Mechanisms of Er Chen Tang on Treating Asthma Explored by Network Pharmacology and Experimental Verification


Цитировать

Полный текст

Аннотация

Objective:The aim of this study is to explore the active ingredients of ECT and their targets for asthma and investigate the potential mechanism of ECT on asthma.

Methods:Firstly, the active ingredients and target of ECT were screened for BATMAN and TCMSP, and functional analysis was done via DAVID. Then, the animal model was induced by ovalbumin (OVA) and aluminum hydroxide. Eosinophil (EOS) counts, EOS active substance Eosinophilic cationic protein (ECP) and eotaxin levels were detected following the instruction. Pathological changes in lung tissue were examined by H&E staining and transmission electron microscopy. Interleukin (IL-4, IL-10, IL-13, TNF-α), TIgE and IgE levels in bronchoalveolar lavage fluid (BALF) were measured by ELISA. Finally, the protein expression of the TGF-β / STAT3 pathway to lung tissue was detected by Western Blot.

Results:A total of 450 compounds and 526 target genes were retrieved in Er Chen Tang. Functional analysis indicated that its treatment of asthma was associated with inflammatory factors and fibrosis. In the animal experiment, the results showed that ECT significantly regulated inflammatory cytokine (IL-4, IL-10, IL-13, TNF-α) levels in (P(<0.05, P(<0.01, reduced EOS number (P(<0.05) and also ECP and Eotaxin levels in the blood (P(<0.05) in BALF and/or plasma. Bronchial tissue injury was obviously improved on ECT treatment. Associated proteins in TGF-β / STAT3 pathway were significantly regulated by ECT (P(<0.05).

Conclusion:This study originally provided evidence that the Er Chen Tang was effective in the treatment of asthma symptoms, and its underlying mechanism might be the regulation of inflammatory factor secretion and the TGF-β/STAT3 signaling pathway.

Об авторах

Yuzhe Ren

, Heilongjiang University of Chinese Medicine

Email: info@benthamscience.net

Haijing Zhang

, Yicon (Beijing) Medical Technology Inc,

Email: info@benthamscience.net

Zhou Yu

, Beijing University of Chinese Medicine Affiliated Shenzhen Hospital,

Email: info@benthamscience.net

Xiangzheng Yang

, Beijing University of Chinese Medicine Affiliated Shenzhen Hospital,

Email: info@benthamscience.net

Deyou Jiang

, Heilongjiang University of Chinese Medicine

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Katoh, S. Critical involvement of CD44 in T helper type 2 cell-mediated eosinophilic airway inflammation in a mouse model of acute asthma. Front. Immunol., 2022, 12, 811600. doi: 10.3389/fimmu.2021.811600 PMID: 35069598
  2. Hur, G.Y.; Broide, D.H. Genes and pathways regulating decline in lung function and airway remodeling in asthma. Allergy Asthma Immunol. Res., 2019, 11(5), 604-621. doi: 10.4168/aair.2019.11.5.604 PMID: 31332973
  3. Lambrecht, B.N.; Hammad, H.; Fahy, J.V. The cytokines of asthma. Immunity, 2019, 50(4), 975-991. doi: 10.1016/j.immuni.2019.03.018 PMID: 30995510
  4. Gowthaman, U.; Chen, J.S.; Zhang, B.; Flynn, W.F.; Lu, Y.; Song, W.; Joseph, J.; Gertie, J.A.; Xu, L.; Collet, M.A.; Grassmann, J.D.S.; Simoneau, T.; Chiang, D.; Berin, M.C.; Craft, J.E.; Weinstein, J.S.; Williams, A.; Eisenbarth, S.C. Identification of a T follicular helper cell subset that drives anaphylactic IgE. Science, 2019, 365(6456), eaaw6433. doi: 10.1126/science.aaw6433 PMID: 31371561
  5. Wieczfinska, J.; Pawliczak, R. Relaxin affects airway remodeling genes expression through various signal pathways connected with transcription factors. Int. J. Mol. Sci., 2022, 23(15), 8413. doi: 10.3390/ijms23158413 PMID: 35955554
  6. Wang, C.; Zheng, M.; Choi, Y.; Jiang, J.; Li, L.; Li, J.; Xu, C.; Xian, Z.; Li, Y.; Piao, H.; Li, L.; Yan, G. Cryptotanshinone attenuates airway remodeling by inhibiting crosstalk between tumor necrosis factor-like weak inducer of apoptosis and transforming growth factor beta 1 signaling pathways in asthma. Front. Pharmacol., 2019, 10, 1338. doi: 10.3389/fphar.2019.01338 PMID: 31780948
  7. Tian, C.; Gao, F.; Li, X.; Li, Z. Icariside II attenuates eosinophils-induced airway inflammation and remodeling via inactivation of NF-κB and STAT3 in an asthma mouse model. Exp. Mol. Pathol., 2020, 113, 104373. doi: 10.1016/j.yexmp.2020.104373 PMID: 31917285
  8. Yi, F.; Zhan, C.; Liu, B.; Li, H.; Zhou, J.; Tang, J.; Peng, W.; Luo, W.; Chen, Q.; Lai, K. Effects of treatment with montelukast alone, budesonide/formoterol alone and a combination of both in cough variant asthma. Respir. Res., 2022, 23(1), 279. doi: 10.1186/s12931-022-02114-6 PMID: 36217131
  9. Miwa, N.; Nagano, T.; Ohnishi, H.; Nishiuma, T.; Takenaka, K.; Shirotani, T.; Nakajima, T.; Dokuni, R.; Kawa, Y.; Kobayashi, K.; Funada, Y.; Kotani, Y.; Nishimura, Y. An open-label, multi-institutional, randomized study to evaluate the additive effect of a leukotriene receptor antagonist on cough score in patients with cough-variant asthma being treated with inhaled corticosteroids. Kobe J. Med. Sci., 2018, 64(4), E134-E139. PMID: 30728339
  10. Guo, R.; Li, L.; Su, J.; Li, S.; Duncan, S.E.; Liu, Z.; Fan, G. Pharmacological activity and mechanism of tanshinone IIA in related diseases. Drug Des. Devel. Ther., 2020, 14, 4735-4748. doi: 10.2147/DDDT.S266911 PMID: 33192051
  11. Liu, L.; Wang, L.; He, S.; Ma, Y. Immune Homeostasis: Effects of Chinese herbal formulae and herb-derived compounds on allergic asthma in different experimental models. Chin. J. Integr. Med., 2018, 24(5), 390-398. doi: 10.1007/s11655-018-2836-2 PMID: 29752613
  12. Deng, L.; Zhang, X.; Dong, Y.; Wang, L.; Chen, K.; Zheng, M.; Yang, Z.; Tang, H.; Liao, W.; Shi, Q. Erchen decoction combined with Sanziyangqin decoction for chronic obstructive pulmonary disease. Medicine, 2020, 99(40), e22315. doi: 10.1097/MD.0000000000022315 PMID: 33019407
  13. Cheng, Huang Y.C. Research progress in animal model of bronchial asthma. Med. Recapitul., 2009, 23, 647-647. doi: 10.3969/j.issn.1006-2084.2012.19.025
  14. Kun, Yang XG; Wu, Wenbin Effect of sanzi yangqin decoction on Th17/Treg imbalance in bronchial asthma model rats. Pharmacol. Clinic Chinese Materia Med., 2019, 35(3), 28-32.
  15. Peng, Zhang D.Y.; Nie, B. Effects of modified yinchenhao decoction combined with budesonide on airway responsiveness and expression of inflammatory cytokines in lung. World Chinese Med., 2019, 14, 1393-1396.
  16. Yongying, G. The experimental Study of Sang Su Er Chen Tang Modified allergic bronchial asthma; Hebei Medical University, 2009. doi: 10.7666/d.y1637337
  17. Vieira, C.P.; de Oliveira, L.P.; Da Silva, M.B.; Majolli Andre, D.; Tavares, E.B.G.; Pimentel, E.R.; Antunes, E. Role of metalloproteinases and TNF-α in obesity-associated asthma in mice. Life Sci., 2020, 259, 118191. doi: 10.1016/j.lfs.2020.118191 PMID: 32777302
  18. Gao, Miaoran S.L.; Xie, W. Effect of erchen decoction on lung function and pathological changes of chronic branchitis model rats. Zhongguo Zhongyiyao Xiandai Yuancheng Jiaoyu, 2016, 14, 143-145. doi: 10.3969/j.issn.1672-2779.2016.14.065
  19. Guo, B.; Zhao, C.; Zhang, C.; Xiao, Y.; Yan, G.; Liu, L.; Pan, H. Elucidation of the anti-inflammatory mechanism of Er Miao San by integrative approach of network pharmacology and experimental verification. Pharmacol. Res., 2022, 175, 106000. doi: 10.1016/j.phrs.2021.106000 PMID: 34838694
  20. Li, X.; Wei, S.; Niu, S.; Ma, X.; Li, H.; Jing, M.; Zhao, Y. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis. Comput. Biol. Med., 2022, 144, 105389. doi: 10.1016/j.compbiomed.2022.105389 PMID: 35303581
  21. Lee, D.; Lee, W.Y.; Jung, K.; Kwon, Y.; Kim, D.; Hwang, G.; Kim, C.E.; Lee, S.; Kang, K. The inhibitory effect of cordycepin on the proliferation of MCF-7 breast cancer cells, and its mechanism: An investigation using network pharmacology-based analysis. Biomolecules, 2019, 9(9), 414. doi: 10.3390/biom9090414 PMID: 31454995
  22. Bi, Y.H.; Zhang, L.; Chen, S.; Ling, Q. Antitumor mechanisms of curcumae rhizoma based on network pharmacology. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-9. doi: 10.1155/2018/4509892 PMID: 29636777
  23. Jung, S.; Park, J.; Park, J.; Jo, H.; Seo, C.S.; Jeon, W.Y.; Lee, M.Y.; Kwon, B.I. Sojadodamgangki-tang attenuates allergic lung inflammation by inhibiting T helper 2 cells and Augmenting alveolar macrophages. J. Ethnopharmacol., 2020, 263, 113152. doi: 10.1016/j.jep.2020.113152 PMID: 32755652
  24. Wang, M.; Yang, X.; Zhao, J.; Lu, C.; Zhu, W. Structural characterization and macrophage immunomodulatory activity of a novel polysaccharide from Smilax glabra Roxb. Carbohydr. Polym., 2017, 156, 390-402. doi: 10.1016/j.carbpol.2016.09.033 PMID: 27842838
  25. Bui, T.T.; Piao, C.H.; Kim, S.M.; Song, C.H.; Shin, H.S.; Lee, C.H.; Chai, O.H. Citrus tachibana leaves ethanol extract alleviates airway inflammation by the modulation of Th1/Th2 imbalance via inhibiting NF-κ B signaling and histamine secretion in a mouse model of allergic asthma. J. Med. Food, 2017, 20(7), 676-684. doi: 10.1089/jmf.2016.3853 PMID: 28598706
  26. Liu, L.; Xing, Q.; Zhao, X.; Tan, M.; Lu, Y.; Dong, Y.; Dai, C.; Zhang, Y. Proteomic analysis provides insights into the therapeutic effect of GU-BEN-FANG-XIAO decoction on a persistent asthmatic mouse model. Front. Pharmacol., 2019, 10, 441. doi: 10.3389/fphar.2019.00441 PMID: 31133848
  27. McCracken, J.L.; Veeranki, S.P.; Ameredes, B.T.; Calhoun, W.J. Diagnosis and management of asthma in adults. JAMA, 2017, 318(3), 279-290. doi: 10.1001/jama.2017.8372 PMID: 28719697
  28. Mishra, V.; Banga, J.; Silveyra, P. Oxidative stress and cellular pathways of asthma and inflammation: Therapeutic strategies and pharmacological targets. Pharmacol. Ther., 2018, 181, 169-182. doi: 10.1016/j.pharmthera.2017.08.011 PMID: 28842273
  29. Fehrenbach, H.; Wagner, C.; Wegmann, M. Airway remodeling in asthma: What really matters. Cell Tissue Res., 2017, 367(3), 551-569. doi: 10.1007/s00441-016-2566-8 PMID: 28190087
  30. Diver, S.; Khalfaoui, L.; Emson, C.; Wenzel, S.E.; Menzies-Gow, A.; Wechsler, M.E.; Johnston, J.; Molfino, N.; Parnes, J.R.; Megally, A.; Colice, G.; Brightling, C.E. CASCADE study investigators. Effect of tezepelumab on airway inflammatory cells, remodelling, and hyperresponsiveness in patients with moderate-to-severe uncontrolled asthma (CASCADE): A double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir. Med., 2021, 9(11), 1299-1312. doi: 10.1016/S2213-2600(21)00226-5 PMID: 34256031
  31. Zhang, R.; Luo, W.; Liang, Z.; Tan, Y.; Chen, R.; Lu, W.; Zhong, N. Eotaxin and IL-4 levels are increased in induced sputum and correlate with sputum eosinophils in patients with nonasthmatic eosinophilic bronchitis. Medicine, 2017, 96(13), e6492. doi: 10.1097/MD.0000000000006492 PMID: 28353595
  32. Silkoff, P.E.; Laviolette, M.; Singh, D.; FitzGerald, J.M.; Kelsen, S.; Backer, V.; Porsbjerg, C.M.; Girodet, P.O.; Berger, P.; Kline, J.N.; Chupp, G.; Susulic, V.S.; Barnathan, E.S.; Baribaud, F.; Loza, M.J.; Strambu, I.; Lam, S.; Eich, A.; Ludwig-Sengpiel, A.; Leigh, R.; Dransfield, M.; Calhoun, W.; Hussaini, A.; Chanez, P. Airways Disease Endotyping for Personalized Therapeutics (ADEPT) study investigators. Identification of airway mucosal type 2 inflammation by using clinical biomarkers in asthmatic patients. J. Allergy Clin. Immunol., 2017, 140(3), 710-719. doi: 10.1016/j.jaci.2016.11.038 PMID: 28089872
  33. Rossi, A.; Caiazzo, E.; Bilancia, R.; Riemma, M.A.; Pagano, E.; Cicala, C.; Ialenti, A.; Zjawiony, J.K.; Izzo, A.A.; Capasso, R.; Roviezzo, F.; Salvinorin, A. Salvinorin A inhibits airway hyperreactivity induced by ovalbumin sensitization. Front. Pharmacol., 2017, 7, 525. doi: 10.3389/fphar.2016.00525 PMID: 28133450
  34. Zeng, Z.; Xu, X.; Zhu, Y.; Wang, Q.; Zhang, Y.; Huo, X. Pb and Cd exposure linked with Il-10 and Il-13 gene polymorphisms in asthma risk relevant immunomodulation in children. Chemosphere, 2022, 294, 133656. doi: 10.1016/j.chemosphere.2022.133656 PMID: 35051511
  35. Medjo, B.; Atanaskovic-Markovic, M.; Nikolic, D.; Radic, S.; Lazarevic, I.; Cirkovic, I.; Djukic, S. Increased serum interleukin-10 but not interleukin-4 level in children with Mycoplasma pneumoniae pneumonia. J. Trop. Pediatr., 2017, 63(4), fmw091. doi: 10.1093/tropej/fmw091 PMID: 28057814
  36. Lai, Y.; Zhang, P.; Wang, H.; Hu, L.; Song, X.; Zhang, J.; Jiang, W.; Han, M.; Liu, Q.; Hu, G.; Sun, X.; Li, H.; Wang, D. Serum and glucocorticoid-regulated kinase 1 regulates transforming growth factor β1-connective tissue growth factor pathway in chronic rhinosinusitis. Clin. Immunol., 2022, 234, 108895. doi: 10.1016/j.clim.2021.108895 PMID: 34826606
  37. Riemma, M.A.; Cerqua, I.; Romano, B.; Irollo, E.; Bertolino, A.; Camerlingo, R.; Granato, E.; Rea, G.; Scala, S.; Terlizzi, M.; Spaziano, G.; Sorrentino, R.; D’Agostino, B.; Roviezzo, F.; Cirino, G. Sphingosine-1-phosphate/TGF-β axis drives epithelial mesenchymal transition in asthma-like disease. Br. J. Pharmacol., 2022, 179(8), 1753-1768. doi: 10.1111/bph.15754 PMID: 34825370
  38. Tang, L.Y.; Heller, M.; Meng, Z.; Yu, L.R.; Tang, Y.; Zhou, M.; Zhang, Y.E. Transforming Growth Factor-β (TGF-β) directly activates the JAK1-STAT3 axis to induce hepatic fibrosis in coordination with the SMAD pathway. J. Biol. Chem., 2017, 292(10), 4302-4312. doi: 10.1074/jbc.M116.773085 PMID: 28154170
  39. Park, J.H.; Jang, K.; An, H.; Kim, J.Y.; Gwon, M.G.; Gu, H.; Park, B.; Park, K.K. Pomolic acid ameliorates fibroblast activation and renal interstitial fibrosis through inhibition of SMAD-STAT signaling pathways. Molecules, 2018, 23(9), 2236. doi: 10.3390/molecules23092236 PMID: 30177595
  40. Saito, A.; Horie, M.; Nagase, T. TGF-β signaling in lung health and disease. Int. J. Mol. Sci., 2018, 19(8), 2460. doi: 10.3390/ijms19082460 PMID: 30127261

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024