Study of Active Phytochemicals and Mechanisms of Cnidii Fructus in Treating Osteoporosis Based on HPLC-Q-TOF-MS/MS and Network Pharmacology


Цитировать

Полный текст

Аннотация

Introduction:This study aimed to clarify the anti-osteoporosis mechanism of Cnidii Fructus (CF) via network pharmacology and experimental verification.

Methods:HPLC fingerprints combined with HPLC-Q-TOF-MS/MS analysis confirmed common components (CCS) of CF. Then, network pharmacology was used to investigate the anti-OP mechanism of CF, including potential anti-OP phytochemicals, potential targets, and related signalling pathway. Molecular docking analysis was carried on investigating the protein-ligand interactions. Finally, in vitro experiments were performed to verify anti-OP mechanism of CF.

Results:In this study, 17 compounds from CF were identified by HPLC-Q-TOF-MS/MS and HPLC fingerprints and then were further screened key compounds and potential targets by PPI analysis, ingredient-target network and hub network. The key compounds were SCZ10 (Diosmin), SCZ16 (Pabulenol), SCZ6 (Osthenol), SCZ8 (Bergaptol) and SCZ4 (Xanthotoxol). The potential targets were SRC, MAPK1, PIK3CA, AKT1 and HSP90AA1. Molecular docking further analysis indicated that the five key compounds have a good binding affinity with related proteins. CCK8 assays, TRAP staining experiments, and ALP activity assays concluded that osthenol and bergaptol inhibited osteoclast formation and promoted osteoblast bone formation to improve osteoporosis.

Conclusion:Based on network pharmacology and in vitro experiments analysis, this study revealed that CF possessed an anti-OP effect, and its potential therapeutic effect may be involved with osthenol and bergaptol from CF.

Об авторах

Yincong Xu

Department of Ophthalmology, The First Hospital of Hebei Medical University,

Email: info@benthamscience.net

Shuai Zhang

Department of Ophthalmology, The First Hospital of Hebei Medical University

Email: info@benthamscience.net

Shinong Yuan

College of Pharmacy, Hebei University of Chinese Medicine,

Email: info@benthamscience.net

Yanlei Su

, Bethune Internation Peace Hospital (The 980st Hospital of the PLA Joint Logistics Support Force)

Email: info@benthamscience.net

Yuqian Jia

College of Pharmacy, Hebei University of Chinese Medicine

Email: info@benthamscience.net

Yajing Zhang

College of Pharmacy, Hebei University of Chinese Medicine

Автор, ответственный за переписку.
Email: info@benthamscience.net

Xuhong Duan

College of Pharmacy, Hebei University of Chinese Medicine

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Eastell, R.; O’Neill, T.W.; Hofbauer, L.C.; Langdahl, B.; Reid, I.R.; Gold, D.T.; Cummings, S.R. Postmenopausal osteoporosis. Nat. Rev. Dis. Primers, 2016, 2(1), 16069-16084. doi: 10.1038/nrdp.2016.69 PMID: 27681935
  2. Ebeling, P.R.; Nguyen, H.H.; Aleksova, J.; Vincent, A.J.; Wong, P.; Milat, F. Secondary osteoporosis. Endocr. Rev., 2022, 43(2), 240-313. doi: 10.1210/endrev/bnab028 PMID: 34476488
  3. Li, G.; Thabane, L.; Papaioannou, A.; Ioannidis, G.; Levine, M.A.H.; Adachi, J.D. An overview of osteoporosis and frailty in the elderly. BMC Musculoskelet. Disord., 2017, 18(1), 46. doi: 10.1186/s12891-017-1403-x
  4. Pols, H.A.P.; Felsenberg, D.; Hanley, D.A.; Štepán, J.; Muñoz-Torres, M.; Wilkin, T.J.; Qin-sheng, G.; Galich, A.M.; Vandormael, K.; Yates, A.J.; Stych, B. Multinational, placebo-controlled, randomized trial of the effects of alendronate on bone density and fracture risk in postmenopausal women with low bone mass: results of the FOSIT study. Osteoporos. Int., 1999, 9(5), 461-468. doi: 10.1007/PL00004171 PMID: 10550467
  5. Reginster, J.Y.; Deroisy, R.; Dougados, M.; Jupsin, I.; Colette, J.; Roux, C. Prevention of early postmenopausal bone loss by strontium ranelate: The randomized, two-year, double-masked, dose-ranging, placebo-controlled PREVOS trial. Osteoporos. Int., 2002, 13(12), 925-931. doi: 10.1007/s001980200129 PMID: 12459934
  6. Cranney, A.; Guyatt, G.; Griffith, L.; Wells, G.; Tugwell, P.; Rosen, C.; Wells, G.; Adachi, J.; Waldegger, L.; Guyatt, G. Meta-analyses of therapies for postmenopausal osteoporosis. IX: Summary of meta-analyses of therapies for postmenopausal osteoporosis. Endocr. Rev., 2002, 23(4), 570-578. doi: 10.1210/er.2001-9002 PMID: 12202472
  7. Shao, M.; Ye, C.; Bayliss, G.; Zhuang, S. New insights into the effects of individual chinese herbal medicines on chronic kidney disease. Front. Pharmacol., 2021, 12, 774414. doi: 10.3389/fphar.2021.774414 PMID: 34803715
  8. Chinese Pharmacopoeia. Available from: http://wp.chp.org.cn/front/chpint/en/ (Accessed on: 20 March 2022).
  9. Kitajima, J.; Ishikawa, T.; Aoki, Y. Glucides of Cnidium monnieri fruit. Phytochemistry, 2001, 58(4), 641-644. doi: 10.1016/S0031-9422(01)00238-2 PMID: 11576615
  10. Zhao, J.; Zhou, M.; Liu, Y.; Zhang, G.; Luo, Y. Chromones and coumarins from the dried fructus of Cnidium monnieri. Fitoterapia, 2011, 82(5), 767-771. doi: 10.1016/j.fitote.2011.03.008 PMID: 21504784
  11. Sun, Y.; Yang, A.W.H.; Lenon, G.B. Phytochemistry, ethnopharmacology, pharmacokinetics and toxicology of cnidium monnieri (L.). Cusson. Int. J. Mol. Sci., 2020, 21(3), 1006-1057. doi: 10.3390/ijms21031006 PMID: 32028721
  12. Zhang, Q.; Qin, L.; He, W.; Van Puyvelde, L.; Maes, D.; Adams, A.; Zheng, H.; De Kimpe, N. Coumarins from cnidium monnieri and their antiosteoporotic activity. Planta Med., 2007, 73(1), 13-19. doi: 10.1055/s-2006-951724 PMID: 17315308
  13. Chen, G.; Xu, Q.; Dai, M.; Liu, X. Bergapten suppresses RANKL-induced osteoclastogenesis and ovariectomy-induced osteoporosis via suppression of NF-κB and JNK signaling pathways. Biochem. Biophys. Res. Commun., 2019, 509(2), 329-334. doi: 10.1016/j.bbrc.2018.12.112
  14. Jia, Y-Q.; Wang, J-J.; Yuan, S-N.; Hou, F-J.; Liu, Z.; Duan, X-H.; Li, C-H. Study on HPLC fingerprint chromatogram and quantitation method of seven coumarins in Cnidium monnieri decoction pieces. Yaowu Fenxi Zazhi, 2022, 42, 84-93.
  15. Chang, Y.; Zhang, D.; Yang, G.; Zheng, Y.; Guo, L. Screening of anti-lipase components of Artemisia argyi leaves based on spectrum-effect relationships and HPLC-MS/MS. Front. Pharmacol., 2021, 12675396. doi: 10.3389/fphar.2021.675396 PMID: 34025435
  16. Khan, S.A.; Lee, T.K.W. Network-pharmacology-based study on active phytochemicals and molecular mechanism of Cnidium monnieri in treating hepatocellular carcinoma. Int. J. Mol. Sci., 2022, 23(10), 5400-5419. doi: 10.3390/ijms23105400 PMID: 35628212
  17. Lu, J.; Yan, J.; Yan, J.; Zhang, L.; Chen, M.; Chen, Q.; Cheng, L.; Li, P. Network pharmacology based research into the effect and mechanism of Xijiao Dihuang decoction against sepsis. Biomed. Pharmacother., 2020, 122109777. doi: 10.1016/j.biopha.2019.109777 PMID: 31918261
  18. Gao, R.; Zhang, X-B.; Sun, J.Y.; Tang, X.H.; Li, J.L.; Zhou, X.; Shen, T. Pharmacological mechanism of Ganlu Powder in the treatment of NASH based on network pharmacology and molecular docking. Dis. Markers, 2022, 2022, 7251450.
  19. Zeng, L.; Yang, K.; Liu, H.; Zhang, G. A network pharmacology approach to investigate the pharmacological effects of Guizhi Fuling Wan on uterine fibroids. Exp. Ther. Med., 2017, 14(5), 4697-4710. doi: 10.3892/etm.2017.5170 PMID: 29201170
  20. Chen, L.L.; Chu, S.S.; Zhang, L.; Xie, J.; Dai, M.; Wu, X.; Peng, H-S. Tissue-specific metabolite profiling on the different parts of bolting and unbolting peucedanum praeruptorum dunn (Qianhu) by laser microdissection combined with UPLC-Q/TOF–MS and HPLC–DAD. Molecules, 2019, 24(7), 1439-1456. doi: 10.3390/molecules24071439 PMID: 30979075
  21. Xu, L.L.; Xu, J.J.; Zhong, K.R.; Shang, Z.P.; Wang, F.; Wang, R.F.; Zhang, L.; Zhang, J.Y.; Liu, B. Analysis of non-volatile chemical constituents of menthae haplocalycis herba by ultra-high performance liquid chromatography-high resolution mass spectrometry. Molecules, 2017, 22(10), 1756-1773. doi: 10.3390/molecules22101756 PMID: 29048378
  22. Cai, H.; Xu, Y.; Xie, L.; Duan, Y.; Zhou, J.; Liu, J.; Niu, M.; Zhang, Y.; Shen, L.; Pei, K.; Cao, G. Investigation on spectrum-effect correlation between constituents absorbed into blood and bioactivities of baizhu shaoyao san before and after processing on ulcerative colitis rats by UHPLC/Q-TOF-MS/MS coupled with gray correlation analysis. Molecules, 2019, 24(5), 940-966. doi: 10.3390/molecules24050940 PMID: 30866532
  23. Zhou, S.D.; Xu, X.; Lin, Y.F.; Xia, H.Y.; Huang, L.; Dong, M.S. On-line screening and identification of free radical scavenging compounds in Angelica dahurica fermented with Eurotium cristatum using an HPLC-PDA-Triple-TOF-MS/MS-ABTS system. Food Chem., 2019, 272, 670-678. doi: 10.1016/j.foodchem.2018.07.173 PMID: 30309597
  24. Ma, X.; Wu, Y.; Li, Y.; Huang, Y.; Liu, Y.; Luo, P.; Zhang, Z. Rapid discrimination of Notopterygium incisum and Notopterygium franchetii based on characteristic compound profiles detected by UHPLC‐QTOF‐MS/MS coupled with multivariate analysis. Phytochem. Anal., 2020, 31(3), 355-365. doi: 10.1002/pca.2902 PMID: 31908072
  25. Gao, F.; Hu, Y.; Ye, X.; Li, J.; Chen, Z.; Fan, G. Optimal extraction and fingerprint analysis of Cnidii fructus by accelerated solvent extraction and high performance liquid chromatographic analysis with photodiode array and mass spectrometry detections. Food Chem., 2013, 141(3), 1962-1971. doi: 10.1016/j.foodchem.2013.05.013 PMID: 23870916
  26. Ciren, D-Z.; Deng, M-Z.; Zhu, G-H.; Yuan, E.; Zhang, X-B-T.; Yan, Z-H. Analysis of chemical constituents of coumarins in Heraeleum millefolium by UPLC-Q-TOF-MS. Tradit. Chin. Drug Res. Clini. Pharmacol., 2022, 33, 105-114.
  27. Shi, X.; Liu, M.; Zhang, M.; Zhang, K.; Liu, S.; Qiao, S.; Shi, R.; Jiang, X.; Wang, Q. Identification of in vitro and in vivo metabolites of isoimperatorin using liquid chromatography/mass spectrometry. Food Chem., 2013, 141(1), 357-365. doi: 10.1016/j.foodchem.2013.02.068 PMID: 23768368
  28. Zhao, X.J.; Guo, P.M.; Pang, W.H.; Zhang, Y.H.; Zhao, Q.Y.; Jiao, B.N.; Kilmartin, P.A. A rapid UHPLC-QqQ-MS/MS method for the simultaneous qualitation and quantitation of coumarins, furocoumarins, flavonoids, phenolic acids in pummelo fruits. Food Chem., 2020, 325, 126835.1-126835.8.
  29. Tsiokanos, E.; Tsafantakis, N.; Termentzi, A.; Aligiannis, N.; Skaltsounis, L. A.; Fokialakis, N. Phytochemical characteristics of bergamot oranges from the Ionian islands of Greece: A multi-analytical approach with emphasis in the distribution of neohesperidose flavanones. Food Chem.,, 2021, 343, 128400.1-128400.10. doi: 10.1016/j.foodchem.2020.128400
  30. Cho, P.; Choi, S.M.; Kim, Y.; Lee, D.H.; Noh, Y.; Kim, S.; Kim, J.H.; Lee, T.; Lee, S. Characterization of osthenol metabolism in vivo and its pharmacokinetics. Xenobiotica, 2020, 50(7), 839-846. doi: 10.1080/00498254.2019.1705427 PMID: 31847686
  31. Li, B.; Zhang, X.; Wang, J.; Zhang, L.; Gao, B.; Shi, S.; Wang, X.; Li, J.; Tu, P. Simultaneous characterisation of fifty coumarins from the roots of Angelica dahurica by off-line two-dimensional high-performance liquid chromatography coupled with electrospray ionisation tandem mass spectrometry. Phytochem. Anal., 2014, 25(3), 229-240. doi: 10.1002/pca.2496 PMID: 24481589
  32. Jia, M.; Li, Y.; Zhai, X.; Yang, Y.; Li, C.; Zhang, Q.; Qin, L. Qualitative analysis and quality evaluation of Cnidium monnieri Using UHPLC-ESI-Q-TOF/MS. Chin. Herb. Med., 2016, 8(4), 323-330. doi: 10.1016/S1674-6384(16)60058-8
  33. Li, Y.Q.; Yang, C.; Jia, K.X.; Wang, J.X.; Wang, J.X.; Ming, R.R.; Xu, T.T.; Su, X.H.; Jing, Y.; Miao, Y.D.; Liu, C.F.; Lin, N. Fengshi Qutong capsule ameliorates bone destruction of experimental rheumatoid arthritis by inhibiting osteoclastogenesis. J. Ethnopharmacol., 2022, 282, 114602. doi: 10.1016/j.jep.2021.114602
  34. Wu, Y.; Gao, L.J.; Fan, Y.S.; Chen, Y.; Li, Q. Network Pharmacology-Based Analysis on the Action Mechanism of Oleanolic Acid to Alleviate Osteoporosis. ACS Omega, 2021, 6(42), 28410-28420. doi: 10.1021/acsomega.1c04825 PMID: 34723038
  35. Yin, G.; Zheng, Q.; Yan, C.; Berk, B.C. GIT1 is a scaffold for ERK1/2 activation in focal adhesions. J. Biol. Chem., 2005, 280(30), 27705-27712. doi: 10.1074/jbc.M502271200 PMID: 15923189
  36. Katz, S.; Boland, R.; Santillán, G. Modulation of ERK 1/2 and p38 MAPK signaling pathways by ATP in osteoblasts: Involvement of mechanical stress-activated calcium influx, PKC and Src activation. Int. J. Biochem. Cell Biol., 2006, 38(12), 2082-2091. doi: 10.1016/j.biocel.2006.05.018 PMID: 16893669
  37. Pan, J.M.; Wu, L.G.; Cai, J.W.; Wu, L.T.; Liang, M. Dexamethasone suppresses osteogenesis of osteoblast via the PI3K/Akt signaling pathway in vitro and in vivo. J. Recept. Signal Transduct. Res., 2019, 39(1), 80-86. doi: 10.1080/10799893.2019.1625061 PMID: 31210570
  38. Wang, H.; Zhou, Y.; Jia, H.; Hu, A.; Liu, R.; Zeng, X. Nanoparticles targeting delivery Antagomir-483-5p to bone marrow mesenchymal stem cells treat osteoporosis by increasing bone formation. Curr. Stem Cell Res. Ther., 2023, 18(1), 115-126. doi: 10.2174/1574888X17666220426120850 PMID: 35473519
  39. Hommann, M.; Kämmerer, D.; Lehmann, G.; Kornberg, A.; Küpper, B.; Daffner, W.; Wolf, G.; Settmacher, U. Prevention of early loss of bone mineral density after liver transplantation by prostaglandin E1. Transplant. Proc., 2007, 39(2), 540-543. doi: 10.1016/j.transproceed.2006.12.016 PMID: 17362777
  40. Du, J.; Yang, J.; He, Z.; Cui, J.; Yang, Y.; Xu, M.; Qu, X.; Zhao, N.; Yan, M.; Li, H.; Yu, Z. Osteoblast and osteoclast activity affect bone remodeling upon regulation by mechanical loading-induced leukemia inhibitory factor expression in osteocytes. Front. Mol. Biosci., 2020, 75, 85056. doi: 10.3389/fmolb.2020.585056 PMID: 33324677
  41. Zhai, Y.; Li, Y.; Wang, Y.; Cui, J.; Feng, K.; Kong, X.; Chen, L. Psoralidin, a prenylated coumestan, as a novel anti-osteoporosis candidate to enhance bone formation of osteoblasts and decrease bone resorption of osteoclasts. Eur. J. Pharmacol., 2017, 801, 62-71. doi: 10.1016/j.ejphar.2017.03.001 PMID: 28283388
  42. Han, S.Y.; Kim, Y.K. Berberine suppresses RANKL-induced osteoclast differentiation by inhibiting c-Fos and NFATc1 expression. Am. J. Chin. Med., 2019, 47(2), 439-455. doi: 10.1142/S0192415X19500228 PMID: 30827151
  43. Zeng, X.; He, L.; Wang, S.; Wang, K.; Zhang, Y.; Tao, L.; Li, X.; Liu, S. Aconine inhibits RANKL-induced osteoclast differentiation in RAW264.7 cells by suppressing NF-κB and NFATc1 activation and DC-STAMP expression. Acta Pharmacol. Sin., 2016, 37(2), 255-263. doi: 10.1038/aps.2015.85 PMID: 26592521
  44. Nakamura, M.; Aoyama, N.; Yamaguchi, S.; Sasano, Y. Expression of tartrate-resistant acid phosphatase and cathepsin K during osteoclast differentiation in developing mouse mandibles. Biomed. Res., 2021, 42(1), 13-21. doi: 10.2220/biomedres.42.13 PMID: 33563875
  45. Cheng, B.F.; Feng, X.; Gao, Y.X.; Jian, S.Q.; Liu, S.R.; Wang, M.; Xie, Y.F.; Wang, L.; Feng, Z.W.; Yang, H.J. Neural cell adhesion molecule regulates osteoblastic differentiation through Wnt/β-catenin and PI3K-Akt signaling pathways in MC3T3-E1 cells. Front. Endocrinol., 2021, 12, 657953. doi: 10.3389/fendo.2021.657953 PMID: 34054729
  46. Li, W.; Zhang, S.; Liu, J.; Liu, Y.; Liang, Q. Vitamin K2 stimulates Mc3T3 E1 osteoblast differentiation and mineralization through autophagy induction. Mol. Med. Rep., 2019, 19(5), 3676-3684. doi: 10.3892/mmr.2019.10040 PMID: 30896842
  47. Guo, Y.; Zheng, S-Y.; Yong, M.; Dai, Q.S.; Fan, J.; Huan, G.C. Effect of wenshen tongluo zhitong decoction on bone mineral density and serum biochemical indices in ovarectomized rats. Shandong J. Trand. Chin., 2017, 36, 1055-1074.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024