Review on Natural Agents as Aromatase Inhibitors: Management of Breast Cancer


Цитировать

Полный текст

Аннотация

:Breast cancer is a prevalent type of cancer that is typically hormone-dependent, caused by estrogen. Aromatase inhibitors are frequently utilised in the treatment of hormonereceptor- positive breast cancer because they prevent the enzyme aromatase from converting androgens to estrogens. Natural medicines with aromatase inhibitory characteristics have attracted interest as potential alternatives or complementary therapy to manufactured medications. This review discusses the function of natural agents as aromatase inhibitors in treating breast cancer. A variety of natural compounds have been investigated for their capacity to inhibit aromatase activity and lower estrogen levels. These agents include resveratrol from red wine and grapes, curcumin from turmeric extract and green teahigh in catechins, and other flavonoids such as genistein, luteolin and quercetin. It has been demonstrated that by decreasing estrogen synthesis, they can slow the growth of breast cancer cells that are dependent on estrogen. However, the clinical evidence supporting their efficacy and safety in breast cancer treatment is inadequate. More research is required to investigate the therapeutic potential of natural medicines, such as aromatase inhibitors, in treating breast cancer. The clinical trials are required to assess their efficacy, appropriate doses, and potential interactions with other therapies. In conclusion, natural aromatase inhibitory drugs are promising adjuncts in the treatment of hormone receptor-positive breast cancer. Their clinical value and safety profile, however, require additional investigation.

Об авторах

Sonia Singh

Institute of Pharmaceutical Research, GLA University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Coughlin, S.S.; Ekwueme, D.U. Breast cancer as a global health concern. Cancer Epidemiol., 2009, 33(5), 315-318. doi: 10.1016/j.canep.2009.10.003 PMID: 19896917
  2. Helmrich, S.P.; Shapiro, S.; Rosenberg, L.; Kaufman, D.W.; Slone, D.; Bain, C.; Miettinen, O.S.; Stolley, P.D.; Rosenshein, N.B.; Knapp, R.C.; Leavitt, T., Jr; Schottenfeld, D.; Engle, R.L., Jr; Levy, M. Risk factors for breast cancer. Am. J. Epidemiol., 1983, 117(1), 35-45. doi: 10.1093/oxfordjournals.aje.a113513 PMID: 6823951
  3. Li, Y.; Li, S.; Meng, X.; Gan, R.Y.; Zhang, J.J.; Li, H.B. Dietary natural products for prevention and treatment of breast cancer. Nutrients, 2017, 9(7), 728. doi: 10.3390/nu9070728 PMID: 28698459
  4. Doyle, L.A.; Yang, W.; Abruzzo, L.V.; Krogmann, T.; Gao, Y.; Rishi, A.K.; Ross, D.D. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl. Acad. Sci. USA, 1998, 95(26), 15665-15670. doi: 10.1073/pnas.95.26.15665 PMID: 9861027
  5. Ullah, M.F. Cancer multidrug resistance (MDR): a major impediment to effective chemotherapy. Asian Pac. J. Cancer Prev., 2008, 9(1), 1-6. PMID: 18439063
  6. Burstein, H.J.; Gelber, S.; Guadagnoli, E.; Weeks, J.C. Use of alternative medicine by women with early-stage breast cancer. N. Engl. J. Med., 1999, 340(22), 1733-1739. doi: 10.1056/NEJM199906033402206 PMID: 10352166
  7. Henderson, J.W.; Donatelle, R.J. Complementary and alternative medicine use by women after completion of allopathic treatment for breast cancer. Altern. Ther. Health Med., 2004, 10(1), 52-57. PMID: 14727500
  8. Adler, S.R.; Fosket, J.R. Disclosing complementary and alternative medicine use in the medical encounter: a qualitative study in women with breast cancer. J. Fam. Pract., 1999, 48(6), 453-458. PMID: 10386489
  9. Boon, H.S.; Olatunde, F.; Zick, S.M. Trends in complementary/alternative medicine use by breast cancer survivors: Comparing survey data from 1998 and 2005. BMC Womens Health, 2007, 7(1), 4. doi: 10.1186/1472-6874-7-4 PMID: 17397542
  10. MacMahon, B.; Cole, P.; Brown, J. Etiology of human breast cancer: a review. J. Natl. Cancer Inst., 1973, 50(1), 21-42. doi: 10.1093/jnci/50.1.21 PMID: 4571238
  11. Miller, A.B.; Bulbrook, R.D. The epidemiology and etiology of breast cancer. N. Engl. J. Med., 1980, 303(21), 1246-1248. doi: 10.1056/NEJM198011203032130 PMID: 7421960
  12. Pike, M.C.; Spicer, D.V.; Dahmoush, L.; Press, M.F. Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol. Rev., 1993, 15(1), 17-30. doi: 10.1093/oxfordjournals.epirev.a036102 PMID: 8405201
  13. Yamane, K.; Tateishi, K.; Klose, R.J.; Fang, J.; Fabrizio, L.A.; Erdjument-Bromage, H.; Taylor-Papadimitriou, J.; Tempst, P.; Zhang, Y. PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Mol. Cell, 2007, 25(6), 801-812. doi: 10.1016/j.molcel.2007.03.001 PMID: 17363312
  14. Cheang, M.C.U.; Voduc, D.; Bajdik, C.; Leung, S.; McKinney, S.; Chia, S.K.; Perou, C.M.; Nielsen, T.O. Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin. Cancer Res., 2008, 14(5), 1368-1376. doi: 10.1158/1078-0432.CCR-07-1658 PMID: 18316557
  15. Shoeb, M. Anti-cancer agents from medicinal plants. Bangladesh J. Pharmacol., 2006, 1(2), 35-41.
  16. Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661. doi: 10.1021/acs.jnatprod.5b01055 PMID: 26852623
  17. Brueggemeier, R.W.; Richards, J.A.; Petrel, T.A. Aromatase and cyclooxygenases: enzymes in breast cancer. J. Steroid Biochem. Mol. Biol., 2003, 86(3-5), 501-507. doi: 10.1016/S0960-0760(03)00380-7 PMID: 14623550
  18. Balunas, M.J.; Kinghorn, A.D. Drug discovery from medicinal plants. Life Sci., 2005, 78(5), 431-441. doi: 10.1016/j.lfs.2005.09.012 PMID: 16198377
  19. Cragg, G.M.; Newman, D.J. Plants as a source of anti-cancer agents. J. Ethnopharmacol., 2005, 100(1-2), 72-79. doi: 10.1016/j.jep.2005.05.011 PMID: 16009521
  20. Burns, J.; Yokota, T.; Ashihara, H.; Lean, M.E.J.; Crozier, A. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem., 2002, 50(11), 3337-3340. doi: 10.1021/jf0112973 PMID: 12010007
  21. Mans, D.R.A.; Rocha, A.B.; Schwartsmann, G. Anti-cancer drug discovery and development in Brazil: targeted plant collection as a rational strategy to acquire candidate anti-cancer compounds. Oncologist, 2000, 5(3), 185-198. doi: 10.1634/theoncologist.5-3-185 PMID: 10884497
  22. Somasundaram, S.; Edmund, N.A.; Moore, D.T.; Small, G.W.; Shi, Y.Y.; Orlowski, R.Z. Dietary curcumin inhibits chemotherapy-induced apoptosis in models of human breast cancer. Cancer Res., 2002, 62(13), 3868-3875. PMID: 12097302
  23. Sak, K. Chemotherapy and dietary phytochemical agents. Chemother Res Pract., 2012, 2012, 282570. doi: 10.1155/2012/282570
  24. Nagini, S. Breast cancer: Current molecular therapeutic targets and new players. Anticancer Agents Med Chem., 2017, 17(2), 152-163. doi: 10.2174/1871520616666160502122724
  25. Perou, CM; Sørlie, T; Eisen, MB; Van De Rijn, M; Jeffrey, SS; Rees, CA; Pollack, JR; Ross, DT; Johnsen, H; Akslen, LA; Fluge, Ø Molecular portraits of human breast tumours. Nature., 2000, 406(6797), 747-752.
  26. Sørlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Thorsen, T.; Quist, H.; Matese, J.C.; Brown, P.O.; Botstein, D.; Lønning, P.E.; Børresen-Dale, A.L. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA, 2001, 98(19), 10869-10874. doi: 10.1073/pnas.191367098 PMID: 11553815
  27. Prat, A.; Parker, J.S.; Karginova, O.; Fan, C.; Livasy, C.; Herschkowitz, J.I.; He, X.; Perou, C.M. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res., 2010, 12(5), R68. doi: 10.1186/bcr2635 PMID: 20813035
  28. Herschkowitz, J.I.; Simin, K.; Weigman, V.J.; Mikaelian, I.; Usary, J.; Hu, Z.; Rasmussen, K.E.; Jones, L.P.; Assefnia, S.; Chandrasekharan, S.; Backlund, M.G.; Yin, Y.; Khramtsov, A.I.; Bastein, R.; Quackenbush, J.; Glazer, R.I.; Brown, P.H.; Green, J.E.; Kopelovich, L.; Furth, P.A.; Palazzo, J.P.; Olopade, O.I.; Bernard, P.S.; Churchill, G.A.; Van Dyke, T.; Perou, C.M. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol., 2007, 8(5), R76. doi: 10.1186/gb-2007-8-5-r76 PMID: 17493263
  29. Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest., 2011, 121(7), 2750-2767. doi: 10.1172/JCI45014 PMID: 21633166
  30. Mitra, S. MicroRNA therapeutics in triple negative breast cancer. Arch. Pathol. Clin. Res., 2017, 1(1), 009-017. doi: 10.29328/journal.hjpcr.1001003
  31. Hortobagyi, G.N. Treatment of breast cancer. N. Engl. J. Med., 1998, 339(14), 974-984. doi: 10.1056/NEJM199810013391407 PMID: 9753714
  32. Maughan, K.L.; Lutterbie, M.A.; Ham, P.S. Treatment of breast cancer. Am. Fam. Physician, 2010, 81(11), 1339-1346. PMID: 20521754
  33. Pierce, SM; Recht, A; Lingos, TI; Abner, A; Vicini, F; Silver, B; Herzog, A; Harris, JR Long-term radiation complications following conservative surgery (CS) and radiation therapy (RT) in patients with early stage breast cancer. Int. J. Radiat. Oncol. Biol. Phys., 1992, 23(5), 915-923.
  34. Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: role of ATP–dependent transporters. Nat. Rev. Cancer, 2002, 2(1), 48-58. doi: 10.1038/nrc706 PMID: 11902585
  35. Sauna, Z.E.; Smith, M.M.; Müller, M.; Kerr, K.M.; Ambudkar, S.V. The mechanism of action of multidrug-resistance-linked P-glycoprotein. J. Bioenerg. Biomembr., 2001, 33(6), 481-491. doi: 10.1023/A:1012875105006 PMID: 11804190
  36. Rivera, E. Implications of anthracycline-resistant and taxane-resistant metastatic breast cancer and new therapeutic options. Breast J., 2010, 16(3), 252-263. doi: 10.1111/j.1524-4741.2009.00896.x PMID: 20408828
  37. König, J.; Hartel, M.; Nies, A.T.; Martignoni, M.E.; Guo, J.; Büchler, M.W.; Friess, H.; Keppler, D. Expression and localization of human multidrug resistance protein (ABCC) family members in pancreatic carcinoma. Int. J. Cancer, 2005, 115(3), 359-367. doi: 10.1002/ijc.20831 PMID: 15688370
  38. Fumoleau, P.; Largillier, R.; Clippe, C.; Dièras, V.; Orfeuvre, H.; Lesimple, T.; Culine, S.; Audhuy, B.; Serin, D.; Curé, H.; Vuillemin, E.; Morère, J.F.; Montestruc, F.; Mouri, Z.; Namer, M. Multicentre, phase II study evaluating capecitabine monotherapy in patients with anthracycline- and taxane-pretreated metastatic breast cancer. Eur. J. Cancer, 2004, 40(4), 536-542. doi: 10.1016/j.ejca.2003.11.007 PMID: 14962720
  39. Jiang, X.; Zhao, Y.; Smith, C.; Gasparetto, M.; Turhan, A.; Eaves, A.; Eaves, C. Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia, 2007, 21(5), 926-935. doi: 10.1038/sj.leu.2404609 PMID: 17330101
  40. Love, R.R.; Leventhal, H.; Easterling, D.V.; Nerenz, D.R. Side effects and emotional distress during cancer chemotherapy. Cancer, 1989, 63(3), 604-612. doi: 10.1002/1097-0142(19890201)63:33.0.CO;2-2 PMID: 2912536
  41. Saldanha, S.N.; Tollefsbol, T.O. The role of nutraceuticals in chemoprevention and chemotherapy and their clinical outcomes. J. Oncol., 2012, 2012, 1-23. doi: 10.1155/2012/192464 PMID: 22187555
  42. Liao, G.S.; Apaya, M.K.; Shyur, L.F. Herbal medicine and acupuncture for breast cancer palliative care and adjuvant therapy. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-17. doi: 10.1155/2013/437948 PMID: 23840256
  43. Zheng, J.; Zhou, Y.; Li, Y.; Xu, D.P.; Li, S.; Li, H.B. Spices for prevention and treatment of cancers. Nutrients, 2016, 8(8), 495. doi: 10.3390/nu8080495 PMID: 27529277
  44. Li, F.; Li, S.; Li, H.B.; Deng, G.F.; Ling, W.H.; Xu, X.R. Antiproliferative activities of tea and herbal infusions. Food Funct., 2013, 4(4), 530-538. doi: 10.1039/c2fo30252g PMID: 23307138
  45. Ducasse, M.; Brown, M.A. Epigenetic aberrations and cancer. Mol. Cancer, 2006, 5(1), 60. doi: 10.1186/1476-4598-5-60 PMID: 17092350
  46. Jones, P.A.; Baylin, S.B. The epigenomics of cancer. Cell, 2007, 128(4), 683-692. doi: 10.1016/j.cell.2007.01.029 PMID: 17320506
  47. Stearns, V.; Zhou, Q.; Davidson, N.E. Epigenetic regulation as a new target for breast cancer therapy. Cancer Invest., 2007, 25(8), 659-665. doi: 10.1080/07357900701719234 PMID: 18058459
  48. Lustberg, M.B.; Ramaswamy, B. Epigenetic targeting in breast cancer: therapeutic impact and future direction. Drug News Perspect., 2009, 22(7), 369-381. doi: 10.1358/dnp.2009.22.7.1405072 PMID: 19890494
  49. Basse, C.; Arock, M. The increasing roles of epigenetics in breast cancer: Implications for pathogenicity, biomarkers, prevention and treatment. Int. J. Cancer, 2015, 137(12), 2785-2794. doi: 10.1002/ijc.29347 PMID: 25410431
  50. Thakur, V.S.; Deb, G.; Babcook, M.A.; Gupta, S. Plant phytochemicals as epigenetic modulators: role in cancer chemoprevention. AAPS J., 2014, 16(1), 151-163. doi: 10.1208/s12248-013-9548-5 PMID: 24307610
  51. Khan, S.I.; Aumsuwan, P.; Khan, I.A.; Walker, L.A.; Dasmahapatra, A.K. Epigenetic events associated with breast cancer and their prevention by dietary components targeting the epigenome. Chem. Res. Toxicol., 2012, 25(1), 61-73. doi: 10.1021/tx200378c PMID: 21992498
  52. Landis-Piwowar, K.R.; Milacic, V.; Dou, Q.P. Relationship between the methylation status of dietary flavonoids and their growth-inhibitory and apoptosis-inducing activities in human cancer cells. J. Cell. Biochem., 2008, 105(2), 514-523. doi: 10.1002/jcb.21853 PMID: 18636546
  53. Aggarwal, R.; Jha, M.; Shrivastava, A.; Jha, A.K. Natural compounds: Role in reversal of epigenetic changes. Biochemistry (Mosc.), 2015, 80(8), 972-989. doi: 10.1134/S0006297915080027 PMID: 26547065
  54. Chlebowski, R.T. Current concepts in breast cancer chemoprevention. Pol. Arch. Med. Wewn., 2014, 124(4), 191-199. PMID: 24618912
  55. Ko, E.Y.; Moon, A. Natural products for chemoprevention of breast cancer. J. Cancer Prev., 2015, 20(4), 223-231. doi: 10.15430/JCP.2015.20.4.223 PMID: 26734584
  56. Maggiolini, M.; Bonofiglio, D.; Pezzi, V.; Carpino, A.; Marsico, S.; Rago, V.; Vivacqua, A.; Picard, D.; Andò, S. Aromatase overexpression enhances the stimulatory effects of adrenal androgens on MCF7 breast cancer cells. Mol. Cell. Endocrinol., 2002, 193(1-2), 13-18. doi: 10.1016/S0303-7207(02)00091-6 PMID: 12160997
  57. Lephart, ED Modulation of aromatase by phytoestrogens. Enzyme Res., 2015, 2015, 594656. doi: 10.1155/2015/594656
  58. Yarla, NS; Bishayee, A; Sethi, G; Reddanna, P; Kalle, AM; Dhananjaya, BL; Dowluru, KS; Chintala, R; Duddukuri, GR Targeting arachidonic acid pathway by natural products for cancer prevention and therapy. Semin Cancer Biol, 2016, 40, 48-81. doi: 10.1016/j.semcancer.2016.02.001
  59. Wang, D.; DuBois, R.N. Eicosanoids and cancer. Nat. Rev. Cancer, 2010, 10(3), 181-193. doi: 10.1038/nrc2809 PMID: 20168319
  60. Cuendet, M.; Pezzuto, M. The role of cyclooxygenase and lipoxygenase in cancer chemoprevention. Drug Metabol. Drug Interact., 2000, 17(1-4), 109-157. doi: 10.1515/DMDI.2000.17.1-4.109 PMID: 11201293
  61. Denkert, C.; Winzer, K.J.; Müller, B.M.; Weichert, W.; Pest, S.; Köbel, M.; Kristiansen, G.; Reles, A.; Siegert, A.; Guski, H.; Hauptmann, S. Elevated expression of cyclooxygenase-2 is a negative prognostic factor for disease free survival and overall survival in patients with breast carcinoma. Cancer, 2003, 97(12), 2978-2987. doi: 10.1002/cncr.11437 PMID: 12784332
  62. Ranger, G.S.; Thomas, V.; Jewell, A.; Mokbel, K. Elevated cyclooxygenase-2 expression correlates with distant metastases in breast cancer. Anticancer Res., 2004, 24(4), 2349-2351. PMID: 15330183
  63. Stasinopoulos, I.; O’Brien, D.R.; Wildes, F.; Glunde, K.; Bhujwalla, Z.M. Silencing of cyclooxygenase-2 inhibits metastasis and delays tumor onset of poorly differentiated metastatic breast cancer cells. Mol. Cancer Res., 2007, 5(5), 435-442. doi: 10.1158/1541-7786.MCR-07-0010 PMID: 17510310
  64. Borin, T.; Angara, K.; Rashid, M.; Achyut, B.; Arbab, A. Arachidonic acid metabolite as a novel therapeutic target in breast cancer metastasis. Int. J. Mol. Sci., 2017, 18(12), 2661. doi: 10.3390/ijms18122661 PMID: 29292756
  65. Chumsri, S.; Howes, T.; Bao, T.; Sabnis, G.; Brodie, A. Aromatase, aromatase inhibitors, and breast cancer. J. Steroid Biochem. Mol. Biol., 2011, 125(1-2), 13-22. doi: 10.1016/j.jsbmb.2011.02.001 PMID: 21335088
  66. Sun, S.Y.; Hail, N., Jr; Lotan, R. Apoptosis as a novel target for cancer chemoprevention. J. Natl. Cancer Inst., 2004, 96(9), 662-672. doi: 10.1093/jnci/djh123 PMID: 15126603
  67. Johnstone, R.W.; Ruefli, A.A.; Lowe, S.W. Apoptosis. Cell, 2002, 108(2), 153-164. doi: 10.1016/S0092-8674(02)00625-6 PMID: 11832206
  68. Liu, J.; Lin, M.; Yu, J.; Liu, B.; Bao, J. Targeting apoptotic and autophagic pathways for cancer therapeutics. Cancer Lett., 2011, 300(2), 105-114. doi: 10.1016/j.canlet.2010.10.001 PMID: 21036469
  69. Thomas, L.R.; Henson, A.; Reed, J.C.; Salsbury, F.R.; Thorburn, A. Direct binding of Fas-associated death domain (FADD) to the tumor necrosis factor-related apoptosis-inducing ligand receptor DR5 is regulated by the death effector domain of FADD. J. Biol. Chem., 2004, 279(31), 32780-32785. doi: 10.1074/jbc.M401680200 PMID: 15173180
  70. Harper, N.; Hughes, M.; MacFarlane, M.; Cohen, G.M. Fas-associated death domain protein and caspase-8 are not recruited to the tumor necrosis factor receptor 1 signaling complex during tumor necrosis factor-induced apoptosis. J. Biol. Chem., 2003, 278(28), 25534-25541. doi: 10.1074/jbc.M303399200 PMID: 12721308
  71. Guicciardi, M.E.; Gores, G.J. Life and death by death receptors. FASEB J., 2009, 23(6), 1625-1637. doi: 10.1096/fj.08-111005 PMID: 19141537
  72. Wajant, H. Death receptors. Essays Biochem., 2003, 39, 53-71. doi: 10.1042/bse0390053 PMID: 14585074
  73. Green, D.R. Apoptotic Pathways. Cell, 2000, 102(1), 1-4. doi: 10.1016/S0092-8674(00)00003-9 PMID: 10929706
  74. Kang, M.H.; Reynolds, C.P. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin. Cancer Res., 2009, 15(4), 1126-1132. doi: 10.1158/1078-0432.CCR-08-0144 PMID: 19228717
  75. Toshiya, K.; Testuya, T.; Akira, H.; Takuji, T. Cancer chemoprevention through the induction of apoptosis by natural compounds. J. Biophys. Chem., 2012, 3(2), 156-173.
  76. Roth, W.; Reed, J.C. Apoptosis and cancer: When BAX is TRAILing away. Nat. Med., 2002, 8(3), 216-218. doi: 10.1038/nm0302-216 PMID: 11875486
  77. Dall’Acqua, S. Natural products as antimitotic agents. Curr. Top. Med. Chem., 2014, 14(20), 2272-2285. doi: 10.2174/1568026614666141130095311 PMID: 25434355
  78. Liu, H.; Chen, X.; Sun, J.; Gao, P.; Song, Y.; Zhang, N.; Lu, X.; Xu, H.; Wang, Z. The efficacy and toxicity of paclitaxel plus S-1 compared with paclitaxel plus 5-FU for advanced gastric cancer: a PRISMA systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore), 2014, 93(25), e164. doi: 10.1097/MD.0000000000000164 PMID: 25437030
  79. Wang, Y.; Man Gho, W.; Chan, F.L.; Chen, S.; Leung, L.K. The red clover ( Trifolium pratense ) isoflavone biochanin A inhibits aromatase activity and expression. Br. J. Nutr., 2008, 99(2), 303-310. doi: 10.1017/S0007114507811974 PMID: 17761019
  80. Sehdev, V.; Lai, J.C.K.; Bhushan, A. Biochanin A modulates cell viability, invasion, and growth promoting signaling pathways in HER-2-positive breast cancer cells. J. Oncol., 2009, 2009, 1-10. doi: 10.1155/2009/121458 PMID: 20169097
  81. Atwell, L.L.; Zhang, Z.; Mori, M.; Farris, P.E.; Vetto, J.T.; Naik, A.M.; Oh, K.Y.; Thuillier, P.; Ho, E.; Shannon, J. Sulforaphane bioavailability and chemopreventive activity in women scheduled for breast biopsy. Cancer Prev. Res. (Phila.), 2015, 8(12), 1184-1191. doi: 10.1158/1940-6207.CAPR-15-0119 PMID: 26511489
  82. Moon, Y.J.; Brazeau, D.A.; Morris, M.E. Effects of flavonoids genistein and biochanin a on gene expression and their metabolism in human mammary cells. Nutr. Cancer, 2007, 57(1), 48-58. doi: 10.1080/01635580701268196 PMID: 17516862
  83. Moon, Y.J.; Shin, B.S.; An, G.; Morris, M.E. Biochanin A inhibits breast cancer tumor growth in a murine xenograft model. Pharm. Res., 2008, 25(9), 2158-2163. doi: 10.1007/s11095-008-9583-6 PMID: 18454305
  84. Guo, Q.; Zhao, B.; Li, M.; Shen, S.; Xin, W. Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochim. Biophys. Acta Lipids Lipid Metab., 1996, 1304(3), 210-222. doi: 10.1016/S0005-2760(96)00122-1 PMID: 8982267
  85. Berner, C.; Aumüller, E.; Gnauck, A.; Nestelberger, M.; Just, A.; Haslberger, A.G. Epigenetic control of estrogen receptor expression and tumor suppressor genes is modulated by bioactive food compounds. Ann. Nutr. Metab., 2010, 57(3-4), 183-189. doi: 10.1159/000321514 PMID: 21088384
  86. Nandakumar, V.; Vaid, M.; Katiyar, S.K. (-)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p16INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells. Carcinogenesis, 2011, 32(4), 537-544. doi: 10.1093/carcin/bgq285 PMID: 21209038
  87. Li, Y.; Yuan, Y.Y.; Meeran, S.M.; Tollefsbol, T.O. Synergistic epigenetic reactivation of estrogen receptor-α (ERα) by combined green tea polyphenol and histone deacetylase inhibitor in ERα-negative breast cancer cells. Mol. Cancer, 2010, 9(1), 274. doi: 10.1186/1476-4598-9-274 PMID: 31901224
  88. Deb, G.; Thakur, V.S.; Limaye, A.M.; Gupta, S. Epigenetic induction of tissue inhibitor of matrix metalloproteinase-3 by green tea polyphenols in breast cancer cells. Mol. Carcinog., 2015, 54(6), 485-499. doi: 10.1002/mc.22121 PMID: 24481780
  89. Goodin, M.G.; Fertuck, K.C.; Zacharewski, T.R.; Rosengren, R.J. Estrogen receptor-mediated actions of polyphenolic catechins in vivo and in vitro. Toxicol. Sci., 2002, 69(2), 354-361. doi: 10.1093/toxsci/69.2.354 PMID: 12377984
  90. Wang, P.; Henning, S.M.; Heber, D. Limitations of MTT and MTS-based assays for measurement of antiproliferative activity of green tea polyphenols. PLoS One, 2010, 5(4), e10202. doi: 10.1371/journal.pone.0010202 PMID: 20419137
  91. Han, S.G.; Han, S.S.; Toborek, M.; Hennig, B. EGCG protects endothelial cells against PCB 126-induced inflammation through inhibition of AhR and induction of Nrf2-regulated genes. Toxicol. Appl. Pharmacol., 2012, 261(2), 181-188. doi: 10.1016/j.taap.2012.03.024 PMID: 22521609
  92. Roy, A.M.; Baliga, M.S.; Katiyar, S.K. Epigallocatechin-3-gallate induces apoptosis in estrogen receptor–negative human breast carcinoma cells via modulation in protein expression of p53 and Bax and caspase-3 activation. Mol. Cancer Ther., 2005, 4(1), 81-90. doi: 10.1158/1535-7163.81.4.1 PMID: 15657356
  93. Hsu, Y.C.; Liou, Y.M. The anti-cancer effects of (−)-Epigalocathine-3-gallate on the signaling pathways associated with membrane receptors in MCF-7 cells. J. Cell. Physiol., 2011, 226(10), 2721-2730. doi: 10.1002/jcp.22623 PMID: 21792929
  94. Hong, O.Y.; Noh, E.M.; Jang, H.Y.; Lee, Y.R.; Lee, B.K.; Jung, S.H.; Kim, J.S.; Youn, H.J. Epigallocatechin gallate inhibits the growth of MDA-MB-231 breast cancer cells via inactivation of the β-catenin signaling pathway. Oncol. Lett., 2017, 14(1), 441-446. doi: 10.3892/ol.2017.6108 PMID: 28693189
  95. Baker, K.M.; Bauer, A.C. Green tea catechin, EGCG, suppresses PCB 102-induced proliferation in estrogen-sensitive breast cancer cells. Int. J. Breast Cancer, 2015, 2015, 1-7. doi: 10.1155/2015/163591 PMID: 26783468
  96. Chisholm, K.; Bray, B.J.; Rosengren, R.J. Tamoxifen and epigallocatechin gallate are synergistically cytotoxic to MDA-MB-231 human breast cancer cells. Anticancer Drugs, 2004, 15(9), 889-897. doi: 10.1097/00001813-200410000-00010 PMID: 15457130
  97. Farabegoli, F.; Papi, A.; Orlandi, M. (–)-Epigallocatechin-3-gallate down-regulates EGFR, MMP-2, MMP-9 and EMMPRIN and inhibits the invasion of MCF-7 tamoxifen-resistant cells. Biosci. Rep., 2011, 31(2), 99-108. doi: 10.1042/BSR20090143 PMID: 20446926
  98. Masuda, M.; Suzui, M.; Lim, J.T.E.; Deguchi, A.; Soh, J.W.; Weinstein, I.B. Epigallocatechin-3-gallate decreases VEGF production in head and neck and breast carcinoma cells by inhibiting EGFR-related pathways of signal transduction. J. Exp. Ther. Oncol., 2002, 2(6), 350-359. doi: 10.1046/j.1359-4117.2002.01062.x PMID: 12440226
  99. Islam, S.; Islam, N.; Kermode, T.; Johnstone, B.; Mukhtar, H.; Moskowitz, R.W.; Goldberg, V.M.; Malemud, C.J.; Haqqi, T.M. Involvement of caspase-3 in epigallocatechin-3-gallate-mediated apoptosis of human chondrosarcoma cells. Biochem. Biophys. Res. Commun., 2000, 270(3), 793-797. doi: 10.1006/bbrc.2000.2536 PMID: 10772904
  100. Li, M.J.; Yin, Y.C.; Wang, J.; Jiang, Y.F. Green tea compounds in breast cancer prevention and treatment. World J. Clin. Oncol., 2014, 5(3), 520-528. doi: 10.5306/wjco.v5.i3.520 PMID: 25114865
  101. Peng, G; Dixon, DA; Muga, SJ; Smith, TJ; Wargovich, MJ Green tea polyphenol (−)‐epigallocatechin‐3‐gallate inhibits cyclooxygenase‐2 expression in colon carcinogenesis. Mol Carcinog, 2006, 45(5), 309-319.
  102. Chun, KS; Surh, YJ Cancer chemoprevention targeting COX-2 using dietary phytochemicals. In: Cancer and Inflammation Mechanisms: Chemical, Biological, and Clinical Aspects; Wiley, 2014.
  103. Sartippour, M.R.; Pietras, R.; Marquez-Garban, D.C.; Chen, H.W.; Heber, D.; Henning, S.M.; Sartippour, G.; Zhang, L.; Lu, M.; Weinberg, O.; Rao, J.Y.; Brooks, M.N. The combination of green tea and tamoxifen is effective against breast cancer. Carcinogenesis, 2006, 27(12), 2424-2433. doi: 10.1093/carcin/bgl066 PMID: 16785249
  104. Zhang, G.; Wang, Y.; Zhang, Y.; Wan, X.; Li, J.; Liu, K.; Wang, F.; Liu, Q.; Yang, C.; Yu, P.; Huang, Y.; Wang, S.; Jiang, P.; Qu, Z.; Luan, J.; Duan, H.; Zhang, L.; Hou, A.; Jin, S.; Hsieh, T-C.; Wu, E.; Wu, E. Anti-cancer activities of tea epigallocatechin-3-gallate in breast cancer patients under radiotherapy. Curr. Mol. Med., 2012, 12(2), 163-176. doi: 10.2174/156652412798889063 PMID: 22280355
  105. Alcaraz, M.; Armero, D.; Martínez-Beneyto, Y.; Castillo, J.; Benavente-García, O.; Fernandez, H.; Alcaraz-Saura, M.; Canteras, M. Chemical genoprotection: reducing biological damage to as low as reasonably achievable levels. Dentomaxillofac. Radiol., 2011, 40(5), 310-314. doi: 10.1259/dmfr/95408354 PMID: 21697157
  106. Ullmann, U.; Haller, J.; Decourt, J.P.; Girault, N.; Girault, J.; Richard-Caudron, A.S.; Pineau, B.; Weber, P. A single ascending dose study of epigallocatechin gallate in healthy volunteers. J. Int. Med. Res., 2003, 31(2), 88-101. doi: 10.1177/147323000303100205 PMID: 12760312
  107. Stearns, M.E.; Amatangelo, M.D.; Varma, D.; Sell, C.; Goodyear, S.M. Combination therapy with epigallocatechin-3-gallate and doxorubicin in human prostate tumor modeling studies: inhibition of metastatic tumor growth in severe combined immunodeficiency mice. Am. J. Pathol., 2010, 177(6), 3169-3179. doi: 10.2353/ajpath.2010.100330 PMID: 20971741
  108. Dash, R.; Junaid, M.; Islam, N.; Akash, M.F.C.; Khan, M.I.; Arifuzzaman, M.; Khatun, M.; Zahid Hosen, S.M. M Zahid Hosen S. Molecular insight and binding pattern analysis of Shikonin as a potential VEGFR-2 inhibitor. Curr. Enzym. Inhib., 2017, 13(3), 235-244. doi: 10.2174/1573408013666161227162452
  109. Yao, Y.; Zhou, Q. A novel antiestrogen agent Shikonin inhibits estrogen-dependent gene transcription in human breast cancer cells. Breast Cancer Res. Treat., 2010, 121(1), 233-240. doi: 10.1007/s10549-009-0547-2 PMID: 19760501
  110. Yao, Y.; Brodie, A.M.H.; Davidson, N.E.; Kensler, T.W.; Zhou, Q. Inhibition of estrogen signaling activates the NRF2 pathway in breast cancer. Breast Cancer Res. Treat., 2010, 124(2), 585-591. doi: 10.1007/s10549-010-1023-8 PMID: 20623181
  111. Han, W.; Li, L.; Qiu, S.; Lu, Q.; Pan, Q.; Gu, Y.; Luo, J.; Hu, X. Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol. Cancer Ther., 2007, 6(5), 1641-1649. doi: 10.1158/1535-7163.MCT-06-0511 PMID: 17513612
  112. Zhang, Y.; Qian, R.Q.; Li, P.P. Shikonin, an ingredient of Lithospermum erythrorhizon, down-regulates the expression of steroid sulfatase genes in breast cancer cells. Cancer Lett., 2009, 284(1), 47-54. doi: 10.1016/j.canlet.2009.04.008 PMID: 19419812
  113. Duru, N.; Gernapudi, R.; Zhou, Q. Chemopreventive activities of shikonin in breast cancer. Biochem. Pharmacol., 2014, 3, e163.
  114. Jang, S.Y.; Lee, J.K.; Jang, E.H.; Jeong, S.Y.; Kim, J.H. Shikonin blocks migration and invasion of human breast cancer cells through inhibition of matrix metalloproteinase-9 activation. Oncol. Rep., 2014, 31(6), 2827-2833. doi: 10.3892/or.2014.3159 PMID: 24789371
  115. Wang, W.; Dai, M.; Zhu, C.; Zhang, J.; Lin, L.; Ding, J.; Duan, W. Synthesis and biological activity of novel shikonin analogues. Bioorg. Med. Chem. Lett., 2009, 19(3), 735-737. doi: 10.1016/j.bmcl.2008.12.032 PMID: 19111464
  116. Li, W.; Liu, J.; Jackson, K.; Shi, R.; Zhao, Y. Sensitizing the therapeutic efficacy of taxol with shikonin in human breast cancer cells. PLoS One, 2014, 9(4), e94079. doi: 10.1371/journal.pone.0094079 PMID: 24710512
  117. Zhang, C.H.; Wang, J.; Zhang, L.X.; Lu, Y.H.; Ji, T.H.; Xu, L.; Ling, L.J. Shikonin reduces tamoxifen resistance through long non-coding RNA uc.57. Oncotarget, 2017, 8(51), 88658-88669. doi: 10.18632/oncotarget.20809 PMID: 29179465
  118. Su, L.; Liu, L.; Wang, Y.; Yan, G.; Zhang, Y. Long-term systemic toxicity of shikonin derivatives in Wistar rats. Pharm. Biol., 2014, 52(4), 486-490. doi: 10.3109/13880209.2013.846913 PMID: 24192282
  119. Assimopoulou, A.N.; Papageorgiou, V.P. Encapsulation of isohexenylnaphthazarins in cyclodextrins. Biomed. Chromatogr., 2004, 18(4), 240-247. doi: 10.1002/bmc.310 PMID: 15162386
  120. Holzer, T.R.; McMaster, W.R.; Forney, J.D. Expression profiling by whole-genome interspecies microarray hybridization reveals differential gene expression in procyclic promastigotes, lesion-derived amastigotes, and axenic amastigotes in Leishmania mexicana. Mol. Biochem. Parasitol., 2006, 146(2), 198-218. doi: 10.1016/j.molbiopara.2005.12.009 PMID: 16430978
  121. King-Batoon, A.; Leszczynska, J.M.; Klein, C.B. Modulation of gene methylation by genistein or lycopene in breast cancer cells. Environ. Mol. Mutagen., 2008, 49(1), 36-45. doi: 10.1002/em.20363 PMID: 18181168
  122. Bishop, K.; Ferguson, L. The interaction between epigenetics, nutrition and the development of cancer. Nutrients, 2015, 7(2), 922-947. doi: 10.3390/nu7020922 PMID: 25647662
  123. Takeshima, M.; Ono, M.; Higuchi, T.; Chen, C.; Hara, T.; Nakano, S. Anti‐proliferative and apoptosis‐inducing activity of lycopene against three subtypes of human breast cancer cell lines. Cancer Sci., 2014, 105(3), 252-257. doi: 10.1111/cas.12349 PMID: 24397737
  124. Peng, S.J.; Li, J.; Zhou, Y.; Tuo, M.; Qin, X.X.; Yu, Q.; Cheng, H.; Li, Y.M. in vitro effects and mechanisms of lycopene in MCF-7 human breast cancer cells. Genet. Mol. Res., 2017, 16(2), 13. doi: 10.4238/gmr16029434 PMID: 28407181
  125. Zhang, X.; Spiegelman, D.; Baglietto, L.; Bernstein, L.; Boggs, D.A.; van den Brandt, P.A.; Buring, J.E.; Gapstur, S.M.; Giles, G.G.; Giovannucci, E.; Goodman, G.; Hankinson, S.E.; Helzlsouer, K.J.; Horn-Ross, P.L.; Inoue, M.; Jung, S.; Khudyakov, P.; Larsson, S.C.; Lof, M.; McCullough, M.L.; Miller, A.B.; Neuhouser, M.L.; Palmer, J.R.; Park, Y.; Robien, K.; Rohan, T.E.; Ross, J.A.; Schouten, L.J.; Shikany, J.M.; Tsugane, S.; Visvanathan, K.; Weiderpass, E.; Wolk, A.; Willett, W.C.; Zhang, S.M.; Ziegler, R.G.; Smith-Warner, S.A. Carotenoid intakes and risk of breast cancer defined by estrogen receptor and progesterone receptor status: a pooled analysis of 18 prospective cohort studies. Am. J. Clin. Nutr., 2012, 95(3), 713-725. doi: 10.3945/ajcn.111.014415 PMID: 22277553
  126. Eliassen, A.H.; Hendrickson, S.J.; Brinton, L.A.; Buring, J.E.; Campos, H.; Dai, Q.; Dorgan, J.F.; Franke, A.A.; Gao, Y.; Goodman, M.T.; Hallmans, G.; Helzlsouer, K.J.; Hoffman-Bolton, J.; Hultén, K.; Sesso, H.D.; Sowell, A.L.; Tamimi, R.M.; Toniolo, P.; Wilkens, L.R.; Winkvist, A.; Zeleniuch-Jacquotte, A.; Zheng, W.; Hankinson, S.E. Circulating carotenoids and risk of breast cancer: pooled analysis of eight prospective studies. J. Natl. Cancer Inst., 2012, 104(24), 1905-1916. doi: 10.1093/jnci/djs461 PMID: 23221879
  127. Rao, A.V.; Shen, H. Effect of low dose lycopene intake on lycopene bioavailability and oxidative stress. Nutr. Res., 2002, 22(10), 1125-1131. doi: 10.1016/S0271-5317(02)00430-X
  128. Basu, A.; Imrhan, V. Tomatoes versus lycopene in oxidative stress and carcinogenesis: conclusions from clinical trials. Eur. J. Clin. Nutr., 2007, 61(3), 295-303. doi: 10.1038/sj.ejcn.1602510 PMID: 16929242
  129. Athar, M.; Back, J.H.; Kopelovich, L.; Bickers, D.R.; Kim, A.L. Multiple molecular targets of resveratrol: Anti-carcinogenic mechanisms. Arch. Biochem. Biophys., 2009, 486(2), 95-102. doi: 10.1016/j.abb.2009.01.018 PMID: 19514131
  130. Savouret, J.F.; Quesne, M. Resveratrol and cancer: a review. Biomed. Pharmacother., 2002, 56(2), 84-87. doi: 10.1016/S0753-3322(01)00158-5 PMID: 12000139
  131. Qin, W.; Zhang, K.; Clarke, K.; Weiland, T.; Sauter, E.R. Methylation and miRNA effects of resveratrol on mammary tumors vs. normal tissue. Nutr. Cancer, 2014, 66(2), 270-277. doi: 10.1080/01635581.2014.868910 PMID: 24447120
  132. Bishayee, A. Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials. Cancer Prev. Res. (Phila.), 2009, 2(5), 409-418. doi: 10.1158/1940-6207.CAPR-08-0160 PMID: 19401532
  133. Wang, R.H.; Sengupta, K.; Li, C.; Kim, H.S.; Cao, L.; Xiao, C.; Kim, S.; Xu, X.; Zheng, Y.; Chilton, B.; Jia, R.; Zheng, Z.M.; Appella, E.; Wang, X.W.; Ried, T.; Deng, C.X. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell, 2008, 14(4), 312-323. doi: 10.1016/j.ccr.2008.09.001 PMID: 18835033
  134. Stefanska, B.; Karlic, H.; Varga, F.; Fabianowska-Majewska, K.; Haslberger, A.G. Epigenetic mechanisms in anti-cancer actions of bioactive food components - the implications in cancer prevention. Br. J. Pharmacol., 2012, 167(2), 279-297. doi: 10.1111/j.1476-5381.2012.02002.x PMID: 22536923
  135. Sinha, D; Sarkar, N; Biswas, J; Bishayee, A Resveratrol for breast cancer prevention and therapy: Preclinical evidence and molecular mechanisms. Semin Cancer Biol, 2016, 40, 209-232.
  136. Hsieh, T.; Wu, J.M. Resveratrol: Biological and pharmaceutical properties as anticancer molecule. Biofactors, 2010, 36(5), 360-369. doi: 10.1002/biof.105 PMID: 20623546
  137. Jenkins, S.; Betancourt, A.M.; Wang, J.; Lamartiniere, C.A. Endocrine-active chemicals in mammary cancer causation and prevention. J. Steroid Biochem. Mol. Biol., 2012, 129(3-5), 191-200. doi: 10.1016/j.jsbmb.2011.06.003 PMID: 21729753
  138. Park, M.A.; Hwang, K.A.; Choi, K.C. Diverse animal models to examine potential role(s) and mechanism of endocrine disrupting chemicals on the tumor progression and prevention: Do they have tumorigenic or anti-tumorigenic property? Lab. Anim. Res., 2011, 27(4), 265-273. doi: 10.5625/lar.2011.27.4.265 PMID: 22232634
  139. Bhat, K.P.; Lantvit, D.; Christov, K.; Mehta, R.G.; Moon, R.C.; Pezzuto, J.M. Estrogenic and antiestrogenic properties of resveratrol in mammary tumor models. Cancer Res., 2001, 61(20), 7456-7463. PMID: 11606380
  140. Chow, H.H.S.; Garland, L.L.; Heckman-Stoddard, B.M.; Hsu, C.H.; Butler, V.D.; Cordova, C.A.; Chew, W.M.; Cornelison, T.L. A pilot clinical study of resveratrol in postmenopausal women with high body mass index: effects on systemic sex steroid hormones. J. Transl. Med., 2014, 12(1), 223. doi: 10.1186/s12967-014-0223-0 PMID: 25115686
  141. Laux, M.T.; Aregullin, M.; Berry, J.P.; Flanders, J.A.; Rodriguez, E. Identification of a p53-dependent pathway in the induction of apoptosis of human breast cancer cells by the natural product, resveratrol. J. Altern. Complement. Med., 2004, 10(2), 235-239. doi: 10.1089/107555304323062211 PMID: 15165403
  142. Kim, H.; Hall, P.; Smith, M.; Kirk, M.; Prasain, J.K.; Barnes, S.; Grubbs, C. Chemoprevention by grape seed extract and genistein in carcinogen-induced mammary cancer in rats is diet dependent. J. Nutr., 2004, 134(12)(Suppl.), 3445S-3452S. doi: 10.1093/jn/134.12.3445S PMID: 15570052
  143. Pozo-Guisado, E.; Merino, J.M.; Mulero-Navarro, S.; Lorenzo-Benayas, M.J.; Centeno, F.; Alvarez-Barrientos, A.; Salguero, P.M.F. Resveratrol-induced apoptosis in MCF-7 human breast cancer cells involves a caspase-independent mechanism with downregulation of Bcl-2 and NF-?B. Int. J. Cancer, 2005, 115(1), 74-84. doi: 10.1002/ijc.20856 PMID: 15688415
  144. Kotha, A.; Sekharam, M.; Cilenti, L.; Siddiquee, K.; Khaled, A.; Zervos, A.S.; Carter, B.; Turkson, J.; Jove, R. Resveratrol inhibits Src and Stat3 signaling and induces the apoptosis of malignant cells containing activated Stat3 protein. Mol. Cancer Ther., 2006, 5(3), 621-629. doi: 10.1158/1535-7163.MCT-05-0268 PMID: 16546976
  145. Fulda, S.; Debatin, K.M. Sensitization for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by the chemopreventive agent resveratrol. Cancer Res., 2004, 64(1), 337-346. doi: 10.1158/0008-5472.CAN-03-1656 PMID: 14729643
  146. de Vries, K.; Strydom, M.; Steenkamp, V. Bioavailability of resveratrol: Possibilities for enhancement. J. Herb. Med., 2018, 11, 71-77. doi: 10.1016/j.hermed.2017.09.002
  147. Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis. Oncol., 2017, 1(1), 35. doi: 10.1038/s41698-017-0038-6 PMID: 28989978
  148. Sarkar, F.H.; Li, Y. Soy isoflavones and cancer prevention. Cancer Invest., 2003, 21(5), 744-757. doi: 10.1081/CNV-120023773 PMID: 14628433
  149. Banerjee, S.; Li, Y.; Wang, Z.; Sarkar, F.H. Multi-targeted therapy of cancer by genistein. Cancer Lett., 2008, 269(2), 226-242. doi: 10.1016/j.canlet.2008.03.052 PMID: 18492603
  150. Messing, E.; Gee, J.R.; Saltzstein, D.R.; Kim, K.; diSant’Agnese, A.; Kolesar, J.; Harris, L.; Faerber, A.; Havighurst, T.; Young, J.M.; Efros, M.; Getzenberg, R.H.; Wheeler, M.A.; Tangrea, J.; Parnes, H.; House, M.; Busby, J.E.; Hohl, R.; Bailey, H. A phase 2 cancer chemoprevention biomarker trial of isoflavone G-2535 (genistein) in presurgical bladder cancer patients. Cancer Prev. Res. (Phila.), 2012, 5(4), 621-630. doi: 10.1158/1940-6207.CAPR-11-0455 PMID: 22293631
  151. Dharmappa, K.K.; Mohamed, R.; Shivaprasad, H.V.; Vishwanath, B.S. Genistein, a potent inhibitor of secretory phospholipase A2: a new insight in down regulation of inflammation. Inflammopharmacology, 2010, 18(1), 25-31. doi: 10.1007/s10787-009-0018-8 PMID: 19894024
  152. Lau, T.Y.; Leung, L.K. Soya isoflavones suppress phorbol 12-myristate 13-acetate-induced COX-2 expression in MCF-7 cells. Br. J. Nutr., 2006, 96(1), 169-176. doi: 10.1079/BJN20061639 PMID: 16870006
  153. Chung, M.H.; Kim, D.H.; Na, H.K.; Kim, J.H.; Kim, H.N.; Haegeman, G.; Surh, Y.J. Genistein inhibits phorbol ester-induced NF-κB transcriptional activity and COX-2 expression by blocking the phosphorylation of p65/RelA in human mammary epithelial cells. Mutat. Res., 2014, 768, 74-83. doi: 10.1016/j.mrfmmm.2014.04.003 PMID: 24742714
  154. Pons, D.G.; Nadal-Serrano, M.; Blanquer-Rossello, M.M.; Sastre-Serra, J.; Oliver, J.; Roca, P. Genistein modulates proliferation and mitochondrial functionality in breast cancer cells depending on ERalpha/ERbeta ratio. J. Cell. Biochem., 2014, 115(5), 949-958. doi: 10.1002/jcb.24737 PMID: 24375531
  155. Kucuk, O. Soy foods, isoflavones, and breast cancer. Cancer, 2017, 123(11), 1901-1903. doi: 10.1002/cncr.30614 PMID: 28263364
  156. Bouker, K.B.; Hilakivi-Clarke, L. Genistein: does it prevent or promote breast cancer? Environ. Health Perspect., 2000, 108(8), 701-708. doi: 10.1289/ehp.00108701 PMID: 10964789
  157. Zhang, F.F.; Haslam, D.E.; Terry, M.B.; Knight, J.A.; Andrulis, I.L.; Daly, M.B.; Buys, S.S.; John, E.M. Dietary isoflavone intake and all-cause mortality in breast cancer survivors: The Breast Cancer Family Registry. Cancer, 2017, 123(11), 2070-2079. doi: 10.1002/cncr.30615 PMID: 28263368
  158. Chen, W.F.; Huang, M.H.; Tzang, C.H.; Yang, M.; Wong, M.S. Inhibitory actions of genistein in human breast cancer (MCF-7) cells. Biochim. Biophys. Acta Mol. Basis Dis., 2003, 1638(2), 187-196. doi: 10.1016/S0925-4439(03)00082-6
  159. Li, Y.; Upadhyay, S.; Bhuiyan, M.; Sarkar, F.H. Induction of apoptosis in breast cancer cells MDA-MB-231 by genistein. Oncogene, 1999, 18(20), 3166-3172. doi: 10.1038/sj.onc.1202650 PMID: 10340389
  160. Yang, S.; Zhou, Q.; Yang, X. Caspase-3 status is a determinant of the differential responses to genistein between MDA-MB-231 and MCF-7 breast cancer cells. Biochim. Biophys. Acta Mol. Cell Res., 2007, 1773(6), 903-911. doi: 10.1016/j.bbamcr.2007.03.021 PMID: 17490757
  161. Shim, H.Y.; Park, J.H.; Paik, H.D.; Nah, S.Y.; Kim, D.S.H.L.; Han, Y.S. Genistein-induced apoptosis of human breast cancer MCF-7 cells involves calpain–caspase and apoptosis signaling kinase 1–p38 mitogen-activated protein kinase activation cascades. Anticancer Drugs, 2007, 18(6), 649-657. doi: 10.1097/CAD.0b013e3280825573 PMID: 17762393
  162. Sergeev, I.N. Genistein induces Ca2+-mediated, calpain/caspase-12-dependent apoptosis in breast cancer cells. Biochem. Biophys. Res. Commun., 2004, 321(2), 462-467. doi: 10.1016/j.bbrc.2004.06.173 PMID: 15358198
  163. Chen, J.; Duan, Y.; Zhang, X.; Ye, Y.; Ge, B.; Chen, J. Genistein induces apoptosis by the inactivation of the IGF-1R/p-Akt signaling pathway in MCF-7 human breast cancer cells. Food Funct., 2015, 6(3), 995-1000. doi: 10.1039/C4FO01141D PMID: 25675448
  164. Liu, X.; Sun, C.; Jin, X.; Li, P.; Ye, F.; Zhao, T.; Gong, L.; Li, Q. Genistein enhances the radiosensitivity of breast cancer cells via G₂/M cell cycle arrest and apoptosis. Molecules, 2013, 18(11), 13200-13217. doi: 10.3390/molecules181113200 PMID: 24284485
  165. Li, Y.; Chen, H.; Hardy, T.M.; Tollefsbol, T.O. Epigenetic regulation of multiple tumor-related genes leads to suppression of breast tumorigenesis by dietary genistein. PLoS One, 2013, 8(1), e54369. doi: 10.1371/journal.pone.0054369 PMID: 23342141
  166. Li, Y.; Meeran, S.M.; Patel, S.N.; Chen, H.; Hardy, T.M.; Tollefsbol, T.O. Epigenetic reactivation of estrogen receptor-α (ERα) by genistein enhances hormonal therapy sensitivity in ERα-negative breast cancer. Mol. Cancer, 2013, 12(1), 9. doi: 10.1186/1476-4598-12-9 PMID: 24063558
  167. Xie, Q.; Bai, Q.; Zou, L.Y.; Zhang, Q.Y.; Zhou, Y.; Chang, H.; Yi, L.; Zhu, J.D.; Mi, M.T. Genistein inhibits DNA methylation and increases expression of tumor suppressor genes in human breast cancer cells. Genes Chromosomes Cancer, 2014, 53(5), 422-431. doi: 10.1002/gcc.22154 PMID: 24532317
  168. Vissac-Sabatier, C.; Bignon, Y.J.; Bernard-Gallon, D.J. Effects of the phytoestrogens genistein and daidzein on BRCA2 tumor suppressor gene expression in breast cell lines. Nutr. Cancer, 2003, 45(2), 247-255. doi: 10.1207/S15327914NC4502_15 PMID: 12881020
  169. Tominaga, Y.; Wang, A.; Wang, R-H.; Wang, X.; Cao, L.; Deng, C-X. Genistein inhibits Brca1 mutant tumor growth through activation of DNA damage checkpoints, cell cycle arrest, and mitotic catastrophe. Cell Death Differ., 2007, 14(3), 472-479. doi: 10.1038/sj.cdd.4402037 PMID: 17024228
  170. Yang, Z; Kulkarni, K; Zhu, W; Hu, M Bioavailability and pharmacokinetics of genistein: Mechanistic studies on its ADME. Anticancer Agents Med. Chem., 2012, 12(10), 1264-1280. doi: 10.2174/187152012803833107
  171. Lu, Y.; Li, W.; Yang, X. Soybean soluble polysaccharide enhances absorption of soybean genistein in mice. Food Res. Int., 2018, 103, 273-279. doi: 10.1016/j.foodres.2017.10.054 PMID: 29389615
  172. Wang, Y.; Yu, J.; Cui, R.; Lin, J.; Ding, X. Curcumin in treating breast cancer: A review. SLAS Technol., 2016, 21(6), 723-731. doi: 10.1177/2211068216655524 PMID: 27325106
  173. Choudhuri, T.; Pal, S.; Agwarwal, M.L.; Das, T.; Sa, G. Curcumin induces apoptosis in human breast cancer cells through p53‐dependent Bax induction. FEBS Lett., 2002, 512(1-3), 334-340. doi: 10.1016/S0014-5793(02)02292-5 PMID: 11852106
  174. Liu, Q.; Loo, W.T.Y.; Sze, S.C.W.; Tong, Y. Curcumin inhibits cell proliferation of MDA-MB-231 and BT-483 breast cancer cells mediated by down-regulation of NFκB, cyclinD and MMP-1 transcription. Phytomedicine, 2009, 16(10), 916-922. doi: 10.1016/j.phymed.2009.04.008 PMID: 19524420
  175. Zong, H.; Wang, F.; Fan, Q.; Wang, L. Curcumin inhibits metastatic progression of breast cancer cell through suppression of urokinase-type plasminogen activator by NF-kappa B signaling pathways. Mol. Biol. Rep., 2012, 39(4), 4803-4808. doi: 10.1007/s11033-011-1273-5 PMID: 21947854
  176. Bachmeier, B.E.; Mohrenz, I.V.; Mirisola, V.; Schleicher, E.; Romeo, F.; Höhneke, C.; Jochum, M.; Nerlich, A.G.; Pfeffer, U. Curcumin downregulates the inflammatory cytokines CXCL1 and -2 in breast cancer cells via NFκB. Carcinogenesis, 2008, 29(4), 779-789. doi: 10.1093/carcin/bgm248 PMID: 17999991
  177. Lin, M.T.; Chang, C.C.; Chen, S.T.; Chang, H.L.; Su, J.L.; Chau, Y.P.; Kuo, M.L. Cyr61 expression confers resistance to apoptosis in breast cancer MCF-7 cells by a mechanism of NF-kappaB-dependent XIAP up-regulation. J. Biol. Chem., 2004, 279(23), 24015-24023. doi: 10.1074/jbc.M402305200 PMID: 15044484
  178. Kakarala, M.; Brenner, D.E.; Korkaya, H.; Cheng, C.; Tazi, K.; Ginestier, C.; Liu, S.; Dontu, G.; Wicha, M.S. Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res. Treat., 2010, 122(3), 777-785. doi: 10.1007/s10549-009-0612-x PMID: 19898931
  179. Lindvall, C.; Bu, W.; Williams, B.O.; Li, Y. Wnt signaling, stem cells, and the cellular origin of breast cancer. Stem Cell Rev., 2007, 3(2), 157-168. doi: 10.1007/s12015-007-0025-3 PMID: 17873348
  180. Liu, S.; Dontu, G.; Wicha, M.S. Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res., 2005, 7(3), 86-95. doi: 10.1186/bcr1021 PMID: 15987436
  181. Chen, Y.; Shu, W.; Chen, W.; Wu, Q.; Liu, H.; Cui, G. Curcumin, both histone deacetylase and p300/CBP-specific inhibitor, represses the activity of nuclear factor kappa B and Notch 1 in Raji cells. Basic Clin. Pharmacol. Toxicol., 2007, 101(6), 427-433. doi: 10.1111/j.1742-7843.2007.00142.x PMID: 17927689
  182. Yang, J.; Cao, Y.; Sun, J.; Zhang, Y. Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells. Med. Oncol., 2010, 27(4), 1114-1118. doi: 10.1007/s12032-009-9344-3 PMID: 19908170
  183. Aggarwal, B.B.; Shishodia, S.; Takada, Y.; Banerjee, S.; Newman, R.A.; Bueso-Ramos, C.E.; Price, J.E. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin. Cancer Res., 2005, 11(20), 7490-7498. doi: 10.1158/1078-0432.CCR-05-1192 PMID: 16243823
  184. Labbozzetta, M.; Notarbartolo, M.; Poma, P.; Maurici, A.; Inguglia, L.; Marchetti, P.; Rizzi, M.; Baruchello, R.; Simoni, D.; D’Alessandro, N. Curcumin as a possible lead compound against hormone-independent, multidrug-resistant breast cancer. Ann. N. Y. Acad. Sci., 2009, 1155(1), 278-283. doi: 10.1111/j.1749-6632.2009.03699.x PMID: 19250217
  185. Limtrakul, P.; Chearwae, W.; Shukla, S.; Phisalphong, C.; Ambudkar, S.V. Modulation of function of three ABC drug transporters, P-glycoprotein (ABCB1), mitoxantrone resistance protein (ABCG2) and multidrug resistance protein 1 (ABCC1) by tetrahydrocurcumin, a major metabolite of curcumin. Mol. Cell. Biochem., 2007, 296(1-2), 85-95. doi: 10.1007/s11010-006-9302-8 PMID: 16960658
  186. Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: problems and promises. Mol. Pharm., 2007, 4(6), 807-818. doi: 10.1021/mp700113r PMID: 17999464
  187. Xue, J.P.; Wang, G.; Zhao, Z.B.; Wang, Q.; Shi, Y. Synergistic cytotoxic effect of genistein and doxorubicin on drug-resistant human breast cancer MCF-7/Adr cells. Oncol. Rep., 2014, 32(4), 1647-1653. doi: 10.3892/or.2014.3365 PMID: 25109508
  188. Charalambous, C.; Pitta, C.A.; Constantinou, A.I. Equol enhances tamoxifen’s anti-tumor activity by induction of caspase-mediated apoptosis in MCF-7 breast cancer cells. BMC Cancer, 2013, 13(1), 238. doi: 10.1186/1471-2407-13-238 PMID: 23675643
  189. González-Vallinas, M.; Molina, S.; Vicente, G.; Sánchez-Martínez, R.; Vargas, T.; García-Risco, M.R.; Fornari, T.; Reglero, G.; Ramírez de Molina, A. Modulation of estrogen and epidermal growth factor receptors by rosemary extract in breast cancer cells. Electrophoresis, 2014, 35(11), 1719-1727. doi: 10.1002/elps.201400011 PMID: 24615943
  190. McGuire, K.P.; Ngoubilly, N.; Neavyn, M.; Lanza-Jacoby, S. 3,3′-diindolylmethane and paclitaxel act synergistically to promote apoptosis in HER2/Neu human breast cancer cells. J. Surg. Res., 2006, 132(2), 208-213. doi: 10.1016/j.jss.2006.02.008 PMID: 16580691
  191. Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726. doi: 10.1038/nrc3599 PMID: 24060863
  192. Kars, M.D.; Işeri, Ö.D.; Gündüz, U.; Ural, A.U.; Arpaci, F.; Molnár, J. Development of rational in vitro models for drug resistance in breast cancer and modulation of MDR by selected compounds. Anticancer Res., 2006, 26(6B), 4559-4568. PMID: 17201178
  193. Xu, H.B.; Li, L.; Fu, J.; Mao, X.P.; Xu, L.Z. Reversion of multidrug resistance in a chemoresistant human breast cancer cell line by β-elemene. Pharmacology, 2012, 89(5-6), 303-312. doi: 10.1159/000337178 PMID: 22573000
  194. Cridge, B.J.; Larsen, L.; Rosengren, R.J. Curcumin and its derivatives in breast cancer: Current developments and potential for the treatment of drug-resistant cancers. Oncol. Discov., 2013, 1(1), 6. doi: 10.7243/2052-6199-1-6
  195. El-Kersh, D.M.; Ezzat, S.M.; Salama, M.M.; Mahrous, E.A.; Attia, Y.M.; Ahmed, M.S.; Elmazar, M.M. Anti-estrogenic and anti-aromatase activities of citrus peels major compounds in breast cancer. Sci. Rep., 2021, 11(1), 7121. doi: 10.1038/s41598-021-86599-z PMID: 3378254
  196. Braicu, C.; Gherman, C.D.; Irimie, A.; Berindan-Neagoe, I. Epigallocatechin-3-Gallate (EGCG) inhibits cell proliferation and migratory behaviour of triple negative breast cancer cells. J. Nanosci. Nanotechnol., 2013, 13(1), 632-637. doi: 10.1166/jnn.2013.6882 PMID: 236467886
  197. Gobbi, S.; Martini, S.; Rozza, R.; Spinello, A.; Caciolla, J.; Rampa, A.; Belluti, F.; Zaffaroni, N.; Magistrato, A.; Bisi, A. Switching from aromatase inhibitors to dual targeting flavonoid-based compounds for breast cancer treatment. Molecules, 2023, 28(7), 3047. doi: 10.3390/molecules28073047 PMID: 37049810
  198. Khandelwal, V.; Choudhary, P.K. Immunomodulating potential of Neolamarckia cadamba (Roxb.) Bark extract. J. Pure Appl. Microbiol., 2020, 14(1), 641-646. doi: 10.22207/JPAM.14.1.66
  199. Gurjar, M.K.; Jat, B.L.; Choudhary, P.; Kumar, V. Bioefficacy of newer insecticides and botanicals against red pumpkin beetle Raphidopalpa foveicollis (Lucas) on bottle gourd, Lagenaria siceraria (Molina) Stand. J. Entomol. Res., 2022, 46(3), 570-575. doi: 10.5958/0974-4576.2022.00099.8
  200. Gurjar, M.K.; Jat, B.L.; Choudhary, P.; Nayak, R.K. Screening of bottle gourd genotypes/varieties for resistance against red pumpkin beetle Raphidopalpa foveicollis (Lucas) in semi-arid region of Rajasthan. Indian J. Ecol., 2022, 49(5), 1773-1781.
  201. Goel, A; Bhatia, AK. Ocimum sanctum: in vitro antiviral potential against animal viruses. IJTK, 21(1), 120-125.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024