Prognosis and Clinical Significance of Piezo2 in Tumor: A Meta-analysis and Database Validation


Cite item

Full Text

Abstract

Objective:The objective of this study is to assess the correlation between Piezo2 and tumors through a comprehensive meta-analysis and database validation.

Methods:Case-control studies investigating the association between Piezo2 and tumors were obtained from various databases, including China National Knowledge Infrastructure (CNKI), SinoMed, Embase, Web of Science, The Cochrane Library, and PubMed. The search was performed from the inception of each database up until May 2023. Two researchers independently screened the literature, extracted data, and assessed the quality of the included studies. Metaanalysis of the included literature was conducted using Stata 12.0 software. Additionally, the Gene Expression Profiling Interactive Analysis (GEPIA) database predicted a correlation between Piezo2 expression and prognostic value in tumor patients.

Results:A total of three studies, involving a combined sample size of 392 participants, were included in the meta-analysis. The findings revealed that the expression level of Piezo2 in tumor patients was not significantly associated with age, gender, or tumor size. However, it was found to be positively correlated with lymphatic invasion (OR = 7.89, 95%CI: 3.96-15.73) and negatively correlated with invasion depth (OR = 0.17, 95%CI: 0.06-0.47), TNM stage (OR = 0.48, 95%CI: 0.27-0.87), and histological grade (OR = 0.40, 95%CI: 0.21-0.77). Confirming these findings, the GEPIA database indicated that high expression of Piezo2 was associated with poor prognosis of disease-free survival in patients with colon adenocarcinoma (HR = 1.6, P = 0.049) and gastric cancer (HR = 1.6, P = 0.017).

Conclusion:Piezo2 may be associated with poor prognosis and clinicopathological parameters in tumor patients.

About the authors

Tong Liang

The First School of Clinical Medicine, Lanzhou University

Email: info@benthamscience.net

Junhong Wang

The First School of Clinical Medicine, Lanzhou University

Email: info@benthamscience.net

Chenglou Zhu

The First School of Clinical Medicine, Lanzhou University

Email: info@benthamscience.net

Yongli Hu

The First School of Clinical Medicine, Lanzhou University

Email: info@benthamscience.net

Zhenhua Gao

The First School of Clinical Medicine, The First People's Hospital of Baiyin

Author for correspondence.
Email: info@benthamscience.net

Mingxu Da

The First School of Clinical Medicine, Lanzhou University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Stocker, S.D.; Sved, A.F.; Andresen, M.C. Missing pieces of the Piezo1/Piezo2 baroreceptor hypothesis: An autonomic perspective. J. Neurophysiol., 2019, 122(3), 1207-1212. doi: 10.1152/jn.00315.2019 PMID: 31314636
  2. Del Rosario, J.S.; Yudin, Y.; Su, S.; Hartle, C.M.; Mirshahi, T.; Rohacs, T. Gi‐coupled receptor activation potentiates Piezo2 currents via Gβγ. EMBO Rep., 2020, 21(5), e49124. doi: 10.15252/embr.201949124 PMID: 32227462
  3. Schneider, E.R.; Anderson, E.O.; Feketa, V.V.; Mastrotto, M.; Nikolaev, Y.A.; Gracheva, E.O.; Bagriantsev, S.N. A cross-species analysis reveals a general role for piezo2 in mechanosensory specialization of trigeminal ganglia from tactile specialist birds. Cell Rep., 2019, 26(8), 1979-1987.e3. doi: 10.1016/j.celrep.2019.01.100 PMID: 30784581
  4. Etem, E.Ö.; Ceylan, G.G.; Özaydın, S.; Ceylan, C.; Özercan, I.; Kuloğlu, T. The increased expression of Piezo1 and Piezo2 ion channels in human and mouse bladder carcinoma. Adv. Clin. Exp. Med., 2018, 27(8), 1025-1031. doi: 10.17219/acem/71080 PMID: 30010255
  5. Yang, H.; Liu, C.; Zhou, R.M.; Yao, J.; Li, X.M.; Shen, Y.; Cheng, H.; Yuan, J.; Yan, B.; Jiang, Q. Piezo2 protein: A novel regulator of tumor angiogenesis and hyperpermeability. Oncotarget, 2016, 7(28), 44630-44643. doi: 10.18632/oncotarget.10134 PMID: 27329839
  6. Lou, W.; Liu, J.; Ding, B.; Jin, L.; Xu, L.; Li, X.; Chen, J.; Fan, W. Five miRNAs-mediated PIEZO2 downregulation, accompanied with activation of Hedgehog signaling pathway, predicts poor prognosis of breast cancer. Aging, 2019, 11(9), 2628-2652. doi: 10.18632/aging.101934 PMID: 31058608
  7. Huang, Z.; Sun, Z.; Zhang, X.; Niu, K.; Wang, Y.; Zheng, J.; Li, H.; Liu, Y. Loss of stretch-activated channels, PIEZOs, accelerates non-small cell lung cancer progression and cell migration. Biosci. Rep., 2019, 39(3), BSR20181679. doi: 10.1042/BSR20181679 PMID: 30745454
  8. Chen, T.; Zhang, L.J.; Zhang, L.J.; Rong, S.K.; Wang, Z.; Peng, G.Y.; Gong, F.H.; Li, H. Expression and clinical significance of Piezo2 in colorectal cancer. J. Ningxia Med. Uni., 2020, 42(01), 21-24. doi: 10.16050/j.cnki.issn1674-6309.2020.01.004
  9. Shang, H.; Xu, A.; Yan, H.; Xu, D.; Zhang, J.; Fang, X. PIEZO2 promotes cell proliferation and metastasis in colon carcinoma through the SLIT2/ROBO1/VEGFC pathway. Adv. Clin. Exp. Med., 2023, 32(7), 763-776. doi: 10.17219/acem/157515 PMID: 36753373
  10. Liang, T.; Da, M.X. Expression and clinical significance of PIEZO2 in gastric cancer. Comb. Chem. High Throughput Screen., 2023, 26(12), 2194-2200. doi: 10.2174/1386207326666230209140929 PMID: 36757044
  11. Huttner, A.; Verhaegh, E.M.; Harbarth, S.; Muller, A.E.; Theuretzbacher, U.; Mouton, J.W. Nitrofurantoin revisited: A systematic review and meta-analysis of controlled trials. J. Antimicrob. Chemother., 2015, 70(9), 2456-2464. doi: 10.1093/jac/dkv147 PMID: 26066581
  12. Wiedermann, C.J. Use of hyperoncotic human albumin solution in severe traumatic brain injury revisited—a narrative review and meta-analysis. J. Clin. Med., 2022, 11(9), 2662. doi: 10.3390/jcm11092662 PMID: 35566786
  13. Lee, S.H.; Lee, O.S.; Kim, S.T.; Lee, Y.S. Revisiting arthroscopic partial meniscectomy for degenerative tears in knees with mild or no osteoarthritis. Clin. J. Sport Med., 2020, 30(3), 195-202. doi: 10.1097/JSM.0000000000000585 PMID: 29995671
  14. Tang, Z.; Kang, B.; Li, C.; Chen, T.; Zhang, Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res., 2019, 47(W1), W556-W560. doi: 10.1093/nar/gkz430 PMID: 31114875
  15. DerSimonian, R.; Laird, N. Meta-analysis in clinical trials revisited. Contemp. Clin. Trials, 2015, 45(Pt A), 139-145. doi: 10.1016/j.cct.2015.09.002
  16. Cheng, L.; Shen, Z.; Zhou, C. Promoter hypermethylation of PIEZO2 is a risk factor and potential clinical biomarker for laryngeal squamous cell carcinoma. Int. J. Clin. Exp. Pathol., 2017, 10(12), 11635-11643. PMID: 31966521
  17. Zhao, F.; Zhang, L.; Wei, M.; Duan, W.; Wu, S.; Kasim, V. Mechanosensitive ion channel piezo1 signaling in the hall-marks of cancer: structure and functions. Cancers, 2022, 14(19), 4955. doi: 10.3390/cancers14194955 PMID: 36230880
  18. Zhu, Z.; Li, W.; Gong, M.; Wang, L.; Yue, Y.; Qian, W.; Zhou, C.; Duan, W.; Han, L.; Li, L.; Wu, Z.; Ma, Q.; Lin, M.; Wang, S.; Wang, Z. Piezo1 act as a potential oncogene in pancreatic cancer progression. Life Sci., 2022, 310, 121035. doi: 10.1016/j.lfs.2022.121035 PMID: 36208662
  19. Kim, O.H.; Choi, Y.W.; Park, J.H.; Hong, S.A.; Hong, M.; Chang, I.H.; Lee, H.J. Fluid shear stress facilitates prostate cancer metastasis through Piezo1-Src-YAP axis. Life Sci., 2022, 308, 120936. doi: 10.1016/j.lfs.2022.120936 PMID: 36084759
  20. Marshall, K.L.; Saade, D.; Ghitani, N.; Coombs, A.M.; Szczot, M.; Keller, J.; Ogata, T.; Daou, I.; Stowers, L.T.; Bönnemann, C.G.; Chesler, A.T.; Patapoutian, A. PIEZO2 in sensory neurons and urothelial cells coordinates urination. Nature, 2020, 588(7837), 290-295. doi: 10.1038/s41586-020-2830-7 PMID: 33057202
  21. Michel, N.; Narayanan, P.; Shomroni, O.; Schmidt, M. Maturational changes in mouse cutaneous touch and piezo2-mediated mechanotransduction. Cell Rep., 2020, 32(3), 107912. doi: 10.1016/j.celrep.2020.107912 PMID: 32697985
  22. Pethő, Z.; Najder, K.; Bulk, E.; Schwab, A. Mechanosensitive ion channels push cancer progression. Cell Calcium, 2019, 80, 79-90. doi: 10.1016/j.ceca.2019.03.007 PMID: 30991298
  23. Fang, X.Z.; Zhou, T.; Xu, J.Q.; Wang, Y.X.; Sun, M.M.; He, Y.J.; Pan, S.W.; Xiong, W.; Peng, Z.K.; Gao, X.H.; Shang, Y. Structure, kinetic properties and biological function of mechanosensitive Piezo channels. Cell Biosci., 2021, 11(1), 13. doi: 10.1186/s13578-020-00522-z PMID: 33422128
  24. Savadipour, A.; Nims, R.J.; Rashidi, N.; Garcia-Castorena, J.M.; Tang, R.; Marushack, G.K.; Oswald, S.J.; Liedtke, W.B.; Guilak, F. Membrane stretch as the mechanism of activation of PIEZO1 ion channels in chondrocytes. Proc. Natl. Acad. Sci., 2023, 120(30), e2221958120. doi: 10.1073/pnas.2221958120 PMID: 37459546
  25. Qiu, X.; Deng, Z.; Wang, M.; Feng, Y.; Bi, L.; Li, L. Piezo protein determines stem cell fate by transmitting mechanical signals. Hum. Cell, 2022, 36(2), 540-553. doi: 10.1007/s13577-022-00853-8 PMID: 36580272
  26. Tian, S.; Cai, Z.; Sen, P.; van Uden, D.; van de Kamp, E.; Thuillet, R.; Tu, L.; Guignabert, C.; Boomars, K.; Van der Heiden, K.; Brandt, M.M.; Merkus, D. Loss of lung microvascular endothelial Piezo2 expression impairs NO synthesis, induces EndMT, and is associated with pulmonary hypertension. Am. J. Physiol. Heart Circ. Physiol., 2022, 323(5), H958-H974. doi: 10.1152/ajpheart.00220.2022 PMID: 36149769
  27. Yang, K.; He, X.; Wu, Z.; Yin, Y.; Pan, H.; Zhao, X.; Sun, T. The emerging roles of piezo1 channels in animal models of multiple sclerosis. Front. Immunol., 2022, 13, 976522. doi: 10.3389/fimmu.2022.976522 PMID: 36177027
  28. Radin, I.; Richardson, R.A.; Haswell, E.S. Moss PIEZO homologs have a conserved structure, are ubiquitously expressed, and do not affect general vacuole function. Plant Signal. Behav., 2022, 17(1), 2015893. doi: 10.1080/15592324.2021.2015893 PMID: 34951344
  29. Bektas, S.; Kaptan, E. RNA-Seq transcriptome analysis reveals Maackia amurensis leukoagglutinin has antitumor activity in human anaplastic thyroid cancer cells. Mol. Biol. Rep., 2022, 49(10), 9257-9266. doi: 10.1007/s11033-022-07759-6 PMID: 36057880
  30. Ye, X.; Xia, Y.; Zheng, Y.; Chen, W.; Chen, Z.; Cheng, Z.; Wang, B. The function of Piezo1 in hepatoblastoma metastasis and its potential transduction mechanism. Heliyon, 2022, 8(9), e10301. doi: 10.1016/j.heliyon.2022.e10301 PMID: 36097495
  31. Wang, Y.; Mang, X.; Li, D.; Chen, Y.; Cai, Z.; Tan, F. Piezoeletric cold atmospheric plasma induces apoptosis and autophagy in human hepatocellular carcinoma cells through blocking glycolysis and AKT/mTOR/HIF-1α pathway. Free Radic. Biol. Med., 2023, 208, 134-152. doi: 10.1016/j.freeradbiomed.2023.07.036 PMID: 37543168
  32. Qin, X.; Ni, Z.; Jiang, J.; Liu, X.; Dong, X.; Li, M.; Miao, K.; Rao, S.; Zhang, W.; Cai, K. High‐throughput membrane‐anchored proteome screening reveals PIEZO1 as a promising antibody‐drug target for human esophageal squamous cell carcinoma. Cancer Med., 2022, 11(19), 3700-3713. doi: 10.1002/cam4.4744 PMID: 35608274
  33. García-Mesa, Y.; Martín-Sanz, R.; García-Piqueras, J.; Cobo, R.; Muñoz-Bravo, S.; García-Suárez, O.; Martín-Biedma, B.; Vega, J.A.; Feito, J. Merkel cell carcinoma display PIEZO2 immunoreactivity. J. Pers. Med., 2022, 12(6), 894. doi: 10.3390/jpm12060894 PMID: 35743679
  34. Shin, K.C.; Park, H.J.; Kim, J.G.; Lee, I.H.; Cho, H.; Park, C.; Sung, T.S.; Koh, S.D.; Park, S.W.; Bae, Y.M. The Piezo2 ion channel is mechanically activated by low-threshold positive pressure. Sci. Rep., 2019, 9(1), 6446. doi: 10.1038/s41598-019-42492-4 PMID: 31015490
  35. Ni, K.; Zhang, W.; Ni, Y.; Mao, Y.T.; Wang, Y.; Gu, X.P.; Ma, Z.L. Dorsal root ganglia NR2B mediated Epac1 Piezo2 signaling pathway contributes to mechanical allodynia of bone cancer pain. Oncol. Lett., 2021, 21(4), 338. doi: 10.3892/ol.2021.12599 PMID: 33692870
  36. Sprowls, S.A.; Lathia, J.D. Breaking down the barrier to medulloblastoma treatment: Piezo2 knockout disrupts the BTB and increases vascular permeability. Neuron, 2023, 111(1), 3-5. doi: 10.1016/j.neuron.2022.12.008 PMID: 36603549
  37. Chen, X.; Momin, A.; Wanggou, S.; Wang, X.; Min, H.K.; Dou, W.; Gong, Z.; Chan, J.; Dong, W.; Fan, J.J.; Xiong, Y.; Talipova, K.; Zhao, H.; Chen, Y.X.; Veerasammy, K.; Fekete, A.; Kumar, S.A.; Liu, H.; Yang, Q.; Son, J.E.; Dou, Z.; Hu, M.; Pardis, P.; Juraschka, K.; Donovan, L.K.; Zhang, J.; Ramaswamy, V.; Selvadurai, H.J.; Dirks, P.B.; Taylor, M.D.; Wang, L.Y.; Hui, C.C.; Abzalimov, R.; He, Y.; Sun, Y.; Li, X.; Huang, X. Mechanosensitive brain tumor cells construct blood-tumor barrier to mask chemosensitivity. Neuron, 2023, 111(1), 30-48.e14. doi: 10.1016/j.neuron.2022.10.007 PMID: 36323321
  38. Katsuta, E.; Takabe, K.; Vujcic, M.; Gottlieb, P.A.; Dai, T.; Mercado-Perez, A.; Beyder, A.; Wang, Q.; Opyrchal, M. Mechano-sensing channel PIEZO2 enhances invasive phenotype in triple-negative breast cancer. Int. J. Mol. Sci., 2022, 23(17), 9909. doi: 10.3390/ijms23179909 PMID: 36077309
  39. Pardo-Pastor, C.; Rubio-Moscardo, F.; Vogel-González, M.; Serra, S.A.; Afthinos, A.; Mrkonjic, S.; Destaing, O.; Abenza, J.F.; Fernández-Fernández, J.M.; Trepat, X.; Albiges-Rizo, C.; Konstantopoulos, K.; Valverde, M.A. Piezo2 channel regulates RhoA and actin cytoskeleton to promote cell mechanobiological responses. Proc. Natl. Acad. Sci., 2018, 115(8), 1925-1930. doi: 10.1073/pnas.1718177115 PMID: 29432180

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers