first approach to aggregating rare genetic variants in LMNA for association with electronic health record phenotypes. Genet. Med., 2020, 22(1), 102-111. doi: 10.1038/s41436-019-0625-8 PMID: 31383942
  23. Yanachkova, V.; Staynova, R. Insulin-induced lipoatrophy in a patient on insulin analogue therapy: A case report. Folia Med., 2020, 62(3), 597-600. doi: 10.3897/folmed.62.e50166 PMID: 33009748
  24. Sekizkardes, H.; Cochran, E.; Malandrino, N.; Garg, A.; Brown, R.J. Efficacy of metreleptin treatment in familial partial lipodystrophy due to PPARG vs. LMNA pathogenic variants. J. Clin. Endocrinol. Metab., 2019, 104(8), 3068-3076. doi: 10.1210/jc.2018-02787 PMID: 31194872
  25. Briand, N.; Guénantin, A.C.; Jeziorowska, D.; Shah, A.; Mantecon, M.; Capel, E.; Garcia, M.; Oldenburg, A.; Paulsen, J.; Hulot, J.S.; Vigouroux, C.; Collas, P. The lipodystrophic hotspot lamin A p.R482W mutation deregulates the mesodermal inducer T/Brachyury and early vascular differentiation gene networks. Hum. Mol. Genet., 2018, 27(8), 1447-1459. doi: 10.1093/hmg/ddy055 PMID: 29438482
  26. Oldenburg, A.; Briand, N.; Sørensen, A.L.; Cahyani, I.; Shah, A.; Moskaug, J.Ø.; Collas, P. A lipodystrophy-causing lamin A mutant alters conformation and epigenetic regulation of the anti-adipogenic MIR335 locus. J. Cell Biol., 2017, 216(9), 2731-2743. doi: 10.1083/jcb.201701043 PMID: 28751304
  27. Gautheron, J.; Morisseau, C.; Chung, W.K.; Zammouri, J.; Auclair, M.; Baujat, G.; Capel, E.; Moulin, C.; Wang, Y.; Yang, J.; Hammock, B.D.; Cerame, B.; Phan, F.; Fève, B.; Vigouroux, C.; Andreelli, F.; Jeru, I. EPHX1 mutations cause a lipoatrophic diabetes syndrome due to impaired epoxide hydrolysis and increased cellular senescence. eLife, 2021, 10, e68445. doi: 10.7554/eLife.68445 PMID: 34342583
  28. Tain, M.M.; Berger, P. Partial face-sparing lipodystrophy (Köbberling-Dunnigan syndrome): Report of a sporadic case. Australas. J. Dermatol., 1998, 39(2), 100-105. doi: 10.1111/j.1440-0960.1998.tb01258.x PMID: 9611380
  29. Ursich, M.J.M.; Fukui, R.T.; Galvão, M.S.A.; Marcondes, J.A.M.; Santomauro, A.T.M.G.; Silva, M.E.R.; Rocha, D.M.; Wajchenberg, B.L. Insulin resistance in limb and trunk partial lipodystrophy (type 2 Köbberling-Dunnigan syndrome). Metabolism, 1997, 46(2), 159-163. doi: 10.1016/S0026-0495(97)90295-X PMID: 9030822
  30. Ebihara, K.; Masuzaki, H.; Nakao, K. Long-term leptin-replacement therapy for lipoatrophic diabetes. N. Engl. J. Med., 2004, 351(6), 615-616. doi: 10.1056/NEJM200408053510623 PMID: 15295061
  31. Diker-Cohen, T.; Cochran, E.; Gorden, P.; Brown, R.J. Partial and generalized lipodystrophy: Comparison of baseline characteristics and response to metreleptin. J. Clin. Endocrinol. Metab., 2015, 100(5), 1802-1810. doi: 10.1210/jc.2014-4491 PMID: 25734254
  32. Aschner, P. Insulin therapy in Type 2 Diabetes. Am. J. Ther., 2020, 27(1), e79-e90. doi: 10.1097/MJT.0000000000001088 PMID: 31567175
  33. Sharma, S.; Rehman Ansari, M.H.; Sharma, K.; Singh, R.K.; Ali, S.; Alam, M.M.; Zaman, M.S.; Alam, P.; Akhter, M. Pyrazoline scaffold: Hit identification to lead synthesis and biological evaluation as antidiabetic agents. Future Med. Chem., 2023, 15(1), 9-24. doi: 10.4155/fmc-2022-0141 PMID: 36655571
  34. Hartono, C.; Muthukumar, T.; Suthanthiran, M. Immunosuppressive drug therapy. Cold Spring Harb. Perspect. Med., 2013, 3(9), a015487. doi: 10.1101/cshperspect.a015487 PMID: 24003247
  35. Sethi, N.S.; Prasad, D.N.; Singh, R.K. An insight into the synthesis and SAR of 2,4-Thiazolidinediones (2,4-TZD) as Multifunctional scaffold: A review. Mini Rev. Med. Chem., 2020, 20(4), 308-330. doi: 10.2174/1389557519666191029102838 PMID: 31660809
  36. Chang, E.; Park, C.Y.; Park, S.W. Role of thiazolidinediones, insulin sensitizers, in non-alcoholic fatty liver disease. J. Diabetes Investig., 2013, 4(6), 517-524. doi: 10.1111/jdi.12107 PMID: 24843703
  37. Araújo-Vilar, D.; Santini, F. Diagnosis and treatment of lipodystrophy: A step-by-step approach. J. Endocrinol. Invest., 2019, 42(1), 61-73. doi: 10.1007/s40618-018-0887-z PMID: 29704234

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers