Evaluations of FDA-approved Drugs Targeting 3CLP of SARS-CoV-2 Employing a Repurposing Strategy
- Authors: Ahmad S.1, Khalid M.2
-
Affiliations:
- Department of Medical Biotechnology,, Yeungnam University
- College of Pharmacy,Department of Pharmacognosy,, Prince Sattam Bin Abdul Aziz University
- Issue: Vol 27, No 19 (2024)
- Pages: 2805-2815
- Section: Chemistry
- URL: https://kazanmedjournal.ru/1386-2073/article/view/644487
- DOI: https://doi.org/10.2174/1386207325666220816125639
- ID: 644487
Cite item
Full Text
Abstract
Background:The SARS-CoV-2 coronavirus (COVID-19) has raised innumerable global concerns, and few effective treatment strategies have yet been permitted by the FDA to lighten the disease burden. SARS-CoV-2 3C-like proteinase (3CLP) is a crucial protease and plays a key role in the viral life cycle, as it controls replication, and thus, it is viewed as a target for drug design.
Methods:In this study, we performed structure-based virtual screening of FDA drugs approved during 2015-2019 (a total of 220 drugs) for interaction with the active site of 3CLP (PDB ID 6LU7) using AutoDock 4.2. We report the top ten drugs that outperform the reported drugs against 3CLP (Elbasvir and Nelfinavir), particularly Cefiderocol, having the highest affinity among the compounds tested, with a binding energy of -9.97 kcal/mol. H-bond (LYS102:HZ2-ligand: O49), hydrophobic (ligand-VAL104), and electrostatic (LYS102:NZ-ligand: O50) interactions were observed in the cefiderocol-3CLP complex. The docked complex was subjected to a 50 ns molecular dynamics study to check its stability, and stable RMSD and RMSF graphs were observed.
Results:Accordingly, we suggest cefiderocol might be effective against SARS-CoV-2 and urge that experimental validation be performed to determine the antiviral efficacy of cefiderocol against SARS-CoV-2.
Discussion:Along with these, cefiderocol is effective for treating respiratory tract pathogens and a wide range of gram-negative bacteria for whom there are limited therapeutic alternatives
Conclusion:This article aimed to explore the FDA-approved drugs as a repurposing study against 3CLP for COVID-19 management.
About the authors
Syed Ahmad
Department of Medical Biotechnology,, Yeungnam University
Author for correspondence.
Email: info@benthamscience.net
Mohammad Khalid
College of Pharmacy,Department of Pharmacognosy,, Prince Sattam Bin Abdul Aziz University
Email: info@benthamscience.net
References
- She, J.; Jiang, J.; Ye, L.; Hu, L.; Bai, C.; Song, Y. 2019 novel coronavirus of pneumonia in Wuhan, China: Emerging attack and management strategies. Clin. Transl. Med., 2020, 9(1), 19. doi: 10.1186/s40169-020-00271-z PMID: 32078069
- Behera, B.C.; Mishra, R.R.; Thatoi, H. Recent biotechnological tools for diagnosis of corona virus disease: A review. Biotechnol. Prog., 2021, 37(1), e3078. doi: 10.1002/btpr.3078 PMID: 32902193
- Zheng, J. SARS-CoV-2: An emerging coronavirus that causes a global threat. Int. J. Biol. Sci., 2020, 16(10), 1678-1685. doi: 10.7150/ijbs.45053 PMID: 32226285
- Coronaviridae Study Group of the International Committee on Taxonomy of V. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol., 2020, 5(4), 536-544. doi: 10.1038/s41564-020-0695-z
- Gyebi, G.A.; Ogunyemi, O.M.; Ibrahim, I.M.; Afolabi, S.O.; Adebayo, J.O. Dual targeting of cytokine storm and viral replication in COVID-19 by plant-derived steroidal pregnanes: An in silico perspective. Comput. Biol. Med., 2021, 134, 104406. doi: 10.1016/j.compbiomed.2021.104406 PMID: 33915479
- Krouse, H.J. COVID-19 and the widening gap in health inequity. Otolaryngol. Head Neck Surg., 2020, 163(1), 65-66. doi: 10.1177/0194599820926463 PMID: 32366172
- Rodgers, F.; Pepperrell, T.; Keestra, S.; Pilkington, V. Missing clinical trial data: The evidence gap in primary data for potential COVID-19 drugs. Trials, 2021, 22(1), 59. doi: 10.1186/s13063-021-05024-y PMID: 33451350
- Ogando, N.S.; Ferron, F.; Decroly, E.; Canard, B.; Posthuma, C.C.; Snijder, E.J. The curious case of the nidovirus exoribonuclease: Its role in RNA synthesis and replication fidelity. Front. Microbiol., 2019, 10, 1813. doi: 10.3389/fmicb.2019.01813 PMID: 31440227
- Zumla, A.; Chan, J.F.; Azhar, E.I.; Hui, D.S.; Yuen, K.Y. Coronaviruses - drug discovery and therapeutic options. Nat. Rev. Drug Discov., 2016, 15(5), 327-347. doi: 10.1038/nrd.2015.37 PMID: 26868298
- Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293. doi: 10.1038/s41586-020-2223-y
- Pillaiyar, T.; Manickam, M.; Namasivayam, V.; Hayashi, Y.; Jung, S.H. An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL Protease Inhibitors: Peptidomimetics and small molecule chemotherapy. J. Med. Chem., 2016, 59(14), 6595-6628. doi: 10.1021/acs.jmedchem.5b01461 PMID: 26878082
- Ita, K. Coronavirus disease (COVID-19): Current status and prospects for drug and vaccine development. Arch. Med. Res., 2021, 52(1), 15-24. doi: 10.1016/j.arcmed.2020.09.010 PMID: 32950264
- Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271. doi: 10.1038/s41422-020-0282-0 PMID: 32020029
- Najar Nobari, N.; Seirafianpour, F.; Mashayekhi, F.; Goodarzi, A. A systematic review on treatment-related mucocutaneous reactions in COVID-19 patients. Dermatol. Ther., 2021, 34(1), e14662. doi: 10.1111/dth.14662 PMID: 33301232
- Narkhede, R.R.; Cheke, R.S.; Ambhore, J.P.; Shinde, S.D. The molecular docking study of potential drug candidates showing anti-COVID-19 activity by exploring of therapeutic targets of SARS-CoV-2. EJMO, 2020, 4(3), 185-195.
- Joshi, S.; Parkar, J.; Ansari, A.; Vora, A.; Talwar, D.; Tiwaskar, M.; Patil, S.; Barkate, H. Role of favipiravir in the treatment of COVID-19. Int. J. Infect. Dis., 2021, 102, 501-508. doi: 10.1016/j.ijid.2020.10.069 PMID: 33130203
- Choi, J.J.; McCarthy, M.W. Cefiderocol: A novel siderophore cephalosporin. Expert Opin. Investig. Drugs, 2018, 27(2), 193-197. doi: 10.1080/13543784.2018.1426745 PMID: 29318906
- Nakamura, R.; Ito-Horiyama, T.; Takemura, M.; Toba, S.; Matsumoto, S.; Ikehara, T.; Tsuji, M.; Sato, T.; Yamano, Y. In vivo pharmacodynamic study of cefiderocol, a novel parenteral siderophore cephalosporin, in murine thigh and lung infection models. Antimicrob. Agents Chemother., 2019, 63(9), 63. doi: 10.1128/AAC.02031-18 PMID: 31262762
- Ito, A.; Nishikawa, T.; Matsumoto, S.; Yoshizawa, H.; Sato, T.; Nakamura, R.; Tsuji, M.; Yamano, Y. Siderophore cephalosporin cefiderocol utilizes ferric iron transporter systems for antibacterial activity against Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2016, 60(12), 7396-7401. doi: 10.1128/AAC.01405-16 PMID: 27736756
- Yamano, Y. In vitro activity of cefiderocol against a broad range of clinically important gram-negative bacteria. Clin. Infect. Dis., 2019, 69(Suppl. 7), S544-S551. doi: 10.1093/cid/ciz827 PMID: 31724049
- Drakesmith, H.; Prentice, A. Viral infection and iron metabolism. Nat. Rev. Microbiol., 2008, 6(7), 541-552. doi: 10.1038/nrmicro1930 PMID: 18552864
- Reiner, .; Hatamipour, M.; Banach, M.; Pirro, M.; Al-Rasadi, K.; Jamialahmadi, T.; Radenkovic, D.; Montecucco, F.; Sahebkar, A. Statins and the COVID-19 main protease: in silico evidence on direct interaction. Arch. Med. Sci., 2020, 16(3), 490-496. doi: 10.5114/aoms.2020.94655 PMID: 32399094
- Yuce, M.; Cicek, E.; Inan, T.; Dag, A.B.; Kurkcuoglu, O.; Sungur, F.A. Repurposing of FDA-approved drugs against active site and potential allosteric drug-binding sites of COVID-19 main protease. Proteins, 2021, 89(11), 1425-1441. doi: 10.1002/prot.26164 PMID: 34169568
- Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol., 1996, 261(3), 470-489. doi: 10.1006/jmbi.1996.0477 PMID: 8780787
- Ahmad, S.S.; Akhtar, S. Danish Rizvi, S.M.; Kamal, M.A.; Sayeed, U.; Khan, M.K.A.; Siddiqui, M.H.; Arif, J.M. Screening and elucidation of selected natural compounds for anti- alzheimers potential targeting BACE-1 enzyme: A case computational study. Curr. Computeraided Drug Des., 2017, 13(4), 311-318. doi: 10.2174/1573409913666170414123825 PMID: 28413992
- Morris, G.M.; Huey, R.; Olson, A.J. Using AutoDock for ligand-receptor docking. Curr. Protoc. Bioinformatics, 2008. doi: 10.1002/0471250953.bi0814s24
- Maurya, D.K.; Sharma, D. Evaluation of traditional ayurvedic Kadha for prevention and management of the novel Coronavirus (SARS-CoV-2) using in silico approach. J. Biomol. Struct. Dyn., 2020, 1-16. doi: 10.1080/07391102.2020.1852119 PMID: 33251972
- Goodsell, D.S.; Morris, G.M.; Olson, A.J. Automated docking of flexible ligands: Applications of AutoDock. J. Mol. Recognit., 1996, 9(1), 1-5. doi: 10.1002/(SICI)1099-1352(199601)9:13.0.CO;2-6 PMID: 8723313
- Liu, S.; Dang, M.; Lei, Y.; Ahmad, S.S.; Khalid, M.; Kamal, M.A.; Chen, L. Ajmalicine and its analogues against AChE and BuChE for the management of Alzheimers disease: An in-silico study. Curr. Pharm. Des., 2020, 26(37), 4808-4814. doi: 10.2174/1381612826666200407161842 PMID: 32264807
- Ahmad, S.S.; Khan, H. Danish Rizvi, S.M.; Ansari, S.A.; Ullah, R.; Mahmood, H.M.; Siddiqui, M.H. Computational study of natural compounds for the clearance of amyloid-betaeta: A potential therapeutic management strategy for Alzheimers Disease. Molecules, 2019, 24.
- Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.R.; Smith, J.C.; Kasson, P.M.; van der Spoel, D.; Hess, B.; Lindahl, E. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 2013, 29(7), 845-854. doi: 10.1093/bioinformatics/btt055 PMID: 23407358
- Schüttelkopf, A.W.; van Aalten, D.M. PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(Pt 8), 1355-1363. doi: 10.1107/S0907444904011679 PMID: 15272157
- Hess, B.; Bekker, H.; Berendsen, H.J.; Fraaije, J.G. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem., 1997, 18(12), 1463-1472. doi: 10.1002/(SICI)1096-987X(199709)18:123.0.CO;2-H
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58. doi: 10.1038/nrd.2018.168 PMID: 30310233
- García, R.; Hussain, A.; Koduru, P.; Atis, M.; Wilson, K.; Park, J.Y.; Toby, I.; Diwa, K.; Vu, L.; Ho, S.; Adnan, F.; Nguyen, A.; Cox, A.; Kirtek, T.; García, P.; Li, Y.; Jones, H.; Shi, G.; Green, A.; Rosenbaum, D. Identification of potential antiviral compounds against SARS-CoV-2 structural and non structural protein targets: A pharmacoinformatics study of the CAS COVID-19 dataset. Comput. Biol. Med., 2021, 133, 104364. doi: 10.1016/j.compbiomed.2021.104364 PMID: 33895457
- Alam, A.; Shaikh, S.; Ahmad, S.S.; Ansari, M.A.; Shakil, S.; Rizvi, S.M.; Shakil, S.; Imran, M.; Haneef, M.; Abuzenadah, A.M.; Kamal, M.A. Molecular interaction of human brain acetylcholinesterase with a natural inhibitor huperzine-B: An enzoinformatics approach. CNS Neurol. Disord. Drug Targets, 2014, 13(3), 487-490. doi: 10.2174/18715273113126660163 PMID: 24059299
- Rehman, A.; Akhtar, S.; Siddiqui, M.H.; Sayeed, U.; Ahmad, S.S.; Arif, J.M.; Khan, M.K. Identification of potential leads against 4-hydroxytetrahydrodipicolinate synthase from Mycobacterium tuberculosis. Bioinformation, 2016, 12(11), 400-407. doi: 10.6026/97320630012400 PMID: 28293071
- Weiss, M.S.; Brandl, M.; Sühnel, J.; Pal, D.; Hilgenfeld, R. More hydrogen bonds for the (structural) biologist. Trends Biochem. Sci., 2001, 26(9), 521-523. doi: 10.1016/S0968-0004(01)01935-1 PMID: 11551776
- Ahmad, S.S.; Sinha, M.; Ahmad, K.; Khalid, M.; Choi, I. Study of caspase 8 inhibition for the management of Alzheimers disease: A molecular docking and dynamics simulation. Molecules, 2020, 25(9), 25. doi: 10.3390/molecules25092071 PMID: 32365525
- Ahmad, S.S.; Khalid, M.; Younis, K. Interaction study of dietary fibers (pectin and cellulose) with meat proteins using bioinformatics analysis: An in-silico study. Lebensm. Wiss. Technol., 2020, 119, 108889. doi: 10.1016/j.lwt.2019.108889
- Khan, M.S.; Goswami, U.; Rojatkar, S.R.; Khan, M.I. A serine protease inhibitor from hemolymph of green mussel, Perna viridis. Bioorg. Med. Chem. Lett., 2008, 18(14), 3963-3967. doi: 10.1016/j.bmcl.2008.06.010 PMID: 18572404
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273. doi: 10.1038/s41586-020-2012-7 PMID: 32015507
- Osman, E.E.A.; Toogood, P.L.; Neamati, N. COVID-19: Living through another pandemic. ACS Infect. Dis., 2020, 6(7), 1548-1552. doi: 10.1021/acsinfecdis.0c00224 PMID: 32388976
- Glebov, O.O. Understanding SARS-CoV-2 endocytosis for COVID-19 drug repurposing. FEBS J., 2020, 287(17), 3664-3671. doi: 10.1111/febs.15369 PMID: 32428379
- Yousefi, H.; Mashouri, L.; Okpechi, S.C.; Alahari, N.; Alahari, S.K. Repurposing existing drugs for the treatment of COVID-19/SARS-CoV-2 infection: A review describing drug mechanisms of action. Biochem. Pharmacol., 2021, 183, 114296. doi: 10.1016/j.bcp.2020.114296 PMID: 33191206
- Singh, T.U.; Parida, S.; Lingaraju, M.C.; Kesavan, M.; Kumar, D.; Singh, R.K. Drug repurposing approach to fight COVID-19. Pharmacol. Rep., 2020, 72(6), 1479-1508. doi: 10.1007/s43440-020-00155-6 PMID: 32889701
- Moza, B.; Buonpane, R.A.; Zhu, P.; Herfst, C.A.; Rahman, A.K.; McCormick, J.K.; Kranz, D.M.; Sundberg, E.J. Long-range cooperative binding effects in a T cell receptor variable domain. Proc. Natl. Acad. Sci. USA, 2006, 103(26), 9867-9872. doi: 10.1073/pnas.0600220103 PMID: 16788072
- Bhinge, A.; Chakrabarti, P.; Uthanumallian, K.; Bajaj, K.; Chakraborty, K.; Varadarajan, R. Accurate detection of protein: Ligand binding sites using molecular dynamics simulations. Structure, 2004, 12(11), 1989-1999. doi: 10.1016/j.str.2004.09.005 PMID: 15530363
- Valdar, W.S.; Thornton, J.M. Protein-protein interfaces: Analysis of amino acid conservation in homodimers. Proteins, 2001, 42(1), 108-124. doi: 10.1002/1097-0134(20010101)42:13.0.CO;2-O PMID: 11093265
- Mobley, D.L.; Dill, K.A. Binding of small-molecule ligands to proteins: "what you see" is not always "what you get". Structure, 2009, 17(4), 489-498. doi: 10.1016/j.str.2009.02.010 PMID: 19368882
- Patil, R.; Das, S.; Stanley, A.; Yadav, L.; Sudhakar, A.; Varma, A.K. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PLoS One, 2010, 5(8), e12029. doi: 10.1371/journal.pone.0012029 PMID: 20808434
- Ge, H.; Wang, Y.; Li, C.; Chen, N.; Xie, Y.; Xu, M.; He, Y.; Gu, X.; Wu, R.; Gu, Q.; Zeng, L.; Xu, J. Molecular dynamics-based virtual screening: Accelerating the drug discovery process by high-performance computing. J. Chem. Inf. Model., 2013, 53(10), 2757-2764. doi: 10.1021/ci400391s PMID: 24001302
- Liu, X.; Shi, D.; Zhou, S.; Liu, H.; Liu, H.; Yao, X. Molecular dynamics simulations and novel drug discovery. Expert Opin. Drug Discov., 2018, 13(1), 23-37. doi: 10.1080/17460441.2018.1403419 PMID: 29139324
- Baig, M.H.; Ahmad, K.; Roy, S.; Ashraf, J.M.; Adil, M.; Siddiqui, M.H.; Khan, S.; Kamal, M.A.; Provazník, I.; Choi, I. Computer aided drug design: Success and limitations. Curr. Pharm. Des., 2016, 22(5), 572-581. doi: 10.2174/1381612822666151125000550 PMID: 26601966
- Lane, T.J.; Shukla, D.; Beauchamp, K.A.; Pande, V.S. To milliseconds and beyond: Challenges in the simulation of protein folding. Curr. Opin. Struct. Biol., 2013, 23(1), 58-65. doi: 10.1016/j.sbi.2012.11.002 PMID: 23237705
- De Paris, R.; Quevedo, C.V.; Ruiz, D.D.; Norberto de Souza, O. An effective approach for clustering InhA molecular dynamics trajectory using substrate-binding cavity features. PLoS One, 2015, 10(7), e0133172. doi: 10.1371/journal.pone.0133172 PMID: 26218832
- Singh, V.K.; Chaurasia, H.; Kumari, P.; Som, A.; Mishra, R.; Srivastava, R.; Naaz, F.; Singh, A.; Singh, R.K. Design, synthesis, and molecular dynamics simulation studies of quinoline derivatives as protease inhibitors against SARS-CoV-2. J. Biomol. Struct. Dyn., 2021, 1-24. doi: 10.1080/07391102.2021.1946716 PMID: 34253149
- Li, H.; Xie, Y.; Liu, C.; Liu, S. Physicochemical bases for protein folding, dynamics, and protein-ligand binding. Sci. China Life Sci., 2014, 57(3), 287-302. doi: 10.1007/s11427-014-4617-2 PMID: 24554472
- Cooper, A.; Johnson, C.M. Introduction to microcalorimetry and biomolecular energetics. Methods Mol. Biol., 1994, 22, 109-124. PMID: 8312987
- Ross, P.D.; Subramanian, S. Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 1981, 20(11), 3096-3102. doi: 10.1021/bi00514a017 PMID: 7248271
- Rehman, M.T.; Shamsi, H.; Khan, A.U. Insight into the binding mechanism of imipenem to human serum albumin by spectroscopic and computational approaches. Mol. Pharm., 2014, 11(6), 1785-1797. doi: 10.1021/mp500116c PMID: 24745377
- McCarthy, M.W. Cefiderocol to treat complicated urinary tract infection. Drugs Today (Barc), 2020, 56(3), 177-184. doi: 10.1358/dot.2020.56.3.3118466 PMID: 32282864
- Dandachi, D.; Rodriguez-Barradas, M.C. Viral pneumonia: Etiologies and treatment. J. Investig. Med., 2018, 66(6), 957-965. doi: 10.1136/jim-2018-000712 PMID: 29680828
- Jain, S.; Self, W.H.; Wunderink, R.G.; Fakhran, S.; Balk, R.; Bramley, A.M.; Reed, C.; Grijalva, C.G.; Anderson, E.J.; Courtney, D.M.; Chappell, J.D.; Qi, C.; Hart, E.M.; Carroll, F.; Trabue, C.; Donnelly, H.K.; Williams, D.J.; Zhu, Y.; Arnold, S.R.; Ampofo, K.; Waterer, G.W.; Levine, M.; Lindstrom, S.; Winchell, J.M.; Katz, J.M.; Erdman, D.; Schneider, E.; Hicks, L.A.; McCullers, J.A.; Pavia, A.T.; Edwards, K.M.; Finelli, L.; Team, C.E.S. Community-acquired pneumonia requiring hospitalization among U.S. adults. N. Engl. J. Med., 2015, 373(5), 415-427. doi: 10.1056/NEJMoa1500245 PMID: 26172429
- Torres, A.; Zhong, N.; Pachl, J.; Timsit, J.F.; Kollef, M.; Chen, Z.; Song, J.; Taylor, D.; Laud, P.J.; Stone, G.G.; Chow, J.W. Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): A randomised, double-blind, phase 3 non-inferiority trial. Lancet Infect. Dis., 2018, 18(3), 285-295. doi: 10.1016/S1473-3099(17)30747-8 PMID: 29254862
- Nair, G.B.; Niederman, M.S. Nosocomial pneumonia: Lessons learned. Crit. Care Clin., 2013, 29(3), 521-546. doi: 10.1016/j.ccc.2013.03.007 PMID: 23830652
- Ito, A.; Sato, T.; Ota, M.; Takemura, M.; Nishikawa, T.; Toba, S.; Kohira, N.; Miyagawa, S.; Ishibashi, N.; Matsumoto, S.; Nakamura, R.; Tsuji, M.; Yamano, Y. In vitro antibacterial properties of cefiderocol, a novel siderophore cephalosporin, against gram-negative bacteria. Antimicrob. Agents Chemother., 2017, 62(1), 62. PMID: 29061741
- Takemura, M.; Nakamura, R.; Sato, T.; Tsuji, M.; Yamano, Y. 28th European Congress of Clinical Microbiology and Infectious Diseases, Madrid, Spain2018, pp. 21-24.
- Sato, T.; Yamawaki, K. Cefiderocol: Discovery, chemistry, and in vivo profiles of a novel siderophore cephalosporin. Clin. Infect. Dis., 2019, 69(Suppl. 7), S538-S543. doi: 10.1093/cid/ciz826 PMID: 31724047
- Kazmierczak, K.M.; Tsuji, M.; Wise, M.G.; Hackel, M.; Yamano, Y.; Echols, R.; Sahm, D.F. In vitro activity of cefiderocol, a siderophore cephalosporin, against a recent collection of clinically relevant carbapenem-non-susceptible Gram-negative bacilli, including serine carbapenemase- and metallo-β-lactamase-producing isolates (SIDERO-WT-2014 Study). Int. J. Antimicrob. Agents, 2019, 53(2), 177-184. doi: 10.1016/j.ijantimicag.2018.10.007 PMID: 30395986
- Wang, Y.; Cui, R.; Li, G.; Gao, Q.; Yuan, S.; Altmeyer, R.; Zou, G. Teicoplanin inhibits Ebola pseudovirus infection in cell culture. Antiviral Res., 2016, 125, 1-7. doi: 10.1016/j.antiviral.2015.11.003 PMID: 26585243
- Colson, P.; Raoult, D. Fighting viruses with antibiotics: An overlooked path. Int. J. Antimicrob. Agents, 2016, 48(4), 349-352. doi: 10.1016/j.ijantimicag.2016.07.004 PMID: 27546219
- Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res., 2020, 178, 104787. doi: 10.1016/j.antiviral.2020.104787 PMID: 32251768
- Baron, S.A.; Devaux, C.; Colson, P.; Raoult, D.; Rolain, J.M. Teicoplanin: An alternative drug for the treatment of COVID-19? Int. J. Antimicrob. Agents, 2020, 55(4), 105944. doi: 10.1016/j.ijantimicag.2020.105944 PMID: 32179150
Supplementary files
