Exploring Effects and Mechanism of Ingredients of Herba Epimedii on Osteogenesis and Osteoclastogenesis In Vitro


Cite item

Full Text

Abstract

Background:Herba Epimedii, a commonly used traditional herb, has been proven effective in ameliorating osteoporosis. However, the active ingredients and potential mechanism need further exploration.

Objective:To screen active ingredients of Herba Epimedii with the effect of ameliorating osteoporosis and to explore their potential mechanisms.

Methods:TCMSP and Swiss Target Prediction were applied to collect the ingredients of Herba Epimedii and their targets. UniProt, GeneCards, TTD, DisGeNET, and OMIM were adopted to search osteoporosis-related genes. STRING and DAVID were used to perform enrichment analysis. Effects of screened ingredients were evaluated on MC3T3-E1 cells and RAW264.7 cells, respectively.

Results:Eleven ingredients were screened by Network Pharmacology. They exerted a promoting effect on MC3T3-E1 cells (10-9-10-5 M). The ingredients didn’t significantly affect ALP activity and osteoblastogenesis-related genes. Baohuoside 1, Sagittatoside B, Chlorogenic acid, Cryptochlorogenic acid, and Neochlorogenic acid significantly increased calcium depositions. The ingredients didn’t exhibit a dose-dependent inhibition or promotion on RAW264.7 cells. Baohuoside 1, Sagittatoside B, Neochlorogenic acid, Cryptochlorogenic acid, Icariin, Epimedin A, Chlorogenic acid, Sagittatoside A, and Epimedin C suppressed the level of TRACP. Baohuoside 1, Sagittatoside B, Cryptochlorogenic acid, Neochlorogenic acid, Chlorogenic acid, Sagittatoside A, and Icariin decreased the number of multinucleated osteoclastic cells. Baohuoside 1, Sagittatoside B, and Cryptochlorogenic acid could significantly inhibit MMP-9 expression.

Conclusion:Neochlorogenic acid, Sagittatoside B, Chlorogenic acid, and Cryptochlorogenic acid promoted MC3T3-E1 differentiation, among which Neochlorogenic acid showed significant promotion in viability, mineralization, and OPN expression. Baohuoside 1, Sagittatoside B, Cryptochlorogenic acid, Neochlorogenic acid, Chlorogenic acid, and Icariin inhibited RAW264.7 differentiation, among which Baohuoside 1 showed significant inhibition on TRACP, multinucleated osteoclastic cells number and MPP-9 expression. The mechanism might relate to the FoxO signaling pathway, MAPK signaling pathway, and TNF signaling pathway.

About the authors

Lei Song

Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine

Email: info@benthamscience.net

Yating Zhou

Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine

Email: info@benthamscience.net

Lin Qu

Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine

Email: info@benthamscience.net

Dongyu Wang

Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine

Email: info@benthamscience.net

Xinyue Diao

Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine

Email: info@benthamscience.net

Xiaoying Zhang

Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine

Email: info@benthamscience.net

Yuxia Zhai

Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine

Email: info@benthamscience.net

Yue Zhang

Department of Pharmacology and Toxicology, Tianjin University of Traditional Chinese Medicine

Email: info@benthamscience.net

Yingli Yu

Department of Pharmacology and Toxicology, Tianjin University of Traditional Chinese Medicine

Email: info@benthamscience.net

Kun Zhou

Department of Pharmacology and Toxicology, Tianjin University of Traditional Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

References

  1. Noh, J.Y.; Yang, Y.; Jung, H. Molecular mechanisms and emerging therapeutics for osteoporosis. Int. J. Mol. Sci., 2020, 21(20), 7623. doi: 10.3390/ijms21207623 PMID: 33076329
  2. Johnell, O.; Kanis, J.A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int., 2006, 17(12), 1726-1733. doi: 10.1007/s00198-006-0172-4 PMID: 16983459
  3. Jeremiah, M.P.; Unwin, B.K.; Greenawald, M.H.; Casiano, V.E. Diagnosis and management of osteoporosis. Am. Fam. Physician, 2015, 92(4), 261-268. PMID: 26280231
  4. Cosman, F.; de Beur, S.J.; LeBoff, M.S.; Lewiecki, E.M.; Tanner, B.; Randall, S.; Lindsay, R. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos. Int., 2014, 25(10), 2359-2381. doi: 10.1007/s00198-014-2794-2 PMID: 25182228
  5. Wu, L.; Ling, Z.; Feng, X.; Mao, C.; Xu, Z. Herb medicines against osteoporosis: Active compounds & relevant biological mechanisms. Curr. Top. Med. Chem., 2017, 17(15), 1670-1691. doi: 10.2174/1568026617666161116141033 PMID: 27848901
  6. Wang, L.; Li, Y.; Guo, Y.; Ma, R.; Fu, M.; Niu, J.; Gao, S.; Zhang, D. Herba epimedii: An ancient chinese herbal medicine in the prevention and treatment of osteoporosis. Curr. Pharm. Des., 2015, 22(3), 328-349. doi: 10.2174/1381612822666151112145907 PMID: 26561074
  7. Indran, I.R.; Liang, R.L.Z.; Min, T.E.; Yong, E.L. Preclinical studies and clinical evaluation of compounds from the genus Epimedium for osteoporosis and bone health. Pharmacol. Ther., 2016, 162, 188-205. doi: 10.1016/j.pharmthera.2016.01.015 PMID: 26820757
  8. Wu, H.; Lien, E.J.; Lien, L.L. Chemical and pharmacological investigations of Epimedium species: A survey. Prog. Drug Res., 2003, 60, 1-57. doi: 10.1007/978-3-0348-8012-1_1 PMID: 12790338
  9. Li, S.; Fan, T.P.; Jia, W.; Lu, A.; Zhang, W. Network pharmacology in traditional chinese medicine. Evid. Based Complement. Alternat. Med., 2014, 2014, 138460. PMID: 24707305
  10. Li, S.; Zhang, B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin. J. Nat. Med., 2013, 11(2), 110-120. doi: 10.1016/S1875-5364(13)60037-0 PMID: 23787177
  11. Gao, Y.; Patil, S.; Jia, J. The development of molecular biology of osteoporosis. Int. J. Mol. Sci., 2021, 22(15), 8182. doi: 10.3390/ijms22158182 PMID: 34360948
  12. Kim, B.; Lee, K.Y.; Park, B. Icariin abrogates osteoclast formation through the regulation of the RANKL-mediated TRAF6/NF-κB/ERK signaling pathway in Raw264.7 cells. Phytomedicine, 2018, 51, 181-190. doi: 10.1016/j.phymed.2018.06.020 PMID: 30466615
  13. Kong, L.; Smith, W.; Hao, D. Overview of RAW264.7 for osteoclastogensis study: Phenotype and stimuli. J. Cell. Mol. Med., 2019, 23(5), 3077-3087. doi: 10.1111/jcmm.14277 PMID: 30892789
  14. Zhai, Y.K.; Guo, X.; Pan, Y.L.; Niu, Y.B.; Li, C.R.; Wu, X.L.; Mel, Q.B. A systematic review of the efficacy and pharmacological profile of Herba Epimedii in osteoporosis therapy. Pharmazie, 2013, 68(9), 713-722. PMID: 24147339
  15. Luo, T.; Lu, Y.; Yan, S.; Xiao, X.; Rong, X.; Guo, J. Network pharmacology in research of chinese medicine formula: Methodology, application and prospective. Chin. J. Integr. Med., 2020, 26(1), 72-80. doi: 10.1007/s11655-019-3064-0 PMID: 30941682
  16. Shen, P.; Guo, B.L.; Gong, Y.; Hong, D.Y.Q.; Hong, Y.; Yong, E.L. Taxonomic, genetic, chemical and estrogenic characteristics of Epimedium species. Phytochemistry, 2007, 68(10), 1448-1458. doi: 10.1016/j.phytochem.2007.03.001 PMID: 17434191
  17. Li, H.; Xiao, Z.; Quarles, L.D.; Li, W. Osteoporosis: Mechanism, molecular target and current status on drug development. Curr. Med. Chem., 2021, 28(8), 1489-1507. doi: 10.2174/1875533XMTA1hNTIy2 PMID: 32223730
  18. Chatakun, P.; Núñez-Toldrà, R.; Díaz López, E.J.; Gil-Recio, C.; Martínez-Sarrà, E.; Hernández-Alfaro, F.; Ferrés-Padró, E.; Giner-Tarrida, L.; Atari, M. The effect of five proteins on stem cells used for osteoblast differentiation and proliferation: a current review of the literature. Cell. Mol. Life Sci., 2014, 71(1), 113-142. doi: 10.1007/s00018-013-1326-0 PMID: 23568025
  19. Reddi, S.; Shanmugam, V.P.; Tanedjeu, K.S.; Kapila, S.; Kapila, R. Effect of buffalo casein-derived novel bioactive peptides on osteoblast differentiation. Eur. J. Nutr., 2018, 57(2), 593-605. doi: 10.1007/s00394-016-1346-2 PMID: 27868152
  20. Junrui, P.; Bingyun, L.; Yanhui, G.; Xu, J.; Darko, G.M.; Dianjun, S. Relationship between fluoride exposure and osteoclast markers during RANKL-induced osteoclast differentiation. Environ. Toxicol. Pharmacol., 2016, 46, 241-245. doi: 10.1016/j.etap.2016.08.001 PMID: 27500448
  21. Tortelli, F.; Pujic, N.; Liu, Y.; Laroche, N.; Vico, L.; Cancedda, R. Osteoblast and osteoclast differentiation in an in vitro three-dimensional model of bone. Tissue Eng. Part A, 2009, 15(9), 2373-2383. doi: 10.1089/ten.tea.2008.0501 PMID: 19292676
  22. Zheng, X.; Zhang, Y.; Guo, S.; Zhang, W.; Wang, J.; Lin, Y. Dynamic expression of matrix metalloproteinases 2, 9 and 13 in ovariectomy-induced osteoporosis rats. Exp. Ther. Med., 2018, 16(3), 1807-1813. doi: 10.3892/etm.2018.6356 PMID: 30186405
  23. Ma, X.; Su, P.; Yin, C.; Lin, X.; Wang, X.; Gao, Y.; Patil, S.; War, A.R.; Qadir, A.; Tian, Y.; Qian, A. The roles of FoxO transcription factors in regulation of bone cells function. Int. J. Mol. Sci., 2020, 21(3), 692. doi: 10.3390/ijms21030692 PMID: 31973091
  24. Wu, J.; Cai, P.; Lu, Z.; Zhang, Z.; He, X.; Zhu, B.; Zheng, L.; Zhao, J. Identification of potential specific biomarkers and key signaling pathways between osteogenic and adipogenic differentiation of hBMSCs for osteoporosis therapy. J. Orthop. Surg. Res., 2020, 15(1), 437. doi: 10.1186/s13018-020-01965-3 PMID: 32967719
  25. Xiao, L.; Zhong, M.; Huang, Y.; Zhu, J.; Tang, W.; Li, D.; Shi, J.; Lu, A.; Yang, H.; Geng, D.; Li, H.; Wang, Z. Puerarin alleviates osteoporosis in the ovariectomy-induced mice by suppressing osteoclastogenesis via inhibition of TRAF6/ROS-dependent MAPK/NF-κB signaling pathways. Aging, 2020, 12(21), 21706-21729. doi: 10.18632/aging.103976 PMID: 33176281
  26. He, G.; Ma, R. Overview of molecular mechanisms involved in herbal compounds for inhibiting osteoclastogenesis from macrophage linage RAW264.7. Curr. Stem Cell Res. Ther., 2020, 15(7), 570-578. doi: 10.2174/1574888X14666190703144917 PMID: 31269885
  27. Kitaura, H.; Marahleh, A.; Ohori, F.; Noguchi, T.; Shen, W.R.; Qi, J.; Nara, Y.; Pramusita, A.; Kinjo, R.; Mizoguchi, I. Osteocyte-Related cytokines regulate osteoclast formation and bone resorption. Int. J. Mol. Sci., 2020, 21(14), 5169. doi: 10.3390/ijms21145169 PMID: 32708317
  28. Gu, H.; Huang, Z.; Chen, G.; Zhou, K.; Zhang, Y.; Chen, J.; Xu, J.; Yin, X. Network and pathway-based analyses of genes associated with osteoporosis. Medicine, 2020, 99(8), e19120. doi: 10.1097/MD.0000000000019120 PMID: 32080087
  29. Liu, M.M.; Dong, R.; Hua, Z.; Lv, N.N.; Ma, Y.; Huang, G.C.; Cheng, J.; Xu, H.Y. Therapeutic potential of Liuwei Dihuang pill against KDM7A and Wnt/β-catenin signaling pathway in diabetic nephropathy-related osteoporosis. Biosci. Rep., 2020, 40(9), BSR20201778. doi: 10.1042/BSR20201778 PMID: 32914833
  30. Karthik, V.; Guntur, A.R. Energy metabolism of osteocytes. Curr. Osteoporos. Rep., 2021, 19(4), 444-451. doi: 10.1007/s11914-021-00688-6 PMID: 34117625
  31. Song, L.; Bi, Y.; Zhang, P.; Yuan, X.; Liu, Y.; Zhang, Y.; Huang, J.; Zhou, K. Optimization of the time window of interest in ovariectomized imprinting control region mice for antiosteoporosis research. BioMed Res. Int., 2017, 2017, 1-10. doi: 10.1155/2017/8417814 PMID: 29119115
  32. Yousefzadeh, N.; Kashfi, K.; Jeddi, S.; Ghasemi, A. Ovariectomized rat model of osteoporosis: A practical guide. EXCLI J., 2020, 19, 89-107. PMID: 32038119

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers