Quantitative Proteomics Combined with Network Pharmacology Analysis Unveils the Biological Basis of Schisandrin B in Treating Diabetic Nephropathy


Citar

Texto integral

Resumo

Background:Diabetic nephropathy (DN) is a major complication of diabetes. Schisandrin B (Sch) is a natural pharmaceutical monomer that was shown to prevent kidney damage caused by diabetes and restore its function. However, there is still a lack of comprehensive and systematic understanding of the mechanism of Sch treatment in DN.

Objective:We aim to provide a systematic overview of the mechanisms of Sch in multiple pathways to treat DN in rats.

Methods:Streptozocin was used to build a DN rat model, which was further treated with Sch. The possible mechanism of Sch protective effects against DN was predicted using network pharmacology and was verified by quantitative proteomics analysis.

Results:High dose Sch treatment significantly downregulated fasting blood glucose, creatinine, blood urea nitrogen, and urinary protein levels and reduced collagen deposition in the glomeruli and tubule-interstitium of DN rats. The activities of superoxide dismutase (SOD) and plasma glutathione peroxidase (GSH-Px) in the kidney of DN rats significantly increased with Sch treatment. In addition, the levels of IL-6, IL-1β, and TNF-α were significantly reduced in DN rats treated with Sch. 11 proteins that target both Sch and DN were enriched in pathways such as MAPK signaling, PI3K-Akt signaling, renal cell carcinoma, gap junction, endocrine resistance, and TNF signaling. Furthermore, quantitative proteomics showed that Xaf1 was downregulated in the model vs. control group and upregulated in the Sch-treated vs. model group. Five proteins, Crb3, Tspan4, Wdr45, Zfp512, and Tmigd1, were found to be upregulated in the model vs. control group and downregulated in the Sch vs. model group. Three intersected proteins between the network pharmacology prediction and proteomics results, Crb3, Xaf1, and Tspan4, were identified.

Conclusion:Sch functions by relieving oxidative stress and the inflammatory response by regulating Crb3, Xaf1, and Tspan4 protein expression levels to treat DN disease.

Sobre autores

Jianying Song

School of Life Sciences, Tianjin University

Email: info@benthamscience.net

Bo Zhang

Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University

Email: info@benthamscience.net

Huiping Zhang

, Shanghai Applied Protein Technology Co., Ltd.

Email: info@benthamscience.net

Wenbo Cheng

, Tianjin Key Laboratory of Medical Mass Spectrometry for Accurate Diagnosis

Autor responsável pela correspondência
Email: info@benthamscience.net

Peiyuan Liu

School of Life Sciences, Tianjin University

Autor responsável pela correspondência
Email: info@benthamscience.net

Jun Kang

School of Life Sciences, Tianjin University

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Goldberg, R.; Rubinstein, A.M.; Gil, N.; Hermano, E.; Li, J.P.; van der Vlag, J.; Atzmon, R.; Meirovitz, A.; Elkin, M. Role of heparanase-driven inflammatory cascade in pathogenesis of diabetic nephropathy. Diabetes, 2014, 63(12), 4302-4313. doi: 10.2337/db14-0001 PMID: 25008182
  2. Ni, W.J.; Tang, L.Q.; Wei, W. Research progress in signalling pathway in diabetic nephropathy. Diabetes Metab. Res. Rev., 2015, 31(3), 221-233. doi: 10.1002/dmrr.2568 PMID: 24898554
  3. Wang, H.; Zhang, H.; Chen, X.; Zhao, T.; Kong, Q.; Yan, M.; Zhang, B.; Sun, S.; Lan, H.Y.; Li, N.; Li, P. The decreased expression of electron transfer flavoprotein β is associated with tubular cell apoptosis in diabetic nephropathy. Int. J. Mol. Med., 2016, 37(5), 1290-1298. doi: 10.3892/ijmm.2016.2533 PMID: 27035869
  4. Jin, H.; Piao, S.G.; Jin, J.Z.; Jin, Y.S.; Cui, Z.H.; Jin, H.F.; Zheng, H.L.; Li, J.J.; Jiang, Y.J.; Yang, C.W.; Li, C. Synergistic effects of leflunomide and benazepril in streptozotocin-induced diabetic nephropathy. Nephron, Exp. Nephrol., 2014, 126(3), 148-156. doi: 10.1159/000362556 PMID: 24855017
  5. Tuttle, K.R.; Bakris, G.L.; Toto, R.D.; McGill, J.B.; Hu, K.; Anderson, P.W. The effect of ruboxistaurin on nephropathy in type 2 diabetes. Diabetes Care, 2005, 28(11), 2686-2690. doi: 10.2337/diacare.28.11.2686 PMID: 16249540
  6. Hu, X.; Liu, W.; Yan, Y.; Liu, H.; Huang, Q.; Xiao, Y.; Gong, Z.; Du, J. Vitamin D protects against diabetic nephropathy: Evidence-based effectiveness and mechanism. Eur. J. Pharmacol., 2019, 845, 91-98. doi: 10.1016/j.ejphar.2018.09.037 PMID: 30287151
  7. Tuttle, K.R.; Brosius, F.C., III; Adler, S.G.; Kretzler, M.; Mehta, R.L.; Tumlin, J.A.; Tanaka, Y.; Haneda, M.; Liu, J.; Silk, M.E.; Cardillo, T.E.; Duffin, K.L.; Haas, J.V.; Macias, W.L.; Nunes, F.P.; Janes, J.M. JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: results from a Phase 2 randomized controlled clinical trial. Nephrol. Dial. Transplant., 2018, 33(11), 1950-1959. doi: 10.1093/ndt/gfx377 PMID: 29481660
  8. Mora, C.; Navarro, J.F. Inflammation and diabetic nephropathy. Curr. Diab. Rep., 2006, 6(6), 463-468. doi: 10.1007/s11892-006-0080-1 PMID: 17118230
  9. Araújo, L.; Silva, M.; Silva, C.; Monteiro, M.; Pereira, L.; Rocha, L.P.; Corrêa, R.; Reis, M.A.; Machado, J.R. Cytokines and T helper cells in diabetic nephropathy pathogenesis. JDM, 2016, 6(4), 230-246. doi: 10.4236/jdm.2016.64025
  10. Wada, J.; Makino, H. Inflammation and the pathogenesis of diabetic nephropathy. Clin. Sci., 2013, 124(3), 139-152. doi: 10.1042/CS20120198 PMID: 23075333
  11. Lampropoulou, I.T. Stangou, M Sarafidis, P.; Gouliovaki, A.; Giamalis, P.; Tsouchnikas, I.; Didangelos, T.; Papagianni, A. TNF-α pathway and T-cell immunity are activated early during the development of diabetic nephropathy in Type II Diabetes Mellitus. Clin. Immunol., 2020, 215, 108423. doi: 10.1016/j.clim.2020.108423 PMID: 32304735
  12. Navarro-González, J.F.; Mora-Fernández, C. The role of inflammatory cytokines in diabetic nephropathy. J. Am. Soc. Nephrol., 2008, 19(3), 433-442. doi: 10.1681/ASN.2007091048 PMID: 18256353
  13. Börgeson, E.; Johnson, A.M.F.; Lee, Y.S.; Till, A.; Syed, G.H.; Ali-Shah, S.T.; Guiry, P.J.; Dalli, J.; Colas, R.A.; Serhan, C.N.; Sharma, K.; Godson, C. Lipoxin A4 attenuates obesity-induced adipose inflammation and associated liver and kidney disease. Cell Metab., 2015, 22(1), 125-137. doi: 10.1016/j.cmet.2015.05.003 PMID: 26052006
  14. Liu, W.; Wu, Y.H.; Zhang, L.; Xue, B.; Wang, Y.; Liu, B.; Liu, X.Y.; Zuo, F.; Yang, X.Y.; Chen, F.Y.; Duan, R.; Cai, Y.; Zhang, B.; Ji, Y. MicroRNA-146a suppresses rheumatoid arthritis fibroblast-like synoviocytes proliferation and inflammatory responses by inhibiting the TLR4/NF-kB signaling. Oncotarget, 2018, 9(35), 23944-23959. doi: 10.18632/oncotarget.24050 PMID: 29844864
  15. Hu, S.; Zuo, H.; Qi, J.; Hu, Y.; Yu, B. Analysis of Effect of Schisandra in the treatment of myocardial infarction based on three-mode gene ontology network. Front. Pharmacol., 2019, 10, 232. doi: 10.3389/fphar.2019.00232 PMID: 30949047
  16. Thandavarayan, R.A.; Giridharan, V.V.; Arumugam, S.; Suzuki, K.; Ko, K.M.; Krishnamurthy, P.; Watanabe, K.; Konishi, T. Schisandrin B prevents doxorubicin induced cardiac dysfunction by modulation of DNA damage, oxidative stress and inflammation through inhibition of MAPK/p53 signaling. PLoS One, 2015, 10(3), e0119214. doi: 10.1371/journal.pone.0119214 PMID: 25742619
  17. Xu, Y.; Liu, Z.; Sun, J.; Pan, Q.; Sun, F.; Yan, Z.; Hu, X. Schisandrin B prevents doxorubicin-induced chronic cardiotoxicity and enhances its anticancer activity in vivo. PLoS One, 2011, 6(12), e28335. doi: 10.1371/journal.pone.0028335 PMID: 22164272
  18. Lee, T.H.; Jung, C.H.; Lee, D.H. Neuroprotective effects of Schisandrin B against transient focal cerebral ischemia in Sprague–Dawley rats. Food Chem. Toxicol., 2012, 50(12), 4239-4245. doi: 10.1016/j.fct.2012.08.047 PMID: 22960133
  19. Wang, J.W.; Liang, F.Y.; Ouyang, X.S.; Li, P.B.; Pei, Z.; Su, W.W. Evaluation of neuroactive effects of ethanol extract of Schisandra chinensis, Schisandrin, and Schisandrin B and determination of underlying mechanisms by zebrafish behavioral profiling. Chin. J. Nat. Med., 2018, 16(12), 916-925. doi: 10.1016/S1875-5364(18)30133-X PMID: 30595216
  20. Yu, B.; Sheng, D.; Tan, Q. Determination of Schisandrin A and Schisandrin B in Traditional Chinese Medicine Preparation Huganpian Tablet by RP-HPLC. Chem. Pharm. Bull., 2019, 67(7), 713-716. doi: 10.1248/cpb.c18-00968 PMID: 31006725
  21. Qin, J.H.; Lin, J.R.; Ding, W.F.; Wu, W.H. Schisandrin B improves the renal function of IgA nephropathy rats through inhibition of the NF-κB signalling pathway. Inflammation, 2019, 42(3), 884-894. doi: 10.1007/s10753-018-0943-z PMID: 30519926
  22. Xu, J.; Lu, C.; Liu, Z.; Zhang, P.; Guo, H.; Wang, T. Schizandrin B protects LPS-induced sepsis via TLR4/NF-κB/MyD88 signaling pathway. Am. J. Transl. Res., 2018, 10(4), 1155-1163. PMID: 29736208
  23. Li, M.; Jin, J.; Li, J.; Guan, C.W.; Wang, W.W.; Qiu, Y.W.; Huang, Z.Y. Schisandrin B protects against nephrotoxicity induced by cisplatin in HK-2 cells via Nrf2-ARE activation. Yao Xue Xue Bao, 2012, 47(11), 1434-1439. PMID: 23387073
  24. Mou, Z.; Feng, Z.; Xu, Z.; Zhuang, F.; Zheng, X.; Li, X.; Qian, J.; Liang, G. Schisandrin B alleviates diabetic nephropathy through suppressing excessive inflammation and oxidative stress. Biochem. Biophys. Res. Commun., 2019, 508(1), 243-249. doi: 10.1016/j.bbrc.2018.11.128 PMID: 30477745
  25. Li, S.; Zhang, B.; Jiang, D.; Wei, Y.; Zhang, N. Herb network construction and co-module analysis for uncovering the combination rule of traditional Chinese herbal formulae. BMC Bioinformatics, 2010, 11(Suppl. 11), S6-S17. doi: 10.1186/1471-2105-11-S11-S6 PMID: 21172056
  26. Zhao, S.; Li, S. Network-based relating pharmacological and genomic spaces for drug target identification. PLoS One, 2010, 5(7), e11764. doi: 10.1371/journal.pone.0011764 PMID: 20668676
  27. Wu, X.; Jiang, R.; Zhang, M.Q.; Li, S. Network-based global inference of human disease genes. Mol. Syst. Biol., 2008, 4(1), 189-199. doi: 10.1038/msb.2008.27 PMID: 18463613
  28. Azushima, K.; Gurley, S.B.; Coffman, T.M. Modelling diabetic nephropathy in mice. Nat. Rev. Nephrol., 2018, 14(1), 48-56. doi: 10.1038/nrneph.2017.142 PMID: 29062142
  29. Ge, J.; Miao, J.J.; Sun, X.Y.; Yu, J.Y. Huangkui capsule, an extract from Abelmoschus manihot (L.) medic, improves diabetic nephropathy via activating peroxisome proliferator–activated receptor (PPAR)-α/γ and attenuating endoplasmic reticulum stress in rats. J. Ethnopharmacol., 2016, 189, 238-249. doi: 10.1016/j.jep.2016.05.033 PMID: 27224243
  30. Wiśniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods, 2009, 6(5), 359-362. doi: 10.1038/nmeth.1322 PMID: 19377485
  31. Li, S.; Chen, Y.T.; Ding, Q.Y.; Dai, J.Y.; Duan, X.C.; Hu, Y.J.; Lai, X.X.; Liu, Q.F.; Niu, M.; Xiang, R.W. Network pharmacology evaluation method guidance-draft. WJTCM, 2021, 7(1), 146-154.
  32. Meza Letelier, C.E.; San Martín Ojeda, C.A.; Ruiz Provoste, J.J.; Frugone Zaror, C.J. Pathophysiology of diabetic nephropathy: A literature review. Medwave, 2017, 17(1), e6839. doi: 10.5867/medwave.2017.01.6839 PMID: 28112712
  33. Gao, H.; Wu, H. Maslinic acid activates renal AMPK/SIRT1 signaling pathway and protects against diabetic nephropathy in mice. BMC Endocr. Disord., 2022, 22(1), 25-35. doi: 10.1186/s12902-022-00935-6 PMID: 35042497
  34. Carmona, M.D.; Paco-Meza, L.M.; Ortega, R.; Cañadillas, S.; Caballero-Villarraso, J.; Blanco, A.; Herrera, C. Hypoxia preconditioning increases the ability of healthy but not diabetic rat-derived adipose stromal/stem cells (ASC) to improve histological lesions of streptozotocin-induced diabetic nephropathy. Pathol. Res. Pract., 2022, 230, 153756. doi: 10.1016/j.prp.2021.153756 PMID: 35032832
  35. Nagib, A.M.; Elsayed Matter, Y.; Ashry Gheith, O.; Fathi Refaie, A.; Othman, N.F.; Al-Otaibi, T. Diabetic nephropathy following posttransplant diabetes mellitus. Exp. Clin. Transplant., 2019, 17(2), 138-146. doi: 10.6002/ect.2018.0157 PMID: 30945628
  36. Selby, N.M.; Taal, M.W. An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines. Diabetes Obes. Metab., 2020, 22(S1), 3-15. doi: 10.1111/dom.14007 PMID: 32267079
  37. Markell, M.S.; Friedman, E.A. Diabetic Nephropathy: Management of the end-stage patient. Diabetes Care, 1992, 15(9), 1226-1238. doi: 10.2337/diacare.15.9.1226 PMID: 1396019
  38. Matsui, T.; Nakashima, S.; Nishino, Y.; Ojima, A.; Nakamura, N.; Arima, K.; Fukami, K.; Okuda, S.; Yamagishi, S. Dipeptidyl peptidase-4 deficiency protects against experimental diabetic nephropathy partly by blocking the advanced glycation end products-receptor axis. Lab. Invest., 2015, 95(5), 525-533. doi: 10.1038/labinvest.2015.35 PMID: 25730373
  39. Malek, V.; Sharma, N.; Sankrityayan, H.; Gaikwad, A.B. Concurrent neprilysin inhibition and renin-angiotensin system modulations prevented diabetic nephropathy. Life Sci., 2019, 221, 159-167. doi: 10.1016/j.lfs.2019.02.027 PMID: 30769114
  40. Yoon, J.; Park, J.; Kim, H.; Jin, H.G.; Kim, H.; Ahn, Y.; Kim, Y.; Lee, H.; Lee, Y.; Kang, D. Dianthus superbus improves glomerular fibrosis and renal dysfunction in diabetic nephropathy model. Nutrients, 2019, 11(3), 553. doi: 10.3390/nu11030553 PMID: 30841605
  41. Kang, J.S.; Lee, S.J.; Lee, J.H.; Kim, J.H.; Son, S.S.; Cha, S.K.; Lee, E.S.; Chung, C.H.; Lee, E.Y. Angiotensin II-mediated MYH9 downregulation causes structural and functional podocyte injury in diabetic kidney disease. Sci. Rep., 2019, 9(1), 7679-7691. doi: 10.1038/s41598-019-44194-3 PMID: 31118506
  42. Ruggenenti, P.; Cravedi, P.; Remuzzi, G. The RAAS in the pathogenesis and treatment of diabetic nephropathy. Nat. Rev. Nephrol., 2010, 6(6), 319-330. doi: 10.1038/nrneph.2010.58 PMID: 20440277
  43. Harel, Z.; Gilbert, C.; Wald, R.; Bell, C.; Perl, J.; Juurlink, D.; Beyene, J.; Shah, P.S. The effect of combination treatment with aliskiren and blockers of the renin-angiotensin system on hyperkalaemia and acute kidney injury: Systematic review and meta-analysis. BMJ, 2012, 344, e42. doi: 10.1136/bmj.e42 PMID: 22232539
  44. Kimura, Y.; Kuno, A.; Tanno, M.; Sato, T.; Ohno, K.; Shibata, S.; Nakata, K.; Sugawara, H.; Abe, K.; Igaki, Y.; Yano, T.; Miki, T.; Miura, T. Canagliflozin, a sodium–glucose cotransporter 2 inhibitor, normalizes renal susceptibility to type 1 cardiorenal syndrome through reduction of renal oxidative stress in diabetic rats. J. Diabetes Investig., 2019, 10(4), 933-946. doi: 10.1111/jdi.13009 PMID: 30663266
  45. Wang, M.; Zhang, X.; Ni, T.; Wang, Y.; Wang, X.; Wu, Y.; Zhu, Z.; Li, Q. Comparison of new oral hypoglycemic agents on risk of urinary tract and genital infections in type 2 diabetes: A network meta-analysis. Adv. Ther., 2021, 38(6), 2840-2853. doi: 10.1007/s12325-021-01759-x PMID: 33999339
  46. Lin, Q.N.; Liu, Y.D.; Guo, S.E.; Zhou, R.; Huang, Q.; Zhang, Z.M.; Qin, X. Schisandrin B ameliorates high-glucose-induced vascular endothelial cells injury by regulating the Noxa/Hsp27/NF-κB signaling pathway. Biochem. Cell Biol., 2019, 97(6), 681-692. doi: 10.1139/bcb-2018-0321 PMID: 30817212
  47. Feng, S.; Qiu, B.; Zou, L.; Liu, K.; Xu, X.; Zhu, H. Schisandrin B elicits the Keap1-Nrf2 defense system via carbene reactive metabolite which is less harmful to mice liver. Drug Des. Devel. Ther., 2018, 12, 4033-4046. doi: 10.2147/DDDT.S176561 PMID: 30568426
  48. Liu, Q.; Song, J.; Li, H.; Dong, L.; Dai, S. Schizandrin B inhibits the cis DDP induced apoptosis of HK 2 cells by activating ERK/NF-κB signaling to regulate the expression of survivin. Int. J. Mol. Med., 2018, 41(4), 2108-2116. doi: 10.3892/ijmm.2018.3409 PMID: 29393335
  49. Lai, Q.; Luo, Z.; Wu, C.; Lai, S.; Wei, H.; Li, T.; Wang, Q.; Yu, Y. Attenuation of cyclosporine A induced nephrotoxicity by schisandrin B through suppression of oxidative stress, apoptosis and autophagy. Int. Immunopharmacol., 2017, 52, 15-23. doi: 10.1016/j.intimp.2017.08.019 PMID: 28846887
  50. Pessoa, E.A.; Convento, M.B.; Castino, B.; Leme, A.M.; de Oliveira, A.S.; Aragão, A.; Fernandes, S.M.; Carbonel, A.; Dezoti, C.; Vattimo, M.F.; Schor, N.; Borges, F.T. Beneficial effects of isoflavones in the kidney of obese rats are mediated by PPAR-gamma expression. Nutrients, 2020, 12(6), 1624-1643. doi: 10.3390/nu12061624 PMID: 32492810
  51. Toda, N.; Mukoyama, M.; Yanagita, M.; Yokoi, H. CTGF in kidney fibrosis and glomerulonephritis. Inflamm. Regen., 2018, 38(1), 14-21. doi: 10.1186/s41232-018-0070-0 PMID: 30123390
  52. Ran, J.; Ma, C.; Xu, K.; Xu, L.; He, Y.; Moqbel, S.A.A.; Hu, P.; Jiang, L.; Chen, W.; Bao, J.; Xiong, Y.; Wu, L. Schisandrin B ameliorated chondrocytes inflammation and osteoarthritis via suppression of NF-κB and MAPK signal pathways. Drug Des. Devel. Ther., 2018, 12, 1195-1204. doi: 10.2147/DDDT.S162014 PMID: 29785089
  53. Kim, N.H. Podocyte hypertrophy in diabetic nephropathy. Nephrology, 2005, 10(s2), S14-S16. doi: 10.1111/j.1440-1797.2005.00450.x PMID: 16174280
  54. Liu, W.T.; Peng, F.F.; Li, H.Y.; Chen, X.W.; Gong, W.Q.; Chen, W.J.; Chen, Y.H.; Li, P.L.; Li, S.T.; Xu, Z.Z.; Long, H.B. Metadherin facilitates podocyte apoptosis in diabetic nephropathy. Cell Death Dis., 2016, 7(11), e2477. doi: 10.1038/cddis.2016.335 PMID: 27882943
  55. Sun, H.J.; Xiong, S.P.; Cao, X.; Cao, L.; Zhu, M.Y.; Wu, Z.Y.; Bian, J.S. Polysulfide-mediated sulfhydration of SIRT1 prevents diabetic nephropathy by suppressing phosphorylation and acetylation of p65 NF-κB and STAT3. Redox Biol., 2021, 38, 101813. doi: 10.1016/j.redox.2020.101813 PMID: 33279869
  56. Almeida, V.M.; Dias, Ê.R.; Souza, B.C.; Cruz, J.N.; Santos, C.B.R.; Leite, F.H.A.; Queiroz, R.F.; Branco, A. Methoxylated flavonols from Vellozia dasypus Seub ethyl acetate active myeloperoxidase extract: in vitro and in silico assays. J. Biomol. Struct. Dyn., 2022, 40(16), 7574-7583. doi: 10.1080/07391102.2021.1900916 PMID: 33739225
  57. Alves, F.S.; Rodrigues Do Rego, J.A.; Da Costa, M.L.; Lobato Da Silva, L.F.; Da Costa, R.A.; Cruz, J.N.; Brasil, D.D.S.B. Spectroscopic methods and in silico analyses using density functional theory to characterize and identify piperine alkaloid crystals isolated from pepper (Piper Nigrum L.). J. Biomol. Struct. Dyn., 2020, 38(9), 2792-2799. doi: 10.1080/07391102.2019.1639547 PMID: 31282297
  58. Tsukita, S. Tight Junctions. In: Encyclopedia of Biological Chemistry; , 2013, pp. 392-395.
  59. Sun, P.H.; Zhu, L.M.; Qiao, M.M.; Zhang, Y.P.; Jiang, S.H.; Wu, Y.L.; Tu, S.P. The XAF1 tumor suppressor induces autophagic cell death via upregulation of Beclin-1 and inhibition of Akt pathway. Cancer Lett., 2011, 310(2), 170-180. doi: 10.1016/j.canlet.2011.06.037 PMID: 21788101
  60. Ma, X.; Verweij, E.W.E.; Siderius, M.; Leurs, R.; Vischer, H.F. Identification of TSPAN4 as novel histamine H4 receptor interactor. Biomolecules, 2021, 11(8), 1127-1142. doi: 10.3390/biom11081127 PMID: 34439793
  61. Ma, C.; Wang, W.; Wang, Y.; Sun, Y.; Kang, L.; Zhang, Q.; Jiang, Y. TMT-labeled quantitative proteomic analyses on the longissimus dorsi to identify the proteins underlying intramuscular fat content in pigs. J. Proteomics, 2020, 213, 103630. doi: 10.1016/j.jprot.2019.103630 PMID: 31881348
  62. Wu, Y.; Li, E.; Wang, Z.; Shen, T.; Shen, C.; Liu, D.; Gao, Q.; Li, X.; Wei, G. TMIGD1 Inhibited abdominal adhesion formation by alleviating oxidative stress in the mitochondria of peritoneal mesothelial cells. Oxid. Med. Cell. Longev., 2021, 2021, 9993704. doi: 10.1155/2021/9993704 PMID: 34426761

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024