Patterns of Gene Expression Profiles Associated with Colorectal Cancer in Colorectal Mucosa by Using Machine Learning Methods

  • Autores: Ren J.1, Chen L.2, Guo W.3, Feng K.4, Cai Y.1, Huang T.5
  • Afiliações:
    1. School of Life Sciences, Shanghai University
    2. College of Information Engineering, Shanghai Maritime University
    3. Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS)
    4. Department of Computer Science, Guangdong AIB Polytechnic
    5. Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
  • Edição: Volume 27, Nº 19 (2024)
  • Páginas: 2921-2934
  • Seção: Chemistry
  • URL: https://kazanmedjournal.ru/1386-2073/article/view/644548
  • DOI: https://doi.org/10.2174/0113862073266300231026103844
  • ID: 644548

Citar

Texto integral

Resumo

Background:Colorectal cancer (CRC) has a very high incidence and lethality rate and is one of the most dangerous cancer types. Timely diagnosis can effectively reduce the incidence of colorectal cancer. Changes in para-cancerous tissues may serve as an early signal for tumorigenesis. Comparison of the differences in gene expression between para-cancerous and normal mucosa can help in the diagnosis of CRC and understanding the mechanisms of development.

Objectives:This study aimed to identify specific genes at the level of gene expression, which are expressed in normal mucosa and may be predictive of CRC risk.

Methods:A machine learning approach was used to analyze transcriptomic data in 459 samples of normal colonic mucosal tissue from 322 CRC cases and 137 non-CRC, in which each sample contained 28,706 gene expression levels. The genes were ranked using four ranking methods based on importance estimation (LASSO, LightGBM, MCFS, and mRMR) and four classification algorithms (decision tree [DT], K-nearest neighbor [KNN], random forest [RF], and support vector machine [SVM]) were combined with incremental feature selection [IFS] methods to construct a prediction model with excellent performance.

Result:The top-ranked genes, namely, HOXD12, CDH1, and S100A12, were associated with tumorigenesis based on previous studies.

Conclusion:This study summarized four sets of quantitative classification rules based on the DT algorithm, providing clues for understanding the microenvironmental changes caused by CRC. According to the rules, the effect of CRC on normal mucosa can be determined.

Sobre autores

Jing Ren

School of Life Sciences, Shanghai University

Email: info@benthamscience.net

Lei Chen

College of Information Engineering, Shanghai Maritime University

Email: info@benthamscience.net

Wei Guo

Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS)

Email: info@benthamscience.net

Kai Feng

Department of Computer Science, Guangdong AIB Polytechnic

Email: info@benthamscience.net

Yu-Dong Cai

School of Life Sciences, Shanghai University

Autor responsável pela correspondência
Email: info@benthamscience.net

Tao Huang

Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Brustugun, O.T.; Møller, B.; Helland, Å. Years of life lost as a measure of cancer burden on a national level. Br. J. Cancer, 2014, 111(5), 1014-1020. doi: 10.1038/bjc.2014.364 PMID: 24983370
  2. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  3. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33. doi: 10.3322/caac.21654 PMID: 33433946
  4. Fearon, E.R.; Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell, 1990, 61(5), 759-767. doi: 10.1016/0092-8674(90)90186-I PMID: 2188735
  5. Amaro, A.; Chiara, S.; Pfeffer, U. Molecular evolution of colorectal cancer: From multistep carcinogenesis to the big bang. Cancer Metastasis Rev., 2016, 35(1), 63-74. doi: 10.1007/s10555-016-9606-4 PMID: 26947218
  6. Paterson, C.; Clevers, H.; Bozic, I. Mathematical model of colorectal cancer initiation. Proc. Natl. Acad. Sci. USA, 2020, 117(34), 20681-20688. doi: 10.1073/pnas.2003771117 PMID: 32788368
  7. Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med., 2013, 19(11), 1423-1437. doi: 10.1038/nm.3394 PMID: 24202395
  8. Ombrato, L.; Nolan, E.; Kurelac, I.; Mavousian, A.; Bridgeman, V.L.; Heinze, I.; Chakravarty, P.; Horswell, S.; Gonzalez-Gualda, E.; Matacchione, G.; Weston, A.; Kirkpatrick, J.; Husain, E.; Speirs, V.; Collinson, L.; Ori, A.; Lee, J.H.; Malanchi, I. Metastatic-niche labelling reveals parenchymal cells with stem features. Nature, 2019, 572(7771), 603-608. doi: 10.1038/s41586-019-1487-6 PMID: 31462798
  9. Lochhead, P.; Chan, A.T.; Nishihara, R.; Fuchs, C.S.; Beck, A.H.; Giovannucci, E.; Ogino, S. Etiologic field effect: Reappraisal of the field effect concept in cancer predisposition and progression. Mod. Pathol., 2015, 28(1), 14-29. doi: 10.1038/modpathol.2014.81 PMID: 24925058
  10. Patel, A.; Tripathi, G.; Gopalakrishnan, K.; Williams, N.; Arasaradnam, R.P. Field cancerisation in colorectal cancer: A new frontier or pastures past? World J. Gastroenterol., 2015, 21(13), 3763-3772. doi: 10.3748/wjg.v21.i13.3763 PMID: 25852261
  11. Hawthorn, L.; Lan, L.; Mojica, W. Evidence for field effect cancerization in colorectal cancer. Genomics, 2014, 103(2-3), 211-221. doi: 10.1016/j.ygeno.2013.11.003 PMID: 24316131
  12. Chai, H.; Brown, R.E. Field effect in cancer-an update. Ann. Clin. Lab. Sci., 2009, 39(4), 331-337. PMID: 19880759
  13. Chen, L.C.; Hao, C.Y.; Chiu, Y.S.Y.; Wong, P.; Melnick, J.S.; Brotman, M.; Moretto, J.; Mendes, F.; Smith, A.P.; Bennington, J.L.; Moore, D.; Lee, N.M. Alteration of gene expression in normal-appearing colon mucosa of APC(min) mice and human cancer patients. Cancer Res., 2004, 64(10), 3694-3700. doi: 10.1158/0008-5472.CAN-03-3264 PMID: 15150130
  14. Polley, A.C.J.; Mulholland, F.; Pin, C.; Williams, E.A.; Bradburn, D.M.; Mills, S.J.; Mathers, J.C.; Johnson, I.T. Proteomic analysis reveals field-wide changes in protein expression in the morphologically normal mucosa of patients with colorectal neoplasia. Cancer Res., 2006, 66(13), 6553-6562. doi: 10.1158/0008-5472.CAN-06-0534 PMID: 16818627
  15. Daniel, C.R.; Bostick, R.M.; Flanders, W.D.; Long, Q.; Fedirko, V.; Sidelnikov, E.; Seabrook, M.E. TGF-alpha expression as a potential biomarker of risk within the normal-appearing colorectal mucosa of patients with and without incident sporadic adenoma. Cancer Epidemiol. Biomarkers Prev., 2009, 18(1), 65-73. doi: 10.1158/1055-9965.EPI-08-0732 PMID: 19124482
  16. Maurya, N.S.; Kushwaha, S.; Chawade, A.; Mani, A. Transcriptome profiling by combined machine learning and statistical R analysis identifies TMEM236 as a potential novel diagnostic biomarker for colorectal cancer. Sci. Rep., 2021, 11(1), 14304. doi: 10.1038/s41598-021-92692-0 PMID: 34253750
  17. Hossain, M.J.; Chowdhury, U.N.; Islam, M.B.; Uddin, S.; Ahmed, M.B.; Quinn, J.M.W.; Moni, M.A. Machine learning and network-based models to identify genetic risk factors to the progression and survival of colorectal cancer. Comput. Biol. Med., 2021, 135, 104539. doi: 10.1016/j.compbiomed.2021.104539 PMID: 34153790
  18. Koppad, S.; Basava, A.; Nash, K.; Gkoutos, G.V.; Acharjee, A. Machine learning-based identification of colon cancer candidate diagnostics genes. Biology, 2022, 11(3), 365. doi: 10.3390/biology11030365 PMID: 35336739
  19. Vaughan-Shaw, P.G.; Timofeeva, M.; Ooi, L.Y.; Svinti, V.; Grimes, G.; Smillie, C.; Blackmur, J.P.; Donnelly, K.; Theodoratou, E.; Campbell, H.; Zgaga, L.; Din, F.V.N.; Farrington, S.M.; Dunlop, M.G. Differential genetic influences over colorectal cancer risk and gene expression in large bowel mucosa. Int. J. Cancer, 2021, 149(5), 1100-1108. doi: 10.1002/ijc.33616 PMID: 33937989
  20. Jian, F.; Huang, F.; Zhang, Y.H.; Huang, T.; Cai, Y.D. Identifying anal and cervical tumorigenesis-associated methylation signaling with machine learning methods. Front. Oncol., 2022, 12, 998032. doi: 10.3389/fonc.2022.998032 PMID: 36249027
  21. Li, H.; Wang, D.; Zhou, X.; Ding, S.; Guo, W.; Zhang, S.; Li, Z.; Huang, T.; Cai, Y.D. Characterization of spleen and lymph node cell types via CITE-seq and machine learning methods. Front. Mol. Neurosci., 2022, 15, 1033159. doi: 10.3389/fnmol.2022.1033159 PMID: 36311013
  22. Liu, Z.; Meng, M.; Ding, S.; Zhou, X.; Feng, K.; Huang, T.; Cai, Y.D. Identification of methylation signatures and rules for predicting the severity of SARS-CoV-2 infection with machine learning methods. Front. Microbiol., 2022, 13, 1007295. doi: 10.3389/fmicb.2022.1007295 PMID: 36212830
  23. Li, Z.; Huang, F.; Chen, L.; Huang, T.; Cai, Y.D. Identifying in vitro cultured human hepatocytes markers with machine learning methods based on single-cell RNA-Seq data. Front. Bioeng. Biotechnol., 2022, 10, 916309. doi: 10.3389/fbioe.2022.916309 PMID: 35706505
  24. Huang, F.; Ma, Q.; Ren, J.; Li, J.; Wang, F.; Huang, T.; Cai, Y.D. Identification of smoking-associated transcriptome aberration in blood with machine learning methods. BioMed Res. Int., 2023, 2023, 1-13. doi: 10.1155/2023/5333361 PMID: 36644165
  25. Huang, F. Analysis and prediction of protein stability based on interaction network, gene ontology, and KEGG pathway enrichment scores. Biochim. Biophys. Acta. Proteins Proteomics, 2023, 18713, 140889. doi: 10.1016/j.bbapap.2023.140889
  26. Zhao, X.; Chen, L.; Lu, J. A similarity-based method for prediction of drug side effects with heterogeneous information. Math. Biosci., 2018, 306, 136-144. doi: 10.1016/j.mbs.2018.09.010 PMID: 30296417
  27. Tibshirani, R. Regression shrinkage and selection via the lasso: A retrospective. J. R. Stat. Soc. Series B Stat. Methodol., 2011, 73(3), 273-282. doi: 10.1111/j.1467-9868.2011.00771.x
  28. Pedregosa, F. Scikit-learn: Machine learning in python. J. Mach. Learn. Res., 2011, 12(85), 2825-2830.
  29. Ke, G.; Qi, M.; Thomas, F.; Taifeng, W.; Wei, C.; Weidong, M.; Qiwei, Y.; Tie-Yan, L. LightGBM: A highly efficient gradient boosting decision tree. Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 3149-3157.
  30. Dramiński, M.; Rada-Iglesias, A.; Enroth, S.; Wadelius, C.; Koronacki, J.; Komorowski, J. Monte Carlo feature selection for supervised classification. Bioinformatics, 2008, 24(1), 110-117. doi: 10.1093/bioinformatics/btm486 PMID: 18048398
  31. Hanchuan, Peng Fuhui Long; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27(8), 1226-1238. doi: 10.1109/TPAMI.2005.159 PMID: 16119262
  32. Liu, H.; Setiono, R. Incremental feature selection. Appl. Intell., 1998, 9(3), 217-230. doi: 10.1023/A:1008363719778
  33. Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. International joint Conference on artificial intelligence. 1995.
  34. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res., 2002, 16, 321-357. doi: 10.1613/jair.953
  35. Safavian, S.R.; Landgrebe, D. A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern., 1991, 21(3), 660-674. doi: 10.1109/21.97458
  36. Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory, 1967, 13(1), 21-27. doi: 10.1109/TIT.1967.1053964
  37. Breiman, L. Random forests. Mach. Learn., 2001, 45(1), 5-32. doi: 10.1023/A:1010933404324
  38. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn., 1995, 20(3), 273-297. doi: 10.1007/BF00994018
  39. Wang, H.; Chen, L. PMPTCE-HNEA: Predicting metabolic pathway types of chemicals and enzymes with a heterogeneous network embedding algorithm. Curr. Bioinform., 2023, 18. doi: 10.2174/1574893618666230224121633
  40. Pan, X. Identifying protein subcellular locations with embeddings-based node2loc. IEEE/ACM Trans. Comput. Biol. Bioinform., 2022, 19(2), 666-675.
  41. Powers, D. Evaluation: From precision, recall and f-measure to roc., informedness, markedness & correlation. J. Mach. Learn. Technol., 2011, 2(1), 37-63.
  42. Tang, S.; Chen, L. iATC-NFMLP: Identifying classes of anatomical therapeutic chemicals based on drug networks, fingerprints and multilayer perceptron. Curr. Bioinform., 2022, 17(9), 814-824. doi: 10.2174/1574893617666220318093000
  43. Yang, Y.; Chen, L. Identification of drug–disease associations by using multiple drug and disease networks. Curr. Bioinform., 2022, 17(1), 48-59. doi: 10.2174/1574893616666210825115406
  44. Wu, C.; Chen, L. A model with deep analysis on a large drug network for drug classification. Math. Biosci. Eng., 2022, 20(1), 383-401. doi: 10.3934/mbe.2023018 PMID: 36650771
  45. Ren, J.; Zhang, Y.; Guo, W.; Feng, K.; Yuan, Y.; Huang, T.; Cai, Y.D. Identification of genes associated with the impairment of olfactory and gustatory functions in COVID-19 via machine-learning methods. Life, 2023, 13(3), 798. doi: 10.3390/life13030798 PMID: 36983953
  46. Chen, L.; Chen, K.; Zhou, B. Inferring drug-disease associations by a deep analysis on drug and disease networks. Math. Biosci. Eng., 2023, 20(8), 14136-14157. doi: 10.3934/mbe.2023632 PMID: 37679129
  47. Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; Fu, X.; Liu, S.; Bo, X.; Yu, G. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation, 2021, 2(3), 100141. doi: 10.1016/j.xinn.2021.100141 PMID: 34557778
  48. Matthews, B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta Protein Struct., 1975, 405(2), 442-451. doi: 10.1016/0005-2795(75)90109-9 PMID: 1180967
  49. Bhatlekar, S.; Addya, S.; Salunek, M.; Orr, C.R.; Surrey, S.; McKenzie, S.; Fields, J.Z.; Boman, B.M. Identification of a developmental gene expression signature, including HOX genes, for the normal human colonic crypt stem cell niche: Overexpression of the signature parallels stem cell overpopulation during colon tumorigenesis. Stem Cells Dev., 2014, 23(2), 167-179. doi: 10.1089/scd.2013.0039 PMID: 23980595
  50. Sanz-Pamplona, R.; Cordero, D.; Berenguer, A.; Lejbkowicz, F.; Rennert, H.; Salazar, R.; Biondo, S.; Sanjuan, X.; Pujana, M.A.; Rozek, L.; Giordano, T.J.; Ben-Izhak, O.; Cohen, H.I.; Trougouboff, P.; Bejhar, J.; Sova, Y.; Rennert, G.; Gruber, S.B.; Moreno, V. Gene expression differences between colon and rectum tumors. Clin. Cancer Res., 2011, 17(23), 7303-7312. doi: 10.1158/1078-0432.CCR-11-1570 PMID: 21976543
  51. Xu, W.; Lu, J.; Zhao, Q.; Wu, J.; Sun, J.; Han, B.; Zhao, X.; Kang, Y. Genome-wide plasma cell-free DNA methylation profiling identifies potential biomarkers for lung cancer. Dis. Markers, 2019, 2019, 1-7. doi: 10.1155/2019/4108474 PMID: 30867848
  52. Harada, H.; Miyamaoto, K.; Kimura, M.; Ishigami, T.; Taniyama, K.; Okada, M. Lung cancer risk stratification using methylation profile in the oral epithelium. Asian Cardiovasc. Thorac. Ann., 2019, 27(2), 87-92. doi: 10.1177/0218492318813443 PMID: 30417685
  53. Rodini, C.O.; Xavier, F.C.A.; Paiva, K.B.S.; De Souza Setúbal Destro, M.F.; Moyses, R.A.; Michaluarte, P.; Carvalho, M.B.; Fukuyama, E.E.; Tajara, E.H.; Okamoto, O.K.; Nunes, F.D. Homeobox gene expression profile indicates HOXA5 as a candidate prognostic marker in oral squamous cell carcinoma. Int. J. Oncol., 2012, 40(4), 1180-1188. doi: 10.3892/ijo.2011.1321 PMID: 22227861
  54. Wang, J.; Liu, Z.; Zhang, C.; Wang, H.; Li, A.; Liu, B.; Lian, X.; Ren, Z.; Zhang, W.; Wang, Y.; Zhang, B.; Pang, B.; Gao, Y. Abnormal expression of HOXD11 promotes the malignant behavior of glioma cells and leads to poor prognosis of glioma patients. PeerJ, 2021, 9, e10820. doi: 10.7717/peerj.10820 PMID: 33614284
  55. Miyamoto, K.; Fukutomi, T.; Akashi-Tanaka, S.; Hasegawa, T.; Asahara, T.; Sugimura, T.; Ushijima, T. Identification of 20 genes aberrantly methylated in human breast cancers. Int. J. Cancer, 2005, 116(3), 407-414. doi: 10.1002/ijc.21054 PMID: 15818620
  56. Cai, L.; Abe, M.; Izumi, S.; Imura, M.; Yasugi, T.; Ushijima, T. Identification of PRTFDC1 silencing and aberrant promoter methylation of GPR150, ITGA8 and HOXD11 in ovarian cancers. Life Sci., 2007, 80(16), 1458-1465. doi: 10.1016/j.lfs.2007.01.015 PMID: 17303177
  57. Yang, H.; Zhou, J.; Mi, J.; Ma, K.; Fan, Y.; Ning, J.; Wang, C.; Wei, X.; Zhao, H.; Li, E. HOXD10 acts as a tumor-suppressive factor via inhibition of the RHOC/AKT/MAPK pathway in human cholangiocellular carcinoma. Oncol. Rep., 2015, 34(4), 1681-1691. doi: 10.3892/or.2015.4194 PMID: 26260613
  58. Chen, W.; Cai, F.; Zhang, B.; Barekati, Z.; Zhong, X.Y. The level of circulating miRNA-10b and miRNA-373 in detecting lymph node metastasis of breast cancer: potential biomarkers. Tumour Biol., 2013, 34(1), 455-462. doi: 10.1007/s13277-012-0570-5 PMID: 23238818
  59. Wang, Y.; Li, Z.; Zhao, X.; Zuo, X.; Peng, Z. miR-10b promotes invasion by targeting HOXD10 in colorectal cancer. Oncol. Lett., 2016, 12(1), 488-494. doi: 10.3892/ol.2016.4628 PMID: 27347170
  60. Guo, Y.; Peng, Y.; Gao, D.; Zhang, M.; Yang, W.; Linghu, E.; Herman, J.G.; Fuks, F.; Dong, G.; Guo, M. Silencing HOXD10 by promoter region hypermethylation activates ERK signaling in hepatocellular carcinoma. Clin. Epigenetics, 2017, 9(1), 116. doi: 10.1186/s13148-017-0412-9 PMID: 29075359
  61. Pan, W.; Wang, K.; Li, J.; Li, H.; Cai, Y.; Zhang, M.; Wang, A.; Wu, Y.; Gao, W.; Weng, W. Restoring HOXD10 exhibits therapeutic potential for ameliorating malignant progression and 5-fluorouracil resistance in colorectal cancer. Front. Oncol., 2021, 11, 771528. doi: 10.3389/fonc.2021.771528 PMID: 34790580
  62. Berx, G.; Staes, K.; van Hengel, J.; Molemans, F.; Bussemakers, M.J.G.; van Bokhoven, A.; van Roy, F. Cloning and characterization of the human invasion suppressor gene E-cadherin (CDH1). Genomics, 1995, 26(2), 281-289. doi: 10.1016/0888-7543(95)80212-5 PMID: 7601454
  63. Wong, A.S.T.; Gumbiner, B.M. Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin. J. Cell Biol., 2003, 161(6), 1191-1203. doi: 10.1083/jcb.200212033 PMID: 12810698
  64. Jeanes, A.; Gottardi, C.J.; Yap, A.S. Cadherins and cancer: How does cadherin dysfunction promote tumor progression? Oncogene, 2008, 27(55), 6920-6929. doi: 10.1038/onc.2008.343 PMID: 19029934
  65. Larue, L.; Bellacosa, A. Epithelial–mesenchymal transition in development and cancer: Role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene, 2005, 24(50), 7443-7454. doi: 10.1038/sj.onc.1209091 PMID: 16288291
  66. Chen, X.; Wang, W.; Li, Y.; Huo, Y.; Zhang, H.; Feng, F.; Xi, W.; Zhang, T.; Gao, J.; Yang, F.; Chen, S.; Yang, A.; Wang, T. MYSM1 inhibits human colorectal cancer tumorigenesis by activating miR-200 family members/CDH1 and blocking PI3K/AKT signaling. J. Exp. Clin. Cancer Res., 2021, 40(1), 341. doi: 10.1186/s13046-021-02106-2 PMID: 34706761
  67. Thierolf, M.; Hagmann, M.L.; Pfeffer, M.; Berntenis, N.; Wild, N.; Roeßler, M.; Palme, S.; Karl, J.; Bodenmüller, H.; Rüschoff, J.; Rossol, S.; Rohr, G.; Rösch, W.; Friess, H.; Eickhoff, A.; Jauch, K.W.; Langen, H.; Zolg, W.; Tacke, M. Towards a comprehensive proteome of normal and malignant human colon tissue by 2-D-LC-ESI-MS and 2-DE proteomics and identification of S100A12 as potential cancer biomarker. Proteomics Clin. Appl., 2008, 2(1), 11-22. doi: 10.1002/prca.200780046 PMID: 21136775
  68. de Jong, N.S.H.; Leach, S.T.; Day, A.S. Fecal S100A12: A novel noninvasive marker in children with Crohnʼs disease. Inflamm. Bowel Dis., 2006, 12(7), 566-572. doi: 10.1097/01.ibd.0000227626.72271.91 PMID: 16804393
  69. Turner, D.; Leach, S.T.; Mack, D.; Uusoue, K.; McLernon, R.; Hyams, J.; Leleiko, N.; Walters, T.D.; Crandall, W.; Markowitz, J.; Otley, A.R.; Griffiths, A.M.; Day, A.S. Faecal calprotectin, lactoferrin, M2-pyruvate kinase and S100A12 in severe ulcerative colitis: A prospective multicentre comparison of predicting outcomes and monitoring response. Gut, 2010, 59(9), 1207-1212. doi: 10.1136/gut.2010.211755 PMID: 20801771
  70. Loktionov, A.; Soubieres, A.; Bandaletova, T.; Mathur, J.; Poullis, A. Colorectal cancer detection by biomarker quantification in noninvasively collected colorectal mucus: preliminary comparison of 24 protein biomarkers. Eur. J. Gastroenterol. Hepatol., 2019, 31(10), 1220-1227. doi: 10.1097/MEG.0000000000001535 PMID: 31498281
  71. Spratt, D.E.; Walden, H.; Shaw, G.S. RBR E3 ubiquitin ligases: New structures, new insights, new questions. Biochem. J., 2014, 458(3), 421-437. doi: 10.1042/BJ20140006 PMID: 24576094
  72. Ho, S.R.; Mahanic, C.S.; Lee, Y.J.; Lin, W.C. RNF144A, an E3 ubiquitin ligase for DNA-PKcs, promotes apoptosis during DNA damage. Proc. Natl. Acad. Sci., 2014, 111(26), E2646-E2655. doi: 10.1073/pnas.1323107111 PMID: 24979766
  73. Yang, Y.L.; Zhang, Y.; Li, D.D.; Zhang, F.L.; Liu, H.Y.; Liao, X.H.; Xie, H.Y.; Lu, Q.; Zhang, L.; Hong, Q.; Dong, W.J.; Li, D.Q.; Shao, Z.M. RNF144A functions as a tumor suppressor in breast cancer through ubiquitin ligase activity-dependent regulation of stability and oncogenic functions of HSPA2. Cell Death Differ., 2020, 27(3), 1105-1118. doi: 10.1038/s41418-019-0400-z PMID: 31406303
  74. Li, Y.; Wang, J.; Wang, F.; Chen, W.; Gao, C.; Wang, J. RNF144A suppresses ovarian cancer stem cell properties and tumor progression through regulation of LIN28B degradation via the ubiquitin-proteasome pathway. Cell Biol. Toxicol., 2022, 38(5), 809-824. doi: 10.1007/s10565-021-09609-w PMID: 33978933
  75. Yin, J.; Guo, Y. HOXD13 promotes the malignant progression of colon cancer by upregulating PTPRN2. Cancer Med., 2021, 10(16), 5524-5533. doi: 10.1002/cam4.4078 PMID: 34272834
  76. Xu, T.; Zong, Y.; Peng, L.; Kong, S.; Zhou, M.; Zou, J.; Liu, J.; Miao, R.; Sun, X.; Li, L. Overexpression of eIF4E in colorectal cancer patients is associated with liver metastasis. OncoTargets Ther., 2016, 9, 815-822. PMID: 26929650
  77. Hsieh, A.C.; Ruggero, D. Targeting eukaryotic translation initiation factor 4E (eIF4E) in cancer. Clin. Cancer Res., 2010, 16(20), 4914-4920. doi: 10.1158/1078-0432.CCR-10-0433 PMID: 20702611
  78. Ichikawa, M.; Sowa, Y.; Iizumi, Y.; Aono, Y.; Sakai, T. Resibufogenin induces G1-phase arrest through the proteasomal degradation of cyclin D1 in human malignant tumor cells. PLoS One, 2015, 10(6), e0129851. doi: 10.1371/journal.pone.0129851 PMID: 26121043
  79. Othumpangat, S. Sodium arsenite-induced inhibition of eukaryotic translation initiation factor 4E (eIF4E) results in cytotoxicity and cell death. PLoS One, 2005, 279(2), 123-131.
  80. Chen, F.; Wang, M.; Bai, J.; Liu, Q.; Xi, Y.; Li, W.; Zheng, J. Role of RUNX3 in suppressing metastasis and angiogenesis of human prostate cancer. PLoS One, 2014, 9(1), e86917. doi: 10.1371/journal.pone.0086917 PMID: 24475196
  81. Gao, M.; Zhang, X.; Li, D.; He, P.; Tian, W.; Zeng, B. Expression analysis and clinical significance of eIF4E, VEGF-C, E-cadherin and MMP-2 in colorectal adenocarcinoma. Oncotarget, 2016, 7(51), 85502-85514. doi: 10.18632/oncotarget.13453 PMID: 27907907
  82. Zhao, Q.; Zhang, K.; Li, Z.; Zhang, H.; Fu, F.; Fu, J.; Zheng, M.; Zhang, S. High migration and invasion ability of pgccs and their daughter cells associated with the nuclear localization of S100A10 modified by SUMOylation. Front. Cell Dev. Biol., 2021, 9, 696871. doi: 10.3389/fcell.2021.696871 PMID: 34336846
  83. Chavakis, T.; Keiper, T.; Matz-Westphal, R.; Hersemeyer, K.; Sachs, U.J.; Nawroth, P.P.; Preissner, K.T.; Santoso, S. The junctional adhesion molecule-C promotes neutrophil transendothelial migration in vitro and in vivo. J. Biol. Chem., 2004, 279(53), 55602-55608. doi: 10.1074/jbc.M404676200 PMID: 15485832
  84. Khine, A.A.; Del Sorbo, L.; Vaschetto, R.; Voglis, S.; Tullis, E.; Slutsky, A.S.; Downey, G.P.; Zhang, H. Human neutrophil peptides induce interleukin-8 production through the P2Y6 signaling pathway. Blood, 2006, 107(7), 2936-2942. doi: 10.1182/blood-2005-06-2314 PMID: 16322472
  85. Piccoli, M.; D’Angelo, E.; Crotti, S.; Sensi, F.; Urbani, L.; Maghin, E.; Burns, A.; De Coppi, P.; Fassan, M.; Rugge, M.; Rizzolio, F.; Giordano, A.; Pilati, P.; Mammano, E.; Pucciarelli, S.; Agostini, M. Decellularized colorectal cancer matrix as bioactive microenvironment for in vitro 3D cancer research. J. Cell. Physiol., 2018, 233(8), 5937-5948. doi: 10.1002/jcp.26403 PMID: 29244195
  86. Ladwa, R.; Pringle, H.; Kumar, R.; West, K. Expression of CTGF and Cyr61 in colorectal cancer. J. Clin. Pathol., 2011, 64(1), 58-64. doi: 10.1136/jcp.2010.082768 PMID: 21081514
  87. Xie, L.; Song, X.; Lin, H.; Chen, Z.; Li, Q.; Guo, T.; Xu, T.; Su, T.; Xu, M.; Chang, X.; Wang, L.K.; Liang, B.; Huang, D. Aberrant activation of CYR61 enhancers in colorectal cancer development. J. Exp. Clin. Cancer Res., 2019, 38(1), 213. doi: 10.1186/s13046-019-1217-9 PMID: 31118064
  88. Huang, X.; Xiang, L.; Li, Y.; Zhao, Y.; Zhu, H.; Xiao, Y.; Liu, M.; Wu, X.; Wang, Z.; Jiang, P.; Qing, H.; Zhang, Q.; Liu, G.; Zhang, W.; Li, A.; Chen, Y.; Liu, S.; Wang, J. Snail/FOXK1/Cyr61 signaling axis regulates the epithelial–mesenchymal transition and metastasis in colorectal cancer. Cell. Physiol. Biochem., 2018, 47(2), 590-603. doi: 10.1159/000490015 PMID: 29794466
  89. Wu, G.; Zhu, Y.Z.; Zhang, J.C. Sox4 up-regulates Cyr61 expression in colon cancer cells. Cell. Physiol. Biochem., 2014, 34(2), 405-412. doi: 10.1159/000363009 PMID: 25059387
  90. Jeong, D.; Heo, S.; Sung Ahn, T.; Lee, S.; Park, S.; Kim, H.; Park, D.; Byung Bae, S.; Lee, S.S.; Soo Lee, M.; Kim, C.J.; Jun Baek, M. Cyr61 Expression is associated with prognosis in patients with colorectal cancer. BMC Cancer, 2014, 14(1), 164. doi: 10.1186/1471-2407-14-164 PMID: 24606730
  91. Yan, J.; Yang, B.; Lin, S.; Xing, R.; Lu, Y. Downregulation of miR-142-5p promotes tumor metastasis through directly regulating CYR61 expression in gastric cancer. Gastric Cancer, 2019, 22(2), 302-313. doi: 10.1007/s10120-018-0872-4 PMID: 30178386
  92. ten Bokum, A.M.; Hofland, L.J.; van Hagen, P.M. Somatostatin and somatostatin receptors in the immune system: A review. Eur. Cytokine Netw., 2000, 11(2), 161-176. PMID: 10903795
  93. Casnici, C.; Lattuada, D.; Perego, C.; Franco, P.; Marelli, O. Inhibitory effect of somatostatin on human T lymphocytes proliferation. Int. J. Immunopharmacol., 1998, 19(11-12), 721-727. doi: 10.1016/S0192-0561(97)00033-7 PMID: 9669213
  94. Rosskopf, D.; Schürks, M.; Manthey, I.; Joisten, M.; Busch, S.; Siffert, W. Signal transduction of somatostatin in human B lymphoblasts. Am. J. Physiol. Cell Physiol., 2003, 284(1), C179-C190. doi: 10.1152/ajpcell.00160.2001 PMID: 12388115
  95. Ruscica, M.; Arvigo, M.; Steffani, L.; Ferone, D.; Magni, P. Somatostatin, somatostatin analogs and somatostatin receptor dynamics in the biology of cancer progression. Curr. Mol. Med., 2013, 13(4), 555-571. doi: 10.2174/1566524011313040008 PMID: 22934849
  96. Leiszter, K.; Sipos, F.; Galamb, O.; Krenács, T.; Veres, G.; Wichmann, B.; Fűri, I.; Kalmár, A.; Patai, Á.V.; Tóth, K.; Valcz, G.; Tulassay, Z.; Molnár, B. Promoter hypermethylation-related reduced somatostatin production promotes uncontrolled cell proliferation in colorectal cancer. PLoS One, 2015, 10(2), e0118332. doi: 10.1371/journal.pone.0118332 PMID: 25723531
  97. Gatto, F.; Barbieri, F.; Arvigo, M.; Thellung, S.; Amarù, J.; Albertelli, M.; Ferone, D.; Florio, T. Biological and biochemical basis of the differential efficacy of first and second generation somatostatin receptor ligands in neuroendocrine neoplasms. Int. J. Mol. Sci., 2019, 20(16), 3940. doi: 10.3390/ijms20163940 PMID: 31412614
  98. Modarai, S.R.; Opdenaker, L.M.; Viswanathan, V.; Fields, J.Z.; Boman, B.M. Somatostatin signaling via SSTR1 contributes to the quiescence of colon cancer stem cells. BMC Cancer, 2016, 16(1), 941. doi: 10.1186/s12885-016-2969-7 PMID: 27927191
  99. Ma, Z.; Williams, M.; Cheng, Y.Y.; Leung, W.K. Roles of methylated DNA biomarkers in patients with colorectal cancer. Dis. Markers, 2019, 2019, 1-8. doi: 10.1155/2019/2673543 PMID: 30944663
  100. Fernandez, S.; Risolino, M.; Mandia, N.; Talotta, F.; Soini, Y.; Incoronato, M.; Condorelli, G.; Banfi, S.; Verde, P. miR-340 inhibits tumor cell proliferation and induces apoptosis by targeting multiple negative regulators of p27 in non-small cell lung cancer. Oncogene, 2015, 34(25), 3240-3250. doi: 10.1038/onc.2014.267 PMID: 25151966
  101. Gong, Y.; Liu, Z.; Yuan, Y.; Yang, Z.; Zhang, J.; Lu, Q.; Wang, W.; Fang, C.; Lin, H.; Liu, S. PUMILIO proteins promote colorectal cancer growth via suppressing p21. Nat. Commun., 2022, 13(1), 1627. doi: 10.1038/s41467-022-29309-1 PMID: 35338151
  102. Kanai, M.; Hamada, J.; Takada, M.; Asano, T.; Murakawa, K.; Takahashi, Y.; Murai, T.; Tada, M.; Miyamoto, M.; Kondo, S.; Moriuchi, T. Aberrant expressions of HOX genes in colorectal and hepatocellular carcinomas. Oncol. Rep., 2010, 23(3), 843-851. PMID: 20127028
  103. Schimanski, C.C.; Frerichs, K.; Rahman, F.; Berger, M.; Lang, H.; Galle, P.R.; Moehler, M.; Gockel, I. High miR-196a levels promote the oncogenic phenotype of colorectal cancer cells. World J. Gastroenterol., 2009, 15(17), 2089-2096. doi: 10.3748/wjg.15.2089 PMID: 19418581
  104. Mansour, M.A.; Senga, T. HOXD8 exerts a tumor-suppressing role in colorectal cancer as an apoptotic inducer. Int. J. Biochem. Cell Biol., 2017, 88, 1-13. doi: 10.1016/j.biocel.2017.04.011 PMID: 28457970
  105. Planell, N.; Lozano, J.J.; Mora-Buch, R.; Masamunt, M.C.; Jimeno, M.; Ordás, I.; Esteller, M.; Ricart, E.; Piqué, J.M.; Panés, J.; Salas, A. Transcriptional analysis of the intestinal mucosa of patients with ulcerative colitis in remission reveals lasting epithelial cell alterations. Gut, 2013, 62(7), 967-976. doi: 10.1136/gutjnl-2012-303333 PMID: 23135761
  106. Huang, D.; Feng, X.; Liu, Y.; Deng, Y.; Chen, H.; Chen, D.; Fang, L.; Cai, Y.; Liu, H.; Wang, L.; Wang, J.; Yang, Z. AQP9-induced cell cycle arrest is associated with RAS activation and improves chemotherapy treatment efficacy in colorectal cancer. Cell Death Dis., 2017, 8(6), e2894. doi: 10.1038/cddis.2017.282 PMID: 28640255
  107. Verkman, A.S.; Hara-Chikuma, M.; Papadopoulos, M.C. Aquaporins—new players in cancer biology. J. Mol. Med., 2008, 86(5), 523-529. doi: 10.1007/s00109-008-0303-9 PMID: 18311471
  108. Chen, Q.; Zhu, L.; Zheng, B.; Wang, J.; Song, X.; Zheng, W.; Wang, L.; Yang, D.; Wang, J. Effect of AQP9 expression in androgen-independent prostate cancer cell PC3. Int. J. Mol. Sci., 2016, 17(5), 738. doi: 10.3390/ijms17050738 PMID: 27187384
  109. Zhang, W.; Li, C.; Liu, M.; Chen, X.; Shuai, K.; Kong, X.; Lv, L.; Mei, Z. Aquaporin 9 is down-regulated in hepatocellular carcinoma and its over-expression suppresses hepatoma cell invasion through inhibiting epithelial-to-mesenchymal transition. Cancer Lett., 2016, 378(2), 111-119. doi: 10.1016/j.canlet.2016.05.021 PMID: 27216981
  110. Liu, X.; Xu, Q.; Li, Z.; Xiong, B. Integrated analysis identifies AQP9 correlates with immune infiltration and acts as a prognosticator in multiple cancers. Sci. Rep., 2020, 10(1), 20795. doi: 10.1038/s41598-020-77657-z PMID: 33247170
  111. Zajkowska, M.; Kulczyńska-Przybik, A.; Dulewicz, M.; Safiejko, K.; Juchimiuk, M.; Konopko, M.; Kozłowski, L.; Mroczko, B. Eotaxins and their receptor as biomarkers of colorectal cancer. J. Clin. Med., 2021, 10(12), 2675. doi: 10.3390/jcm10122675 PMID: 34204490
  112. Cho, Y.B.; Lee, W.Y.; Choi, S.J.; Kim, J.; Hong, H.K.; Kim, S.H.; Choi, Y.L.; Kim, H.C.; Yun, S.H.; Chun, H.K.; Lee, K.U. CC chemokine ligand 7 expression in liver metastasis of colorectal cancer. Oncol. Rep., 2012, 28(2), 689-694. doi: 10.3892/or.2012.1815 PMID: 22614322
  113. Cheadle, E.J.; Riyad, K.; Subar, D.; Rothwell, D.G.; Ashton, G.; Batha, H.; Sherlock, D.J.; Hawkins, R.E.; Gilham, D.E. Eotaxin-2 and colorectal cancer: A potential target for immune therapy. Clin. Cancer Res., 2007, 13(19), 5719-5728. doi: 10.1158/1078-0432.CCR-07-1145 PMID: 17908961
  114. Lan, Q.; Lai, W.; Zeng, Y.; Liu, L.; Li, S.; Jin, S.; Zhang, Y.; Luo, X.; Xu, H.; Lin, X.; Chu, Z. CCL26 participates in the PRL-3–induced promotion of colorectal cancer invasion by stimulating tumor-associated macrophage infiltration. Mol. Cancer Ther., 2018, 17(1), 276-289. doi: 10.1158/1535-7163.MCT-17-0507 PMID: 29051319
  115. Moore, A.J.; Devine, D.A.; Bibby, M.C. Preliminary experimental anticancer activity of cecropins. Pept. Res., 1994, 7(5), 265-269. PMID: 7849420
  116. Robertson, C.N.; Roberson, K.M.; Pinero, A.; Jaynes, J.M.; Paulson, D.F. Peptidyl membrane-interactive molecules are cytotoxic to prostatic cancer cells in vitro. World J. Urol., 1998, 16(6), 405-409. doi: 10.1007/s003450050091 PMID: 9870289
  117. Ankaiah, D.; Palanichamy, E.; Antonyraj, C.B.; Ayyanna, R.; Perumal, V.; Ahamed, S.I.B.; Arul, V. Cloning, overexpression, purification of bacteriocin enterocin-B and structural analysis, interaction determination of enterocin-A, B against pathogenic bacteria and human cancer cells. Int. J. Biol. Macromol., 2018, 116, 502-512. doi: 10.1016/j.ijbiomac.2018.05.002 PMID: 29729340
  118. Norouzi, Z.; Salimi, A.; Halabian, R.; Fahimi, H. Nisin, a potent bacteriocin and anti-bacterial peptide, attenuates expression of metastatic genes in colorectal cancer cell lines. Microb. Pathog., 2018, 123, 183-189. doi: 10.1016/j.micpath.2018.07.006 PMID: 30017942
  119. Khusro, A.; Aarti, C.; Mahizhaveni, B.; Dusthackeer, A.; Agastian, P.; Esmail, G.A.; Ghilan, A.K.M.; Al-Dhabi, N.A.; Arasu, M.V. Purification and characterization of anti-tubercular and anticancer protein from Staphylococcus hominis strain MANF2: In silico structural and functional insight of peptide. Saudi J. Biol. Sci., 2020, 27(4), 1107-1116. doi: 10.1016/j.sjbs.2020.01.017 PMID: 32256172
  120. Slaninová, J.; Mlsová, V.; Kroupová, H.; Alán, L.; Tůmová, T.; Monincová, L.; Borovičková, L.; Fučík, V.; Čeřovský, V. Toxicity study of antimicrobial peptides from wild bee venom and their analogs toward mammalian normal and cancer cells. Peptides, 2012, 33(1), 18-26. doi: 10.1016/j.peptides.2011.11.002 PMID: 22100226
  121. Saleh, M.; Trinchieri, G. Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat. Rev. Immunol., 2011, 11(1), 9-20. doi: 10.1038/nri2891 PMID: 21151034
  122. Ju, Q.; Zhao, Y.J.; Dong, Y.; Cheng, C.; Zhang, S.; Yang, Y.; Li, P.; Ge, D.; Sun, B. Identification of a miRNA mRNA network associated with lymph node metastasis in colorectal cancer. Oncol. Lett., 2019, 18(2), 1179-1188. doi: 10.3892/ol.2019.10460 PMID: 31423178
  123. Gamage, D.G.; Hendrickson, T.L. GPI Transamidase and GPI anchored proteins: Oncogenes and biomarkers for cancer. Crit. Rev. Biochem. Mol. Biol., 2013, 48(5), 446-464. doi: 10.3109/10409238.2013.831024 PMID: 23978072
  124. Tapial, P.; López, P.; Lietha, D. FAK structure and regulation by membrane interactions and force in focal adhesions. Biomolecules, 2020, 10(2), 179. doi: 10.3390/biom10020179 PMID: 31991559
  125. Záhorec, R.; Marek, V.; Waczulíková, I.; Veselovský, T.; Palaj, J.; Kečkéš, Š.; Durdík, Š. Predictive model using hemoglobin, albumin, fibrinogen, and neutrophil-to-lymphocyte ratio to distinguish patients with colorectal cancer from those with benign adenoma. Neoplasma, 2021, 68(6), 1292-1300. doi: 10.4149/neo_2021_210331N435 PMID: 34585586
  126. Wallace, K.; Li, H.; Brazeal, J.G.; Lewin, D.N.; Sun, S.; Ba, A.; Paulos, C.M.; Rachidi, S.; Li, Z.; Alekseyenko, A.V. Platelet and hemoglobin count at diagnosis are associated with survival in African American and Caucasian patients with colorectal cancer. Cancer Epidemiol., 2020, 67, 101746. doi: 10.1016/j.canep.2020.101746 PMID: 32521488
  127. Zhao, Z.; Zhu, A.; Bhardwaj, M.; Schrotz-King, P.; Brenner, H. Fecal microRNAs, Fecal microRNA panels, or combinations of fecal microRNAs with fecal hemoglobin for early detection of colorectal cancer and its precursors: A systematic review. Cancers, 2021, 14(1), 65. doi: 10.3390/cancers14010065 PMID: 35008229
  128. Moretó, M.; Pérez-Bosque, A. Dietary plasma proteins, the intestinal immune system, and the barrier functions of the intestinal mucosa1. J. Anim. Sci., 2009, 87(S14), E92-E100. doi: 10.2527/jas.2008-1381 PMID: 18820151
  129. Inoue, I.; Mukoubayashi, C.; Yoshimura, N.; Niwa, T.; Deguchi, H.; Watanabe, M.; Enomoto, S.; Maekita, T.; Ueda, K.; Iguchi, M.; Yanaoka, K.; Tamai, H.; Arii, K.; Oka, M.; Fujishiro, M.; Takeshita, T.; Iwane, M.; Mohara, O.; Ichinose, M. Elevated risk of colorectal adenoma with Helicobacter pylori-related chronic gastritis: A population-based case-control study. Int. J. Cancer, 2011, 129(11), 2704-2711. doi: 10.1002/ijc.25931 PMID: 21225622
  130. Du, G.; Fang, X.; Dai, W.; Zhang, R.; Liu, R.; Dang, X. Comparative gene expression profiling of normal and human colorectal adenomatous tissues. Oncol. Lett., 2014, 8(5), 2081-2085. doi: 10.3892/ol.2014.2485 PMID: 25295094
  131. Saxena, M.; Yeretssian, G. NOD-like receptors: Master regulators of inflammation and cancer. Front. Immunol., 2014, 5, 327. doi: 10.3389/fimmu.2014.00327 PMID: 25071785
  132. Li, B.; Qi, Z.P.; He, D.L.; Chen, Z.H.; Liu, J.Y.; Wong, M.W.; Zhang, J.W.; Xu, E.P.; Shi, Q.; Cai, S.L.; Sun, D.; Yao, L.Q.; Zhou, P.H.; Zhong, Y.S. NLRP7 deubiquitination by USP10 promotes tumor progression and tumor-associated macrophage polarization in colorectal cancer. J. Exp. Clin. Cancer Res., 2021, 40(1), 126. doi: 10.1186/s13046-021-01920-y PMID: 33838681
  133. Huhn, S.; da Silva Filho, M.I.; Sanmuganantham, T.; Pichulik, T.; Catalano, C.; Pardini, B.; Naccarati, A.; Polakova-Vymetálkova, V.; Jiraskova, K.; Vodickova, L.; Vodicka, P.; Löffler, M.W.; Courth, L.; Wehkamp, J.; Din, F.V.N.; Timofeeva, M.; Farrington, S.M.; Jansen, L.; Hemminki, K.; Chang-Claude, J.; Brenner, H.; Hoffmeister, M.; Dunlop, M.G.; Weber, A.N.R.; Försti, A. Coding variants in NOD-like receptors: An association study on risk and survival of colorectal cancer. PLoS One, 2018, 13(6), e0199350. doi: 10.1371/journal.pone.0199350 PMID: 29928061
  134. Gulifeire, T.; Yang, C.; Li, X.; Wang, Y.; Yu, X. Activation of NOD-like receptor protein 3 inflammasome mediates inflammatory response and apoptosis in septic intestinal injury model. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2021, 33(7), 855-860. PMID: 34412757
  135. Zaki, M.H.; Vogel, P.; Malireddi, R.K.S.; Body-Malapel, M.; Anand, P.K.; Bertin, J.; Green, D.R.; Lamkanfi, M.; Kanneganti, T.D. The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell, 2011, 20(5), 649-660. doi: 10.1016/j.ccr.2011.10.022 PMID: 22094258
  136. Ohashi, K.; Wang, Z.; Yang, Y.M.; Billet, S.; Tu, W.; Pimienta, M.; Cassel, S.L.; Pandol, S.J.; Lu, S.C.; Sutterwala, F.S.; Bhowmick, N.; Seki, E. NOD‐like receptor C4 inflammasome regulates the growth of colon cancer liver metastasis in NAFLD. Hepatology, 2019, 70(5), 1582-1599. doi: 10.1002/hep.30693 PMID: 31044438

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024