The Expression and Prognostic Value of Co-stimulatory Molecules in Clear Cell Renal Cell Carcinoma (CcRcc)


Цитировать

Полный текст

Аннотация

Background:Renal cell carcinoma (RCC) was one of the most common malignant cancers in the urinary system. Clear cell carcinoma (ccRCC) is the most common pathological type, accounting for approximately 80% of RCC. The lack of accurate and effective prognosis prediction methods has been a weak link in ccRCC treatment. Co-stimulatory molecules played the main role in increasing anti-tumor immune response, which determined the prognosis of patients. Therefore, the main objective of the present study was to explore the prognostic value of Co-stimulatory molecules genes in ccRCC patients.

Methods:The TCGA database was used to get gene expression and clinical characteristics of patients with ccRCC. A total of 60 Co-stimulatory molecule genes were also obtained from TCGA-ccRCC, including 13 genes of the B7/ CD28 Co-stimulatory molecules family and 47 genes of the TNF family. In the TCGA cohort, the least absolute shrinkage and selection operator (LASSO) Cox regression model was used to generate a multigene signature. R and Perl programming languages were used for data processing and drawing. Real-time PCR was used to verify the expression of differentially expressed genes.

Results:The study's initial dataset included 539 ccRCC samples and 72 normal samples. The 13 samples have been eliminated. According to FDR(<0.05, there were differences in the expression of 55 Co-stimulatory molecule genes in ccRCC and normal tissues. LASSO Cox regression analysis results indicated that 13 risk genes were optimally used to construct a prognostic model of ccRCC. The patients were divided into a high-risk group and a low-risk group. Those in the high-risk group had significantly lower OS (Overall Survival rate) than patients in the low-risk group. Receiver operating characteristic (ROC) curve analysis confirmed the predictive value of the prognosis model of ccRCC (AUC>0.7). There are substantial differences in immune cell infiltration between high and low-risk groups. Functional analysis revealed that immune-related pathways were enriched, and immune status was different between the two risk groups. Real-time PCR results for genes were consistent with TCGA DEGs.

Conclusion:By stratifying patients with all independent risk factors, the prognostic score model developed in this study may improve the accuracy of prognosis prediction for patients with ccRCC.

Об авторах

Chengjiang Wu

Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University

Email: info@benthamscience.net

Xiaojie Cai

Department of Radiology, Affiliated Changshu Hospital of Soochow University, First People’s Hospital of Changshu City

Email: info@benthamscience.net

Chunyan He

Department of Clinical Laboratory,, Kunshan Hospital of Chinese Medicine Kunshan

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Sato, Y.; Yoshizato, T.; Shiraishi, Y.; Maekawa, S.; Okuno, Y.; Kamura, T.; Shimamura, T.; Sato-Otsubo, A.; Nagae, G.; Suzuki, H.; Nagata, Y.; Yoshida, K.; Kon, A.; Suzuki, Y.; Chiba, K.; Tanaka, H.; Niida, A.; Fujimoto, A.; Tsunoda, T.; Morikawa, T.; Maeda, D.; Kume, H.; Sugano, S.; Fukayama, M.; Aburatani, H.; Sanada, M.; Miyano, S.; Homma, Y.; Ogawa, S. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat. Genet., 2013, 45(8), 860-867. doi: 10.1038/ng.2699 PMID: 23797736
  2. Serzan, M.T.; Atkins, M.B. Current and emerging therapies for first line treatment of metastatic clear cell renal cell carcinoma. J. Cancer Metastasis Treat., 2021, 7, 39. doi: 10.20517/2394-4722.2021.76 PMID: 35295921
  3. Sanchez, D.J.; Simon, M.C. Genetic and metabolic hallmarks of clear cell renal cell carcinoma. Biochim. Biophys. Acta Rev. Cancer, 2018, 1870(1), 23-31. doi: 10.1016/j.bbcan.2018.06.003 PMID: 29959988
  4. Cairns, P. Renal cell carcinoma. Cancer Biomark., 2011, 9(1-6), 461-473. doi: 10.3233/CBM-2011-0176 PMID: 22112490
  5. Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin., 2019, 69(5), 363-385. doi: 10.3322/caac.21565 PMID: 31184787
  6. Vera-Badillo, F.E.; Templeton, A.J.; Duran, I.; Ocana, A.; de Gouveia, P.; Aneja, P.; Knox, J.J.; Tannock, I.F.; Escudier, B.; Amir, E. Systemic therapy for non-clear cell renal cell carcinomas: A systematic review and meta-analysis. Eur. Urol., 2015, 67(4), 740-749. doi: 10.1016/j.eururo.2014.05.010 PMID: 24882670
  7. Herbst, R.S.; Baas, P.; Kim, D.W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.Y.; Molina, J.; Kim, J.H.; Arvis, C.D.; Ahn, M.J.; Majem, M.; Fidler, M.J.; de Castro, G., Jr; Garrido, M.; Lubiniecki, G.M.; Shentu, Y. Im, E.; Dolled-Filhart, M.; Garon, E.B. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet, 2016, 387(10027), 1540-1550. doi: 10.1016/S0140-6736(15)01281-7 PMID: 26712084
  8. Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; Barlesi, F.; Kohlhäufl, M.; Arrieta, O.; Burgio, M.A.; Fayette, J.; Lena, H.; Poddubskaya, E.; Gerber, D.E.; Gettinger, S.N.; Rudin, C.M.; Rizvi, N.; Crinò, L.; Blumenschein, G.R., Jr; Antonia, S.J.; Dorange, C.; Harbison, C.T.; Graf Finckenstein, F.; Brahmer, J.R. Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer. N. Engl. J. Med., 2015, 373(17), 1627-1639. doi: 10.1056/NEJMoa1507643 PMID: 26412456
  9. Lou, Q.; Lü, M.; Yu, M. Anti-CD28 antibody costimulation enhances anti-CD3 antibody activating T cells and lowering TGF-beta expression in vitro. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2006, 14(3), 547-551.
  10. Sanmamed, M.F.; Chen, L. A Paradigm Shift in Cancer Immunotherapy: From enhancement to normalization. Cell, 2019, 176(3), 677. doi: 10.1016/j.cell.2019.01.008 PMID: 30682374
  11. Janakiram, M.; Chinai, J.M.; Zhao, A.; Sparano, J.A.; Zang, X. HHLA2 and TMIGD2: New immunotherapeutic targets of the B7 and CD28 families. OncoImmunology, 2015, 4(8), e1026534. doi: 10.1080/2162402X.2015.1026534
  12. Croft, M.; Benedict, C.A.; Ware, C.F. Clinical targeting of the TNF and TNFR superfamilies. Nat. Rev. Drug Discov., 2013, 12(2), 147-168. doi: 10.1038/nrd3930 PMID: 23334208
  13. Gajewski, T.F.; Schreiber, H.; Fu, Y.X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol., 2013, 14(10), 1014-1022. doi: 10.1038/ni.2703 PMID: 24048123
  14. Pan, Q.; Wang, L.; Chai, S.; Zhang, H.; Li, B. The immune infiltration in clear cell Renal Cell Carcinoma and their clinical implications: A study based on TCGA and GEO databases. J. Cancer, 2020, 11(11), 3207-3215. doi: 10.7150/jca.37285
  15. Christinat, Y.; Krek, W. Integrated genomic analysis identifies subclasses and prognosis signatures of kidney cancer. Oncotarget, 2015, 6(12), 10521-10531. doi: 10.18632/oncotarget.3294 PMID: 25826081
  16. Leibler, C.; Thiolat, A.; Elsner, R.A.; El Karoui, K.; Samson, C.; Grimbert, P. Costimulatory blockade molecules and B-cell-mediated immune response: Current knowledge and perspectives. Kidney Int., 2019, 95(4), 774-786. doi: 10.1016/j.kint.2018.10.028 PMID: 30711200
  17. So, T.; Ishii, N. The TNF-TNFR family of co-signal molecules. Adv. Exp. Med. Biol., 2019, 1189, 53-84. doi: 10.1007/978-981-32-9717-3_3 PMID: 31758531
  18. Schorer, M.; Kuchroo, V.K.; Joller, N. Role of Co-stimulatory molecules in T helper cell differentiation. Adv. Exp. Med. Biol., 2019, 1189, 153-177. doi: 10.1007/978-981-32-9717-3_6 PMID: 31758534
  19. Vecchiarelli, A. Cytokines and costimulatory molecules: Positive and negative regulation of the immune response to Cryptococcus neoformans. Arch. Immunol. Ther. Exp. (Warsz.), 2000, 48(6), 465-472. PMID: 11197600
  20. Kusztal, M.; Jezior, D.; Weyde, W. The immune response to kidney allograft. Part II: The role of costimulatory and accessory molecules in T-cell activation; the effector phase of response Postepy Hig. Med. Dosw., 2007, 61, 21-27.
  21. Janakiram, M.; Shah, U.A.; Liu, W.; Zhao, A.; Schoenberg, M.P.; Zang, X. The third group of the B7- CD 28 immune checkpoint family: HHLA 2, TMIGD 2, B7x, and B7-H3. Immunol. Rev., 2017, 276(1), 26-39. doi: 10.1111/imr.12521 PMID: 28258693
  22. Krummel, M.F.; Allison, J.P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med., 1995, 182(2), 459-465. doi: 10.1084/jem.182.2.459 PMID: 7543139
  23. Watts, T.H. TNF/TNFR family members in costimulation of T cell responses. Annu. Rev. Immunol., 2005, 23(1), 23-68. doi: 10.1146/annurev.immunol.23.021704.115839 PMID: 15771565
  24. Croft, M. The TNF family in T cell differentiation and function - Unanswered questions and future directions. Semin. Immunol., 2014, 26(3), 183-190. doi: 10.1016/j.smim.2014.02.005 PMID: 24613728
  25. Izda, V.; Jeffries, M.A.; Sawalha, A.H. COVID-19: A review of therapeutic strategies and vaccine candidates. Clin. Immunol., 2021, 222, 108634. doi: 10.1016/j.clim.2020.108634 PMID: 33217545
  26. Cardona, G.; Rosselló, F.; Valiente, G. A perl package and an alignment tool for phylogenetic networks. BMC Bioinformatics, 2008, 9(175) doi: 10.1186/1471-2105-9-175
  27. Chan, B.K.C. Data analysis using r programming. Adv. Exp. Med. Biol., 2018, 1082, 47-122. doi: 10.1007/978-3-319-93791-5_2 PMID: 30357717
  28. Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47. doi: 10.1093/nar/gkv007 PMID: 25605792
  29. Wang, R.; Zhu, Y.; Liu, X. The Clinicopathological features and survival outcomes of patients with different metastatic sites in stage IV breast cancer. BMC Cancer, 2019, 19, 1091. doi: 10.1186/s12885-019-6311-z
  30. Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 2021, 49(D1), D605-D612. doi: 10.1093/nar/gkaa1074 PMID: 33237311
  31. Qiu, H.; Hu, X.; He, C.; Yu, B.; Li, Y.; Li, J. Identification and validation of an individualized prognostic signature of bladder cancer based on seven immune related genes. Front. Genet., 2020, 11, 12. doi: 10.3389/fgene.2020.00012
  32. Wang, Q.; Wang, Z.; Li, G.; Zhang, C.; Bao, Z.; Wang, Z.; You, G.; Jiang, T. Identification of IDH-mutant gliomas by a prognostic signature according to gene expression profiling. Aging (Albany NY), 2018, 10(8), 1977-1988. doi: 10.18632/aging.101521 PMID: 30115812
  33. Xiao, B.; Liu, L.; Li, A. Identification and Verification of Immune-Related Gene Prognostic Signature Based on ssGSEA for Osteosarcoma. Front. Oncol., 2020, 10, 607622. doi: 10.3389/fonc.2020.607622
  34. Zimpfer, A.; Glass, Ä.; Zettl, H.; Maruschke, M.; Hakenberg, O.W.; Erbersdobler, A. Renal cell carcinoma diagnosis and prognosis within the context of the WHO classification 2016. Urologe A, 2019, 58(9), 1057-1065. doi: 10.1007/s00120-019-0952-z PMID: 31093717
  35. Wu, C.; Cai, X.; Yan, J.; Deng, A.; Cao, Y.; Zhu, X. Identification of novel glycolysis-related gene signatures associated with prognosis of patients with clear cell renal cell carcinoma based on TCGA. Front. Genet., 2020, 11, 589663. doi: 10.3389/fgene.2020.589663
  36. Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)). Method. Methods, 2001, 25(4), 402-408. doi: 10.1006/meth.2001.1262 PMID: 11846609

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024