Patterns of Gene Expression Profiles Associated with Colorectal Cancer in Colorectal Mucosa by Using Machine Learning Methods
- Autores: Ren J.1, Chen L.2, Guo W.3, Feng K.4, Cai Y.1, Huang T.5
-
Afiliações:
- School of Life Sciences, Shanghai University
- College of Information Engineering, Shanghai Maritime University
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS)
- Department of Computer Science, Guangdong AIB Polytechnic
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
- Edição: Volume 27, Nº 19 (2024)
- Páginas: 2921-2934
- Seção: Chemistry
- URL: https://kazanmedjournal.ru/1386-2073/article/view/644548
- DOI: https://doi.org/10.2174/0113862073266300231026103844
- ID: 644548
Citar
Texto integral
Resumo
Background:Colorectal cancer (CRC) has a very high incidence and lethality rate and is one of the most dangerous cancer types. Timely diagnosis can effectively reduce the incidence of colorectal cancer. Changes in para-cancerous tissues may serve as an early signal for tumorigenesis. Comparison of the differences in gene expression between para-cancerous and normal mucosa can help in the diagnosis of CRC and understanding the mechanisms of development.
Objectives:This study aimed to identify specific genes at the level of gene expression, which are expressed in normal mucosa and may be predictive of CRC risk.
Methods:A machine learning approach was used to analyze transcriptomic data in 459 samples of normal colonic mucosal tissue from 322 CRC cases and 137 non-CRC, in which each sample contained 28,706 gene expression levels. The genes were ranked using four ranking methods based on importance estimation (LASSO, LightGBM, MCFS, and mRMR) and four classification algorithms (decision tree [DT], K-nearest neighbor [KNN], random forest [RF], and support vector machine [SVM]) were combined with incremental feature selection [IFS] methods to construct a prediction model with excellent performance.
Result:The top-ranked genes, namely, HOXD12, CDH1, and S100A12, were associated with tumorigenesis based on previous studies.
Conclusion:This study summarized four sets of quantitative classification rules based on the DT algorithm, providing clues for understanding the microenvironmental changes caused by CRC. According to the rules, the effect of CRC on normal mucosa can be determined.
Palavras-chave
Sobre autores
Jing Ren
School of Life Sciences, Shanghai University
Email: info@benthamscience.net
Lei Chen
College of Information Engineering, Shanghai Maritime University
Email: info@benthamscience.net
Wei Guo
Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS)
Email: info@benthamscience.net
Kai Feng
Department of Computer Science, Guangdong AIB Polytechnic
Email: info@benthamscience.net
Yu-Dong Cai
School of Life Sciences, Shanghai University
Autor responsável pela correspondência
Email: info@benthamscience.net
Tao Huang
Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
Autor responsável pela correspondência
Email: info@benthamscience.net
Bibliografia
- Brustugun, O.T.; Møller, B.; Helland, Å. Years of life lost as a measure of cancer burden on a national level. Br. J. Cancer, 2014, 111(5), 1014-1020. doi: 10.1038/bjc.2014.364 PMID: 24983370
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33. doi: 10.3322/caac.21654 PMID: 33433946
- Fearon, E.R.; Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell, 1990, 61(5), 759-767. doi: 10.1016/0092-8674(90)90186-I PMID: 2188735
- Amaro, A.; Chiara, S.; Pfeffer, U. Molecular evolution of colorectal cancer: From multistep carcinogenesis to the big bang. Cancer Metastasis Rev., 2016, 35(1), 63-74. doi: 10.1007/s10555-016-9606-4 PMID: 26947218
- Paterson, C.; Clevers, H.; Bozic, I. Mathematical model of colorectal cancer initiation. Proc. Natl. Acad. Sci. USA, 2020, 117(34), 20681-20688. doi: 10.1073/pnas.2003771117 PMID: 32788368
- Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med., 2013, 19(11), 1423-1437. doi: 10.1038/nm.3394 PMID: 24202395
- Ombrato, L.; Nolan, E.; Kurelac, I.; Mavousian, A.; Bridgeman, V.L.; Heinze, I.; Chakravarty, P.; Horswell, S.; Gonzalez-Gualda, E.; Matacchione, G.; Weston, A.; Kirkpatrick, J.; Husain, E.; Speirs, V.; Collinson, L.; Ori, A.; Lee, J.H.; Malanchi, I. Metastatic-niche labelling reveals parenchymal cells with stem features. Nature, 2019, 572(7771), 603-608. doi: 10.1038/s41586-019-1487-6 PMID: 31462798
- Lochhead, P.; Chan, A.T.; Nishihara, R.; Fuchs, C.S.; Beck, A.H.; Giovannucci, E.; Ogino, S. Etiologic field effect: Reappraisal of the field effect concept in cancer predisposition and progression. Mod. Pathol., 2015, 28(1), 14-29. doi: 10.1038/modpathol.2014.81 PMID: 24925058
- Patel, A.; Tripathi, G.; Gopalakrishnan, K.; Williams, N.; Arasaradnam, R.P. Field cancerisation in colorectal cancer: A new frontier or pastures past? World J. Gastroenterol., 2015, 21(13), 3763-3772. doi: 10.3748/wjg.v21.i13.3763 PMID: 25852261
- Hawthorn, L.; Lan, L.; Mojica, W. Evidence for field effect cancerization in colorectal cancer. Genomics, 2014, 103(2-3), 211-221. doi: 10.1016/j.ygeno.2013.11.003 PMID: 24316131
- Chai, H.; Brown, R.E. Field effect in cancer-an update. Ann. Clin. Lab. Sci., 2009, 39(4), 331-337. PMID: 19880759
- Chen, L.C.; Hao, C.Y.; Chiu, Y.S.Y.; Wong, P.; Melnick, J.S.; Brotman, M.; Moretto, J.; Mendes, F.; Smith, A.P.; Bennington, J.L.; Moore, D.; Lee, N.M. Alteration of gene expression in normal-appearing colon mucosa of APC(min) mice and human cancer patients. Cancer Res., 2004, 64(10), 3694-3700. doi: 10.1158/0008-5472.CAN-03-3264 PMID: 15150130
- Polley, A.C.J.; Mulholland, F.; Pin, C.; Williams, E.A.; Bradburn, D.M.; Mills, S.J.; Mathers, J.C.; Johnson, I.T. Proteomic analysis reveals field-wide changes in protein expression in the morphologically normal mucosa of patients with colorectal neoplasia. Cancer Res., 2006, 66(13), 6553-6562. doi: 10.1158/0008-5472.CAN-06-0534 PMID: 16818627
- Daniel, C.R.; Bostick, R.M.; Flanders, W.D.; Long, Q.; Fedirko, V.; Sidelnikov, E.; Seabrook, M.E. TGF-alpha expression as a potential biomarker of risk within the normal-appearing colorectal mucosa of patients with and without incident sporadic adenoma. Cancer Epidemiol. Biomarkers Prev., 2009, 18(1), 65-73. doi: 10.1158/1055-9965.EPI-08-0732 PMID: 19124482
- Maurya, N.S.; Kushwaha, S.; Chawade, A.; Mani, A. Transcriptome profiling by combined machine learning and statistical R analysis identifies TMEM236 as a potential novel diagnostic biomarker for colorectal cancer. Sci. Rep., 2021, 11(1), 14304. doi: 10.1038/s41598-021-92692-0 PMID: 34253750
- Hossain, M.J.; Chowdhury, U.N.; Islam, M.B.; Uddin, S.; Ahmed, M.B.; Quinn, J.M.W.; Moni, M.A. Machine learning and network-based models to identify genetic risk factors to the progression and survival of colorectal cancer. Comput. Biol. Med., 2021, 135, 104539. doi: 10.1016/j.compbiomed.2021.104539 PMID: 34153790
- Koppad, S.; Basava, A.; Nash, K.; Gkoutos, G.V.; Acharjee, A. Machine learning-based identification of colon cancer candidate diagnostics genes. Biology, 2022, 11(3), 365. doi: 10.3390/biology11030365 PMID: 35336739
- Vaughan-Shaw, P.G.; Timofeeva, M.; Ooi, L.Y.; Svinti, V.; Grimes, G.; Smillie, C.; Blackmur, J.P.; Donnelly, K.; Theodoratou, E.; Campbell, H.; Zgaga, L.; Din, F.V.N.; Farrington, S.M.; Dunlop, M.G. Differential genetic influences over colorectal cancer risk and gene expression in large bowel mucosa. Int. J. Cancer, 2021, 149(5), 1100-1108. doi: 10.1002/ijc.33616 PMID: 33937989
- Jian, F.; Huang, F.; Zhang, Y.H.; Huang, T.; Cai, Y.D. Identifying anal and cervical tumorigenesis-associated methylation signaling with machine learning methods. Front. Oncol., 2022, 12, 998032. doi: 10.3389/fonc.2022.998032 PMID: 36249027
- Li, H.; Wang, D.; Zhou, X.; Ding, S.; Guo, W.; Zhang, S.; Li, Z.; Huang, T.; Cai, Y.D. Characterization of spleen and lymph node cell types via CITE-seq and machine learning methods. Front. Mol. Neurosci., 2022, 15, 1033159. doi: 10.3389/fnmol.2022.1033159 PMID: 36311013
- Liu, Z.; Meng, M.; Ding, S.; Zhou, X.; Feng, K.; Huang, T.; Cai, Y.D. Identification of methylation signatures and rules for predicting the severity of SARS-CoV-2 infection with machine learning methods. Front. Microbiol., 2022, 13, 1007295. doi: 10.3389/fmicb.2022.1007295 PMID: 36212830
- Li, Z.; Huang, F.; Chen, L.; Huang, T.; Cai, Y.D. Identifying in vitro cultured human hepatocytes markers with machine learning methods based on single-cell RNA-Seq data. Front. Bioeng. Biotechnol., 2022, 10, 916309. doi: 10.3389/fbioe.2022.916309 PMID: 35706505
- Huang, F.; Ma, Q.; Ren, J.; Li, J.; Wang, F.; Huang, T.; Cai, Y.D. Identification of smoking-associated transcriptome aberration in blood with machine learning methods. BioMed Res. Int., 2023, 2023, 1-13. doi: 10.1155/2023/5333361 PMID: 36644165
- Huang, F. Analysis and prediction of protein stability based on interaction network, gene ontology, and KEGG pathway enrichment scores. Biochim. Biophys. Acta. Proteins Proteomics, 2023, 18713, 140889. doi: 10.1016/j.bbapap.2023.140889
- Zhao, X.; Chen, L.; Lu, J. A similarity-based method for prediction of drug side effects with heterogeneous information. Math. Biosci., 2018, 306, 136-144. doi: 10.1016/j.mbs.2018.09.010 PMID: 30296417
- Tibshirani, R. Regression shrinkage and selection via the lasso: A retrospective. J. R. Stat. Soc. Series B Stat. Methodol., 2011, 73(3), 273-282. doi: 10.1111/j.1467-9868.2011.00771.x
- Pedregosa, F. Scikit-learn: Machine learning in python. J. Mach. Learn. Res., 2011, 12(85), 2825-2830.
- Ke, G.; Qi, M.; Thomas, F.; Taifeng, W.; Wei, C.; Weidong, M.; Qiwei, Y.; Tie-Yan, L. LightGBM: A highly efficient gradient boosting decision tree. Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 3149-3157.
- Dramiński, M.; Rada-Iglesias, A.; Enroth, S.; Wadelius, C.; Koronacki, J.; Komorowski, J. Monte Carlo feature selection for supervised classification. Bioinformatics, 2008, 24(1), 110-117. doi: 10.1093/bioinformatics/btm486 PMID: 18048398
- Hanchuan, Peng Fuhui Long; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27(8), 1226-1238. doi: 10.1109/TPAMI.2005.159 PMID: 16119262
- Liu, H.; Setiono, R. Incremental feature selection. Appl. Intell., 1998, 9(3), 217-230. doi: 10.1023/A:1008363719778
- Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. International joint Conference on artificial intelligence. 1995.
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res., 2002, 16, 321-357. doi: 10.1613/jair.953
- Safavian, S.R.; Landgrebe, D. A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern., 1991, 21(3), 660-674. doi: 10.1109/21.97458
- Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory, 1967, 13(1), 21-27. doi: 10.1109/TIT.1967.1053964
- Breiman, L. Random forests. Mach. Learn., 2001, 45(1), 5-32. doi: 10.1023/A:1010933404324
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn., 1995, 20(3), 273-297. doi: 10.1007/BF00994018
- Wang, H.; Chen, L. PMPTCE-HNEA: Predicting metabolic pathway types of chemicals and enzymes with a heterogeneous network embedding algorithm. Curr. Bioinform., 2023, 18. doi: 10.2174/1574893618666230224121633
- Pan, X. Identifying protein subcellular locations with embeddings-based node2loc. IEEE/ACM Trans. Comput. Biol. Bioinform., 2022, 19(2), 666-675.
- Powers, D. Evaluation: From precision, recall and f-measure to roc., informedness, markedness & correlation. J. Mach. Learn. Technol., 2011, 2(1), 37-63.
- Tang, S.; Chen, L. iATC-NFMLP: Identifying classes of anatomical therapeutic chemicals based on drug networks, fingerprints and multilayer perceptron. Curr. Bioinform., 2022, 17(9), 814-824. doi: 10.2174/1574893617666220318093000
- Yang, Y.; Chen, L. Identification of drugdisease associations by using multiple drug and disease networks. Curr. Bioinform., 2022, 17(1), 48-59. doi: 10.2174/1574893616666210825115406
- Wu, C.; Chen, L. A model with deep analysis on a large drug network for drug classification. Math. Biosci. Eng., 2022, 20(1), 383-401. doi: 10.3934/mbe.2023018 PMID: 36650771
- Ren, J.; Zhang, Y.; Guo, W.; Feng, K.; Yuan, Y.; Huang, T.; Cai, Y.D. Identification of genes associated with the impairment of olfactory and gustatory functions in COVID-19 via machine-learning methods. Life, 2023, 13(3), 798. doi: 10.3390/life13030798 PMID: 36983953
- Chen, L.; Chen, K.; Zhou, B. Inferring drug-disease associations by a deep analysis on drug and disease networks. Math. Biosci. Eng., 2023, 20(8), 14136-14157. doi: 10.3934/mbe.2023632 PMID: 37679129
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; Fu, X.; Liu, S.; Bo, X.; Yu, G. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation, 2021, 2(3), 100141. doi: 10.1016/j.xinn.2021.100141 PMID: 34557778
- Matthews, B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta Protein Struct., 1975, 405(2), 442-451. doi: 10.1016/0005-2795(75)90109-9 PMID: 1180967
- Bhatlekar, S.; Addya, S.; Salunek, M.; Orr, C.R.; Surrey, S.; McKenzie, S.; Fields, J.Z.; Boman, B.M. Identification of a developmental gene expression signature, including HOX genes, for the normal human colonic crypt stem cell niche: Overexpression of the signature parallels stem cell overpopulation during colon tumorigenesis. Stem Cells Dev., 2014, 23(2), 167-179. doi: 10.1089/scd.2013.0039 PMID: 23980595
- Sanz-Pamplona, R.; Cordero, D.; Berenguer, A.; Lejbkowicz, F.; Rennert, H.; Salazar, R.; Biondo, S.; Sanjuan, X.; Pujana, M.A.; Rozek, L.; Giordano, T.J.; Ben-Izhak, O.; Cohen, H.I.; Trougouboff, P.; Bejhar, J.; Sova, Y.; Rennert, G.; Gruber, S.B.; Moreno, V. Gene expression differences between colon and rectum tumors. Clin. Cancer Res., 2011, 17(23), 7303-7312. doi: 10.1158/1078-0432.CCR-11-1570 PMID: 21976543
- Xu, W.; Lu, J.; Zhao, Q.; Wu, J.; Sun, J.; Han, B.; Zhao, X.; Kang, Y. Genome-wide plasma cell-free DNA methylation profiling identifies potential biomarkers for lung cancer. Dis. Markers, 2019, 2019, 1-7. doi: 10.1155/2019/4108474 PMID: 30867848
- Harada, H.; Miyamaoto, K.; Kimura, M.; Ishigami, T.; Taniyama, K.; Okada, M. Lung cancer risk stratification using methylation profile in the oral epithelium. Asian Cardiovasc. Thorac. Ann., 2019, 27(2), 87-92. doi: 10.1177/0218492318813443 PMID: 30417685
- Rodini, C.O.; Xavier, F.C.A.; Paiva, K.B.S.; De Souza Setúbal Destro, M.F.; Moyses, R.A.; Michaluarte, P.; Carvalho, M.B.; Fukuyama, E.E.; Tajara, E.H.; Okamoto, O.K.; Nunes, F.D. Homeobox gene expression profile indicates HOXA5 as a candidate prognostic marker in oral squamous cell carcinoma. Int. J. Oncol., 2012, 40(4), 1180-1188. doi: 10.3892/ijo.2011.1321 PMID: 22227861
- Wang, J.; Liu, Z.; Zhang, C.; Wang, H.; Li, A.; Liu, B.; Lian, X.; Ren, Z.; Zhang, W.; Wang, Y.; Zhang, B.; Pang, B.; Gao, Y. Abnormal expression of HOXD11 promotes the malignant behavior of glioma cells and leads to poor prognosis of glioma patients. PeerJ, 2021, 9, e10820. doi: 10.7717/peerj.10820 PMID: 33614284
- Miyamoto, K.; Fukutomi, T.; Akashi-Tanaka, S.; Hasegawa, T.; Asahara, T.; Sugimura, T.; Ushijima, T. Identification of 20 genes aberrantly methylated in human breast cancers. Int. J. Cancer, 2005, 116(3), 407-414. doi: 10.1002/ijc.21054 PMID: 15818620
- Cai, L.; Abe, M.; Izumi, S.; Imura, M.; Yasugi, T.; Ushijima, T. Identification of PRTFDC1 silencing and aberrant promoter methylation of GPR150, ITGA8 and HOXD11 in ovarian cancers. Life Sci., 2007, 80(16), 1458-1465. doi: 10.1016/j.lfs.2007.01.015 PMID: 17303177
- Yang, H.; Zhou, J.; Mi, J.; Ma, K.; Fan, Y.; Ning, J.; Wang, C.; Wei, X.; Zhao, H.; Li, E. HOXD10 acts as a tumor-suppressive factor via inhibition of the RHOC/AKT/MAPK pathway in human cholangiocellular carcinoma. Oncol. Rep., 2015, 34(4), 1681-1691. doi: 10.3892/or.2015.4194 PMID: 26260613
- Chen, W.; Cai, F.; Zhang, B.; Barekati, Z.; Zhong, X.Y. The level of circulating miRNA-10b and miRNA-373 in detecting lymph node metastasis of breast cancer: potential biomarkers. Tumour Biol., 2013, 34(1), 455-462. doi: 10.1007/s13277-012-0570-5 PMID: 23238818
- Wang, Y.; Li, Z.; Zhao, X.; Zuo, X.; Peng, Z. miR-10b promotes invasion by targeting HOXD10 in colorectal cancer. Oncol. Lett., 2016, 12(1), 488-494. doi: 10.3892/ol.2016.4628 PMID: 27347170
- Guo, Y.; Peng, Y.; Gao, D.; Zhang, M.; Yang, W.; Linghu, E.; Herman, J.G.; Fuks, F.; Dong, G.; Guo, M. Silencing HOXD10 by promoter region hypermethylation activates ERK signaling in hepatocellular carcinoma. Clin. Epigenetics, 2017, 9(1), 116. doi: 10.1186/s13148-017-0412-9 PMID: 29075359
- Pan, W.; Wang, K.; Li, J.; Li, H.; Cai, Y.; Zhang, M.; Wang, A.; Wu, Y.; Gao, W.; Weng, W. Restoring HOXD10 exhibits therapeutic potential for ameliorating malignant progression and 5-fluorouracil resistance in colorectal cancer. Front. Oncol., 2021, 11, 771528. doi: 10.3389/fonc.2021.771528 PMID: 34790580
- Berx, G.; Staes, K.; van Hengel, J.; Molemans, F.; Bussemakers, M.J.G.; van Bokhoven, A.; van Roy, F. Cloning and characterization of the human invasion suppressor gene E-cadherin (CDH1). Genomics, 1995, 26(2), 281-289. doi: 10.1016/0888-7543(95)80212-5 PMID: 7601454
- Wong, A.S.T.; Gumbiner, B.M. Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin. J. Cell Biol., 2003, 161(6), 1191-1203. doi: 10.1083/jcb.200212033 PMID: 12810698
- Jeanes, A.; Gottardi, C.J.; Yap, A.S. Cadherins and cancer: How does cadherin dysfunction promote tumor progression? Oncogene, 2008, 27(55), 6920-6929. doi: 10.1038/onc.2008.343 PMID: 19029934
- Larue, L.; Bellacosa, A. Epithelialmesenchymal transition in development and cancer: Role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene, 2005, 24(50), 7443-7454. doi: 10.1038/sj.onc.1209091 PMID: 16288291
- Chen, X.; Wang, W.; Li, Y.; Huo, Y.; Zhang, H.; Feng, F.; Xi, W.; Zhang, T.; Gao, J.; Yang, F.; Chen, S.; Yang, A.; Wang, T. MYSM1 inhibits human colorectal cancer tumorigenesis by activating miR-200 family members/CDH1 and blocking PI3K/AKT signaling. J. Exp. Clin. Cancer Res., 2021, 40(1), 341. doi: 10.1186/s13046-021-02106-2 PMID: 34706761
- Thierolf, M.; Hagmann, M.L.; Pfeffer, M.; Berntenis, N.; Wild, N.; Roeßler, M.; Palme, S.; Karl, J.; Bodenmüller, H.; Rüschoff, J.; Rossol, S.; Rohr, G.; Rösch, W.; Friess, H.; Eickhoff, A.; Jauch, K.W.; Langen, H.; Zolg, W.; Tacke, M. Towards a comprehensive proteome of normal and malignant human colon tissue by 2-D-LC-ESI-MS and 2-DE proteomics and identification of S100A12 as potential cancer biomarker. Proteomics Clin. Appl., 2008, 2(1), 11-22. doi: 10.1002/prca.200780046 PMID: 21136775
- de Jong, N.S.H.; Leach, S.T.; Day, A.S. Fecal S100A12: A novel noninvasive marker in children with Crohnʼs disease. Inflamm. Bowel Dis., 2006, 12(7), 566-572. doi: 10.1097/01.ibd.0000227626.72271.91 PMID: 16804393
- Turner, D.; Leach, S.T.; Mack, D.; Uusoue, K.; McLernon, R.; Hyams, J.; Leleiko, N.; Walters, T.D.; Crandall, W.; Markowitz, J.; Otley, A.R.; Griffiths, A.M.; Day, A.S. Faecal calprotectin, lactoferrin, M2-pyruvate kinase and S100A12 in severe ulcerative colitis: A prospective multicentre comparison of predicting outcomes and monitoring response. Gut, 2010, 59(9), 1207-1212. doi: 10.1136/gut.2010.211755 PMID: 20801771
- Loktionov, A.; Soubieres, A.; Bandaletova, T.; Mathur, J.; Poullis, A. Colorectal cancer detection by biomarker quantification in noninvasively collected colorectal mucus: preliminary comparison of 24 protein biomarkers. Eur. J. Gastroenterol. Hepatol., 2019, 31(10), 1220-1227. doi: 10.1097/MEG.0000000000001535 PMID: 31498281
- Spratt, D.E.; Walden, H.; Shaw, G.S. RBR E3 ubiquitin ligases: New structures, new insights, new questions. Biochem. J., 2014, 458(3), 421-437. doi: 10.1042/BJ20140006 PMID: 24576094
- Ho, S.R.; Mahanic, C.S.; Lee, Y.J.; Lin, W.C. RNF144A, an E3 ubiquitin ligase for DNA-PKcs, promotes apoptosis during DNA damage. Proc. Natl. Acad. Sci., 2014, 111(26), E2646-E2655. doi: 10.1073/pnas.1323107111 PMID: 24979766
- Yang, Y.L.; Zhang, Y.; Li, D.D.; Zhang, F.L.; Liu, H.Y.; Liao, X.H.; Xie, H.Y.; Lu, Q.; Zhang, L.; Hong, Q.; Dong, W.J.; Li, D.Q.; Shao, Z.M. RNF144A functions as a tumor suppressor in breast cancer through ubiquitin ligase activity-dependent regulation of stability and oncogenic functions of HSPA2. Cell Death Differ., 2020, 27(3), 1105-1118. doi: 10.1038/s41418-019-0400-z PMID: 31406303
- Li, Y.; Wang, J.; Wang, F.; Chen, W.; Gao, C.; Wang, J. RNF144A suppresses ovarian cancer stem cell properties and tumor progression through regulation of LIN28B degradation via the ubiquitin-proteasome pathway. Cell Biol. Toxicol., 2022, 38(5), 809-824. doi: 10.1007/s10565-021-09609-w PMID: 33978933
- Yin, J.; Guo, Y. HOXD13 promotes the malignant progression of colon cancer by upregulating PTPRN2. Cancer Med., 2021, 10(16), 5524-5533. doi: 10.1002/cam4.4078 PMID: 34272834
- Xu, T.; Zong, Y.; Peng, L.; Kong, S.; Zhou, M.; Zou, J.; Liu, J.; Miao, R.; Sun, X.; Li, L. Overexpression of eIF4E in colorectal cancer patients is associated with liver metastasis. OncoTargets Ther., 2016, 9, 815-822. PMID: 26929650
- Hsieh, A.C.; Ruggero, D. Targeting eukaryotic translation initiation factor 4E (eIF4E) in cancer. Clin. Cancer Res., 2010, 16(20), 4914-4920. doi: 10.1158/1078-0432.CCR-10-0433 PMID: 20702611
- Ichikawa, M.; Sowa, Y.; Iizumi, Y.; Aono, Y.; Sakai, T. Resibufogenin induces G1-phase arrest through the proteasomal degradation of cyclin D1 in human malignant tumor cells. PLoS One, 2015, 10(6), e0129851. doi: 10.1371/journal.pone.0129851 PMID: 26121043
- Othumpangat, S. Sodium arsenite-induced inhibition of eukaryotic translation initiation factor 4E (eIF4E) results in cytotoxicity and cell death. PLoS One, 2005, 279(2), 123-131.
- Chen, F.; Wang, M.; Bai, J.; Liu, Q.; Xi, Y.; Li, W.; Zheng, J. Role of RUNX3 in suppressing metastasis and angiogenesis of human prostate cancer. PLoS One, 2014, 9(1), e86917. doi: 10.1371/journal.pone.0086917 PMID: 24475196
- Gao, M.; Zhang, X.; Li, D.; He, P.; Tian, W.; Zeng, B. Expression analysis and clinical significance of eIF4E, VEGF-C, E-cadherin and MMP-2 in colorectal adenocarcinoma. Oncotarget, 2016, 7(51), 85502-85514. doi: 10.18632/oncotarget.13453 PMID: 27907907
- Zhao, Q.; Zhang, K.; Li, Z.; Zhang, H.; Fu, F.; Fu, J.; Zheng, M.; Zhang, S. High migration and invasion ability of pgccs and their daughter cells associated with the nuclear localization of S100A10 modified by SUMOylation. Front. Cell Dev. Biol., 2021, 9, 696871. doi: 10.3389/fcell.2021.696871 PMID: 34336846
- Chavakis, T.; Keiper, T.; Matz-Westphal, R.; Hersemeyer, K.; Sachs, U.J.; Nawroth, P.P.; Preissner, K.T.; Santoso, S. The junctional adhesion molecule-C promotes neutrophil transendothelial migration in vitro and in vivo. J. Biol. Chem., 2004, 279(53), 55602-55608. doi: 10.1074/jbc.M404676200 PMID: 15485832
- Khine, A.A.; Del Sorbo, L.; Vaschetto, R.; Voglis, S.; Tullis, E.; Slutsky, A.S.; Downey, G.P.; Zhang, H. Human neutrophil peptides induce interleukin-8 production through the P2Y6 signaling pathway. Blood, 2006, 107(7), 2936-2942. doi: 10.1182/blood-2005-06-2314 PMID: 16322472
- Piccoli, M.; DAngelo, E.; Crotti, S.; Sensi, F.; Urbani, L.; Maghin, E.; Burns, A.; De Coppi, P.; Fassan, M.; Rugge, M.; Rizzolio, F.; Giordano, A.; Pilati, P.; Mammano, E.; Pucciarelli, S.; Agostini, M. Decellularized colorectal cancer matrix as bioactive microenvironment for in vitro 3D cancer research. J. Cell. Physiol., 2018, 233(8), 5937-5948. doi: 10.1002/jcp.26403 PMID: 29244195
- Ladwa, R.; Pringle, H.; Kumar, R.; West, K. Expression of CTGF and Cyr61 in colorectal cancer. J. Clin. Pathol., 2011, 64(1), 58-64. doi: 10.1136/jcp.2010.082768 PMID: 21081514
- Xie, L.; Song, X.; Lin, H.; Chen, Z.; Li, Q.; Guo, T.; Xu, T.; Su, T.; Xu, M.; Chang, X.; Wang, L.K.; Liang, B.; Huang, D. Aberrant activation of CYR61 enhancers in colorectal cancer development. J. Exp. Clin. Cancer Res., 2019, 38(1), 213. doi: 10.1186/s13046-019-1217-9 PMID: 31118064
- Huang, X.; Xiang, L.; Li, Y.; Zhao, Y.; Zhu, H.; Xiao, Y.; Liu, M.; Wu, X.; Wang, Z.; Jiang, P.; Qing, H.; Zhang, Q.; Liu, G.; Zhang, W.; Li, A.; Chen, Y.; Liu, S.; Wang, J. Snail/FOXK1/Cyr61 signaling axis regulates the epithelialmesenchymal transition and metastasis in colorectal cancer. Cell. Physiol. Biochem., 2018, 47(2), 590-603. doi: 10.1159/000490015 PMID: 29794466
- Wu, G.; Zhu, Y.Z.; Zhang, J.C. Sox4 up-regulates Cyr61 expression in colon cancer cells. Cell. Physiol. Biochem., 2014, 34(2), 405-412. doi: 10.1159/000363009 PMID: 25059387
- Jeong, D.; Heo, S.; Sung Ahn, T.; Lee, S.; Park, S.; Kim, H.; Park, D.; Byung Bae, S.; Lee, S.S.; Soo Lee, M.; Kim, C.J.; Jun Baek, M. Cyr61 Expression is associated with prognosis in patients with colorectal cancer. BMC Cancer, 2014, 14(1), 164. doi: 10.1186/1471-2407-14-164 PMID: 24606730
- Yan, J.; Yang, B.; Lin, S.; Xing, R.; Lu, Y. Downregulation of miR-142-5p promotes tumor metastasis through directly regulating CYR61 expression in gastric cancer. Gastric Cancer, 2019, 22(2), 302-313. doi: 10.1007/s10120-018-0872-4 PMID: 30178386
- ten Bokum, A.M.; Hofland, L.J.; van Hagen, P.M. Somatostatin and somatostatin receptors in the immune system: A review. Eur. Cytokine Netw., 2000, 11(2), 161-176. PMID: 10903795
- Casnici, C.; Lattuada, D.; Perego, C.; Franco, P.; Marelli, O. Inhibitory effect of somatostatin on human T lymphocytes proliferation. Int. J. Immunopharmacol., 1998, 19(11-12), 721-727. doi: 10.1016/S0192-0561(97)00033-7 PMID: 9669213
- Rosskopf, D.; Schürks, M.; Manthey, I.; Joisten, M.; Busch, S.; Siffert, W. Signal transduction of somatostatin in human B lymphoblasts. Am. J. Physiol. Cell Physiol., 2003, 284(1), C179-C190. doi: 10.1152/ajpcell.00160.2001 PMID: 12388115
- Ruscica, M.; Arvigo, M.; Steffani, L.; Ferone, D.; Magni, P. Somatostatin, somatostatin analogs and somatostatin receptor dynamics in the biology of cancer progression. Curr. Mol. Med., 2013, 13(4), 555-571. doi: 10.2174/1566524011313040008 PMID: 22934849
- Leiszter, K.; Sipos, F.; Galamb, O.; Krenács, T.; Veres, G.; Wichmann, B.; Fűri, I.; Kalmár, A.; Patai, Á.V.; Tóth, K.; Valcz, G.; Tulassay, Z.; Molnár, B. Promoter hypermethylation-related reduced somatostatin production promotes uncontrolled cell proliferation in colorectal cancer. PLoS One, 2015, 10(2), e0118332. doi: 10.1371/journal.pone.0118332 PMID: 25723531
- Gatto, F.; Barbieri, F.; Arvigo, M.; Thellung, S.; Amarù, J.; Albertelli, M.; Ferone, D.; Florio, T. Biological and biochemical basis of the differential efficacy of first and second generation somatostatin receptor ligands in neuroendocrine neoplasms. Int. J. Mol. Sci., 2019, 20(16), 3940. doi: 10.3390/ijms20163940 PMID: 31412614
- Modarai, S.R.; Opdenaker, L.M.; Viswanathan, V.; Fields, J.Z.; Boman, B.M. Somatostatin signaling via SSTR1 contributes to the quiescence of colon cancer stem cells. BMC Cancer, 2016, 16(1), 941. doi: 10.1186/s12885-016-2969-7 PMID: 27927191
- Ma, Z.; Williams, M.; Cheng, Y.Y.; Leung, W.K. Roles of methylated DNA biomarkers in patients with colorectal cancer. Dis. Markers, 2019, 2019, 1-8. doi: 10.1155/2019/2673543 PMID: 30944663
- Fernandez, S.; Risolino, M.; Mandia, N.; Talotta, F.; Soini, Y.; Incoronato, M.; Condorelli, G.; Banfi, S.; Verde, P. miR-340 inhibits tumor cell proliferation and induces apoptosis by targeting multiple negative regulators of p27 in non-small cell lung cancer. Oncogene, 2015, 34(25), 3240-3250. doi: 10.1038/onc.2014.267 PMID: 25151966
- Gong, Y.; Liu, Z.; Yuan, Y.; Yang, Z.; Zhang, J.; Lu, Q.; Wang, W.; Fang, C.; Lin, H.; Liu, S. PUMILIO proteins promote colorectal cancer growth via suppressing p21. Nat. Commun., 2022, 13(1), 1627. doi: 10.1038/s41467-022-29309-1 PMID: 35338151
- Kanai, M.; Hamada, J.; Takada, M.; Asano, T.; Murakawa, K.; Takahashi, Y.; Murai, T.; Tada, M.; Miyamoto, M.; Kondo, S.; Moriuchi, T. Aberrant expressions of HOX genes in colorectal and hepatocellular carcinomas. Oncol. Rep., 2010, 23(3), 843-851. PMID: 20127028
- Schimanski, C.C.; Frerichs, K.; Rahman, F.; Berger, M.; Lang, H.; Galle, P.R.; Moehler, M.; Gockel, I. High miR-196a levels promote the oncogenic phenotype of colorectal cancer cells. World J. Gastroenterol., 2009, 15(17), 2089-2096. doi: 10.3748/wjg.15.2089 PMID: 19418581
- Mansour, M.A.; Senga, T. HOXD8 exerts a tumor-suppressing role in colorectal cancer as an apoptotic inducer. Int. J. Biochem. Cell Biol., 2017, 88, 1-13. doi: 10.1016/j.biocel.2017.04.011 PMID: 28457970
- Planell, N.; Lozano, J.J.; Mora-Buch, R.; Masamunt, M.C.; Jimeno, M.; Ordás, I.; Esteller, M.; Ricart, E.; Piqué, J.M.; Panés, J.; Salas, A. Transcriptional analysis of the intestinal mucosa of patients with ulcerative colitis in remission reveals lasting epithelial cell alterations. Gut, 2013, 62(7), 967-976. doi: 10.1136/gutjnl-2012-303333 PMID: 23135761
- Huang, D.; Feng, X.; Liu, Y.; Deng, Y.; Chen, H.; Chen, D.; Fang, L.; Cai, Y.; Liu, H.; Wang, L.; Wang, J.; Yang, Z. AQP9-induced cell cycle arrest is associated with RAS activation and improves chemotherapy treatment efficacy in colorectal cancer. Cell Death Dis., 2017, 8(6), e2894. doi: 10.1038/cddis.2017.282 PMID: 28640255
- Verkman, A.S.; Hara-Chikuma, M.; Papadopoulos, M.C. Aquaporinsnew players in cancer biology. J. Mol. Med., 2008, 86(5), 523-529. doi: 10.1007/s00109-008-0303-9 PMID: 18311471
- Chen, Q.; Zhu, L.; Zheng, B.; Wang, J.; Song, X.; Zheng, W.; Wang, L.; Yang, D.; Wang, J. Effect of AQP9 expression in androgen-independent prostate cancer cell PC3. Int. J. Mol. Sci., 2016, 17(5), 738. doi: 10.3390/ijms17050738 PMID: 27187384
- Zhang, W.; Li, C.; Liu, M.; Chen, X.; Shuai, K.; Kong, X.; Lv, L.; Mei, Z. Aquaporin 9 is down-regulated in hepatocellular carcinoma and its over-expression suppresses hepatoma cell invasion through inhibiting epithelial-to-mesenchymal transition. Cancer Lett., 2016, 378(2), 111-119. doi: 10.1016/j.canlet.2016.05.021 PMID: 27216981
- Liu, X.; Xu, Q.; Li, Z.; Xiong, B. Integrated analysis identifies AQP9 correlates with immune infiltration and acts as a prognosticator in multiple cancers. Sci. Rep., 2020, 10(1), 20795. doi: 10.1038/s41598-020-77657-z PMID: 33247170
- Zajkowska, M.; Kulczyńska-Przybik, A.; Dulewicz, M.; Safiejko, K.; Juchimiuk, M.; Konopko, M.; Kozłowski, L.; Mroczko, B. Eotaxins and their receptor as biomarkers of colorectal cancer. J. Clin. Med., 2021, 10(12), 2675. doi: 10.3390/jcm10122675 PMID: 34204490
- Cho, Y.B.; Lee, W.Y.; Choi, S.J.; Kim, J.; Hong, H.K.; Kim, S.H.; Choi, Y.L.; Kim, H.C.; Yun, S.H.; Chun, H.K.; Lee, K.U. CC chemokine ligand 7 expression in liver metastasis of colorectal cancer. Oncol. Rep., 2012, 28(2), 689-694. doi: 10.3892/or.2012.1815 PMID: 22614322
- Cheadle, E.J.; Riyad, K.; Subar, D.; Rothwell, D.G.; Ashton, G.; Batha, H.; Sherlock, D.J.; Hawkins, R.E.; Gilham, D.E. Eotaxin-2 and colorectal cancer: A potential target for immune therapy. Clin. Cancer Res., 2007, 13(19), 5719-5728. doi: 10.1158/1078-0432.CCR-07-1145 PMID: 17908961
- Lan, Q.; Lai, W.; Zeng, Y.; Liu, L.; Li, S.; Jin, S.; Zhang, Y.; Luo, X.; Xu, H.; Lin, X.; Chu, Z. CCL26 participates in the PRL-3induced promotion of colorectal cancer invasion by stimulating tumor-associated macrophage infiltration. Mol. Cancer Ther., 2018, 17(1), 276-289. doi: 10.1158/1535-7163.MCT-17-0507 PMID: 29051319
- Moore, A.J.; Devine, D.A.; Bibby, M.C. Preliminary experimental anticancer activity of cecropins. Pept. Res., 1994, 7(5), 265-269. PMID: 7849420
- Robertson, C.N.; Roberson, K.M.; Pinero, A.; Jaynes, J.M.; Paulson, D.F. Peptidyl membrane-interactive molecules are cytotoxic to prostatic cancer cells in vitro. World J. Urol., 1998, 16(6), 405-409. doi: 10.1007/s003450050091 PMID: 9870289
- Ankaiah, D.; Palanichamy, E.; Antonyraj, C.B.; Ayyanna, R.; Perumal, V.; Ahamed, S.I.B.; Arul, V. Cloning, overexpression, purification of bacteriocin enterocin-B and structural analysis, interaction determination of enterocin-A, B against pathogenic bacteria and human cancer cells. Int. J. Biol. Macromol., 2018, 116, 502-512. doi: 10.1016/j.ijbiomac.2018.05.002 PMID: 29729340
- Norouzi, Z.; Salimi, A.; Halabian, R.; Fahimi, H. Nisin, a potent bacteriocin and anti-bacterial peptide, attenuates expression of metastatic genes in colorectal cancer cell lines. Microb. Pathog., 2018, 123, 183-189. doi: 10.1016/j.micpath.2018.07.006 PMID: 30017942
- Khusro, A.; Aarti, C.; Mahizhaveni, B.; Dusthackeer, A.; Agastian, P.; Esmail, G.A.; Ghilan, A.K.M.; Al-Dhabi, N.A.; Arasu, M.V. Purification and characterization of anti-tubercular and anticancer protein from Staphylococcus hominis strain MANF2: In silico structural and functional insight of peptide. Saudi J. Biol. Sci., 2020, 27(4), 1107-1116. doi: 10.1016/j.sjbs.2020.01.017 PMID: 32256172
- Slaninová, J.; Mlsová, V.; Kroupová, H.; Alán, L.; Tůmová, T.; Monincová, L.; Borovičková, L.; Fučík, V.; Čeřovský, V. Toxicity study of antimicrobial peptides from wild bee venom and their analogs toward mammalian normal and cancer cells. Peptides, 2012, 33(1), 18-26. doi: 10.1016/j.peptides.2011.11.002 PMID: 22100226
- Saleh, M.; Trinchieri, G. Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat. Rev. Immunol., 2011, 11(1), 9-20. doi: 10.1038/nri2891 PMID: 21151034
- Ju, Q.; Zhao, Y.J.; Dong, Y.; Cheng, C.; Zhang, S.; Yang, Y.; Li, P.; Ge, D.; Sun, B. Identification of a miRNA mRNA network associated with lymph node metastasis in colorectal cancer. Oncol. Lett., 2019, 18(2), 1179-1188. doi: 10.3892/ol.2019.10460 PMID: 31423178
- Gamage, D.G.; Hendrickson, T.L. GPI Transamidase and GPI anchored proteins: Oncogenes and biomarkers for cancer. Crit. Rev. Biochem. Mol. Biol., 2013, 48(5), 446-464. doi: 10.3109/10409238.2013.831024 PMID: 23978072
- Tapial, P.; López, P.; Lietha, D. FAK structure and regulation by membrane interactions and force in focal adhesions. Biomolecules, 2020, 10(2), 179. doi: 10.3390/biom10020179 PMID: 31991559
- Záhorec, R.; Marek, V.; Waczulíková, I.; Veselovský, T.; Palaj, J.; Kečké, .; Durdík, . Predictive model using hemoglobin, albumin, fibrinogen, and neutrophil-to-lymphocyte ratio to distinguish patients with colorectal cancer from those with benign adenoma. Neoplasma, 2021, 68(6), 1292-1300. doi: 10.4149/neo_2021_210331N435 PMID: 34585586
- Wallace, K.; Li, H.; Brazeal, J.G.; Lewin, D.N.; Sun, S.; Ba, A.; Paulos, C.M.; Rachidi, S.; Li, Z.; Alekseyenko, A.V. Platelet and hemoglobin count at diagnosis are associated with survival in African American and Caucasian patients with colorectal cancer. Cancer Epidemiol., 2020, 67, 101746. doi: 10.1016/j.canep.2020.101746 PMID: 32521488
- Zhao, Z.; Zhu, A.; Bhardwaj, M.; Schrotz-King, P.; Brenner, H. Fecal microRNAs, Fecal microRNA panels, or combinations of fecal microRNAs with fecal hemoglobin for early detection of colorectal cancer and its precursors: A systematic review. Cancers, 2021, 14(1), 65. doi: 10.3390/cancers14010065 PMID: 35008229
- Moretó, M.; Pérez-Bosque, A. Dietary plasma proteins, the intestinal immune system, and the barrier functions of the intestinal mucosa1. J. Anim. Sci., 2009, 87(S14), E92-E100. doi: 10.2527/jas.2008-1381 PMID: 18820151
- Inoue, I.; Mukoubayashi, C.; Yoshimura, N.; Niwa, T.; Deguchi, H.; Watanabe, M.; Enomoto, S.; Maekita, T.; Ueda, K.; Iguchi, M.; Yanaoka, K.; Tamai, H.; Arii, K.; Oka, M.; Fujishiro, M.; Takeshita, T.; Iwane, M.; Mohara, O.; Ichinose, M. Elevated risk of colorectal adenoma with Helicobacter pylori-related chronic gastritis: A population-based case-control study. Int. J. Cancer, 2011, 129(11), 2704-2711. doi: 10.1002/ijc.25931 PMID: 21225622
- Du, G.; Fang, X.; Dai, W.; Zhang, R.; Liu, R.; Dang, X. Comparative gene expression profiling of normal and human colorectal adenomatous tissues. Oncol. Lett., 2014, 8(5), 2081-2085. doi: 10.3892/ol.2014.2485 PMID: 25295094
- Saxena, M.; Yeretssian, G. NOD-like receptors: Master regulators of inflammation and cancer. Front. Immunol., 2014, 5, 327. doi: 10.3389/fimmu.2014.00327 PMID: 25071785
- Li, B.; Qi, Z.P.; He, D.L.; Chen, Z.H.; Liu, J.Y.; Wong, M.W.; Zhang, J.W.; Xu, E.P.; Shi, Q.; Cai, S.L.; Sun, D.; Yao, L.Q.; Zhou, P.H.; Zhong, Y.S. NLRP7 deubiquitination by USP10 promotes tumor progression and tumor-associated macrophage polarization in colorectal cancer. J. Exp. Clin. Cancer Res., 2021, 40(1), 126. doi: 10.1186/s13046-021-01920-y PMID: 33838681
- Huhn, S.; da Silva Filho, M.I.; Sanmuganantham, T.; Pichulik, T.; Catalano, C.; Pardini, B.; Naccarati, A.; Polakova-Vymetálkova, V.; Jiraskova, K.; Vodickova, L.; Vodicka, P.; Löffler, M.W.; Courth, L.; Wehkamp, J.; Din, F.V.N.; Timofeeva, M.; Farrington, S.M.; Jansen, L.; Hemminki, K.; Chang-Claude, J.; Brenner, H.; Hoffmeister, M.; Dunlop, M.G.; Weber, A.N.R.; Försti, A. Coding variants in NOD-like receptors: An association study on risk and survival of colorectal cancer. PLoS One, 2018, 13(6), e0199350. doi: 10.1371/journal.pone.0199350 PMID: 29928061
- Gulifeire, T.; Yang, C.; Li, X.; Wang, Y.; Yu, X. Activation of NOD-like receptor protein 3 inflammasome mediates inflammatory response and apoptosis in septic intestinal injury model. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2021, 33(7), 855-860. PMID: 34412757
- Zaki, M.H.; Vogel, P.; Malireddi, R.K.S.; Body-Malapel, M.; Anand, P.K.; Bertin, J.; Green, D.R.; Lamkanfi, M.; Kanneganti, T.D. The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell, 2011, 20(5), 649-660. doi: 10.1016/j.ccr.2011.10.022 PMID: 22094258
- Ohashi, K.; Wang, Z.; Yang, Y.M.; Billet, S.; Tu, W.; Pimienta, M.; Cassel, S.L.; Pandol, S.J.; Lu, S.C.; Sutterwala, F.S.; Bhowmick, N.; Seki, E. NOD‐like receptor C4 inflammasome regulates the growth of colon cancer liver metastasis in NAFLD. Hepatology, 2019, 70(5), 1582-1599. doi: 10.1002/hep.30693 PMID: 31044438
Arquivos suplementares
