Identification of Molecular Correlations of GSDMD with Pyroptosis in Alzheimer's Disease
- Authors: Song T.1, Chen Y.2, Li C.2, Yao Y.2, Ma S.2, Shang Y.2, Cheng J.2
-
Affiliations:
- Institute of Traditional Chinese Medicine, Chengde Medical College
- Institute of Traditional Chinese Medicine, Chengde Medical University
- Issue: Vol 27, No 14 (2024)
- Pages: 2125-2139
- Section: Chemistry
- URL: https://kazanmedjournal.ru/1386-2073/article/view/644161
- DOI: https://doi.org/10.2174/0113862073285497240226061936
- ID: 644161
Cite item
Full Text
Abstract
Aim:An analysis of bioinformatics and cell experiments was performed to verify the relationship between gasdermin D (GSDMD), an executive protein of pyroptosis, and Alzheimer's disease (AD).
Methods:The training set GSE33000 was utilized to identify differentially expressed genes (DEGs) in both the AD group and control group, as well as in the GSDMD protein high/low expression group. Subsequently, the weighted gene co-expression network analysis (WGCNA) and the least absolute shrinkage and selection operator (LASSO) regression analysis were conducted, followed by the selection of the key genes for the subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The association between GSDMD and AD was assessed and confirmed in the training set GSE33000, as well as in the validation sets GSE5281 and GSE48350. Immunofluorescence (IF) was employed to detect the myelin basic protein (MBP), a distinctive protein found in the rat oligodendrocytes (OLN-93 cells). A range of concentrations (1-15 µmol/L) of β-amyloid 1-42 (Aβ1-42) were exposed to the cells, and the subsequent observations were made regarding cell morphology. Additionally, the assessments were conducted to evaluate the cell viability, the lactate dehydrogenase (LDH) release, the cell membrane permeability, and the GSDMD protein expression.
Results:A total of 7,492 DEGs were screened using GSE33000. Subsequently, WGCNA analysis identified 19 genes that exhibited the strongest correlation with clinical traits in AD. Additionally, LASSO regression analysis identified 13 key genes, including GSDMD, AFF1, and ATOH8. Furthermore, the investigation revealed that the key genes were associated with cellular inflammation based on GO and KEGG analyses. Moreover, the area under the curve (AUC) values for the key genes in the training and validation sets were determined to be 0.95 and 0.70, respectively. Significantly, GSDMD demonstrated elevated levels of expression in AD across both datasets. The positivity of MBP expression in cells exceeded 95%. As the concentration of Aβ1-42 action gradually escalated, the detrimental effects on cells progressively intensified, resulting in a gradual decline in cell survival rate, accompanied by an increase in lactate dehydrogenase release, cell membrane permeability, and GSDMD protein expression.
Conclusion:The association between GSDMD and AD has been observed, and it has been found that Aβ1-42 can induce a significant upregulation of GSDMD in OLN-93 cells. This suggests that Aβ1-42 has the potential to induce cellular pyroptosis and can serve as a valuable cellular pyroptosis model for the study of AD.
About the authors
Tangtang Song
Institute of Traditional Chinese Medicine, Chengde Medical College
Email: info@benthamscience.net
Yan Chen
Institute of Traditional Chinese Medicine, Chengde Medical University
Email: info@benthamscience.net
Chen Li
Institute of Traditional Chinese Medicine, Chengde Medical University
Email: info@benthamscience.net
Yinhui Yao
Institute of Traditional Chinese Medicine, Chengde Medical University
Email: info@benthamscience.net
Shuai Ma
Institute of Traditional Chinese Medicine, Chengde Medical University
Email: info@benthamscience.net
Yazhen Shang
Institute of Traditional Chinese Medicine, Chengde Medical University
Author for correspondence.
Email: info@benthamscience.net
Jianjun Cheng
Institute of Traditional Chinese Medicine, Chengde Medical University
Email: info@benthamscience.net
References
- Alzheimers disease facts and figures. Alzheimers Dement., 2023, 19(4), 1598-1695. doi: 10.1002/alz.13016 PMID: 36918389
- Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimers disease. Lancet, 2021, 397(10284), 1577-1590. doi: 10.1016/S0140-6736(20)32205-4 PMID: 33667416
- Soria Lopez, J.A.; González, H.M.; Léger, G.C. Alzheimers disease. Handb. Clin. Neurol., 2019, 167, 231-255. doi: 10.1016/B978-0-12-804766-8.00013-3 PMID: 31753135
- Self, W.K.; Holtzman, D.M. Emerging diagnostics and therapeutics for Alzheimer disease. Nat. Med., 2023, 29(9), 2187-2199. doi: 10.1038/s41591-023-02505-2 PMID: 37667136
- Zhang, Y.; Chen, H.; Li, R.; Sterling, K.; Song, W. Amyloid β-based therapy for Alzheimers disease: Challenges, successes and future. Signal Transduct. Target. Ther., 2023, 8(1), 248. doi: 10.1038/s41392-023-01484-7 PMID: 37386015
- Tatulian, S.A. Challenges and hopes for Alzheimers disease. Drug Discov. Today, 2022, 27(4), 1027-1043. doi: 10.1016/j.drudis.2022.01.016 PMID: 35121174
- Ossenkoppele, R.; van der Kant, R.; Hansson, O. Tau biomarkers in Alzheimers disease: Towards implementation in clinical practice and trials. Lancet Neurol., 2022, 21(8), 726-734. doi: 10.1016/S1474-4422(22)00168-5 PMID: 35643092
- Yadollahikhales, G.; Rojas, J.C. Anti-amyloid immunotherapies for Alzheimers disease: A 2023 clinical update. Neurotherapeutics, 2023, 20(4), 914-931. doi: 10.1007/s13311-023-01405-0 PMID: 37490245
- Wang, S.S.; Zhang, Z.; Zhu, T.B.; Chu, S.F.; He, W.B.; Chen, N.H. Myelin injury in the central nervous system and Alzheimers disease. Brain Res. Bull., 2018, 140, 162-168. doi: 10.1016/j.brainresbull.2018.05.003 PMID: 29730417
- Papuć, E.; Rejdak, K. The role of myelin damage in Alzheimers disease pathology. Arch. Med. Sci., 2020, 16(2), 345-341. doi: 10.5114/aoms.2018.76863 PMID: 32190145
- Nasrabady, S.E.; Rizvi, B.; Goldman, J.E.; Brickman, A.M. White matter changes in Alzheimers disease: A focus on myelin and oligodendrocytes. Acta Neuropathol. Commun., 2018, 6(1), 22. doi: 10.1186/s40478-018-0515-3 PMID: 29499767
- Hirschfeld, L.R.; Risacher, S.L.; Nho, K.; Saykin, A.J. Myelin repair in Alzheimers disease: A review of biological pathways and potential therapeutics. Transl. Neurodegener., 2022, 11(1), 47. doi: 10.1186/s40035-022-00321-1 PMID: 36284351
- Wood, H. Myelin damage links brain ageing to amyloid-β deposition. Nat. Rev. Neurol., 2023, 19(8), 457. doi: 10.1038/s41582-023-00843-w PMID: 37336944
- Chen, J.F.; Liu, K.; Hu, B.; Li, R.R.; Xin, W.; Chen, H.; Wang, F.; Chen, L.; Li, R.X.; Ren, S.Y.; Xiao, L.; Chan, J.R.; Mei, F. Enhancing myelin renewal reverses cognitive dysfunction in a murine model of Alzheimers disease. Neuron, 2021, 109(14), 2292-2307.e5. doi: 10.1016/j.neuron.2021.05.012 PMID: 34102111
- Jantaratnotai, N.; Ryu, J.K.; Kim, S.U.; McLarnon, J.G. Amyloid β peptide-induced corpus callosum damage and glial activation in vivo. Neuroreport, 2003, 14(11), 1429-1433. doi: 10.1097/00001756-200308060-00005 PMID: 12960758
- Schmued, L.C.; Raymick, J.; Paule, M.G.; Dumas, M.; Sarkar, S. Characterization of myelin pathology in the hippocampal complex of a transgenic mouse model of Alzheimers disease. Curr. Alzheimer Res., 2013, 10(1), 30-37. doi: 10.2174/1567205011310010005 PMID: 23157338
- Depp, C.; Sun, T.; Sasmita, A.O.; Spieth, L.; Berghoff, S.A.; Nazarenko, T.; Overhoff, K.; Steixner-Kumar, A.A.; Subramanian, S.; Arinrad, S.; Ruhwedel, T.; Möbius, W.; Göbbels, S.; Saher, G.; Werner, H.B.; Damkou, A.; Zampar, S.; Wirths, O.; Thalmann, M.; Simons, M.; Saito, T.; Saido, T.; Krueger-Burg, D.; Kawaguchi, R.; Willem, M.; Haass, C.; Geschwind, D.; Ehrenreich, H.; Stassart, R.; Nave, K.A. Myelin dysfunction drives amyloid-β deposition in models of Alzheimers disease. Nature, 2023, 618(7964), 349-357. doi: 10.1038/s41586-023-06120-6 PMID: 37258678
- Kuhn, S.; Gritti, L.; Crooks, D.; Dombrowski, Y. Oligodendrocytes in development, myelin generation and beyond. Cells, 2019, 8(11), 1424. doi: 10.3390/cells8111424 PMID: 31726662
- Elbaz, B.; Popko, B. Molecular control of oligodendrocyte development. Trends Neurosci., 2019, 42(4), 263-277. doi: 10.1016/j.tins.2019.01.002 PMID: 30770136
- Bolino, A. Myelin biology. Neurotherapeutics, 2021, 18(4), 2169-2184. doi: 10.1007/s13311-021-01083-w
- Nave, K.A.; Werner, H.B. Myelination of the nervous system: Mechanisms and functions. Annu. Rev. Cell Dev. Biol., 2014, 30(1), 503-533. doi: 10.1146/annurev-cellbio-100913-013101 PMID: 25288117
- Xin, W.; Chan, J.R. Myelin plasticity: Sculpting circuits in learning and memory. Nat. Rev. Neurosci., 2020, 21(12), 682-694. doi: 10.1038/s41583-020-00379-8 PMID: 33046886
- Bamm, V.V.; Ahmed, M.A.M.; Ladizhansky, V.; Harauz, G. Purification and spectroscopic characterization of the recombinant BG21 isoform of murine golli myelin basic protein. J. Neurosci. Res., 2007, 85(2), 272-284. doi: 10.1002/jnr.21129 PMID: 17131428
- Smith, G.S.T.; Paez, P.M.; Spreuer, V.; Campagnoni, C.W.; Boggs, J.M.; Campagnoni, A.T.; Harauz, G. Classical 18.5-and 21.5-kDa isoforms of myelin basic protein inhibit calcium influx into oligodendroglial cells, in contrast to golli isoforms. J. Neurosci. Res., 2011, 89(4), 467-480. doi: 10.1002/jnr.22570 PMID: 21312222
- Zhan, H.; Cheng, L.; Wang, X.; Jin, H.; Liu, Y.; Li, H.; Liu, D.; Zhang, X.; Zheng, W.; Hao, H.; Li, Y. Myelin basic protein and index for neuro-Behçets disease. Clin. Immunol., 2023, 250, 109286. doi: 10.1016/j.clim.2023.109286 PMID: 36907539
- Liu, B.; Xin, W.; Tan, J.R.; Zhu, R.P.; Li, T.; Wang, D.; Kan, S.S.; Xiong, D.K.; Li, H.H.; Zhang, M.M.; Sun, H.H.; Wagstaff, W.; Zhou, C.; Wang, Z.J.; Zhang, Y.G.; He, T.C. Myelin sheath structure and regeneration in peripheral nerve injury repair. Proc. Natl. Acad. Sci. , 2019, 116(44), 22347-22352. doi: 10.1073/pnas.1910292116 PMID: 31611410
- Shi, J.; Zhao, Y.; Wang, Y.; Gao, W.; Ding, J.; Li, P.; Hu, L.; Shao, F. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature, 2014, 514(7521), 187-192. doi: 10.1038/nature13683 PMID: 25119034
- Shi, J.; Zhao, Y.; Wang, K.; Shi, X.; Wang, Y.; Huang, H.; Zhuang, Y.; Cai, T.; Wang, F.; Shao, F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 2015, 526(7575), 660-665. doi: 10.1038/nature15514 PMID: 26375003
- Rao, Z.; Zhu, Y.; Yang, P.; Chen, Z.; Xia, Y.; Qiao, C.; Liu, W.; Deng, H.; Li, J.; Ning, P.; Wang, Z. Pyroptosis in inflammatory diseases and cancer. Theranostics, 2022, 12(9), 4310-4329. doi: 10.7150/thno.71086 PMID: 35673561
- Wei, Y.; Yang, L.; Pandeya, A.; Cui, J.; Zhang, Y.; Li, Z. Pyroptosis-induced inflammation and tissue damage. J. Mol. Biol., 2022, 434(4), 167301. doi: 10.1016/j.jmb.2021.167301 PMID: 34653436
- Barnett, K.C.; Li, S.; Liang, K.; Ting, J.P.Y.A. 360° view of the inflammasome: Mechanisms of activation, cell death, and diseases. Cell, 2023, 186(11), 2288-2312. doi: 10.1016/j.cell.2023.04.025 PMID: 37236155
- Halle, A.; Hornung, V.; Petzold, G.C.; Stewart, C.R.; Monks, B.G.; Reinheckel, T.; Fitzgerald, K.A.; Latz, E.; Moore, K.J.; Golenbock, D.T. The NALP3 inflammasomeis involved in the innate immune response to amyloid-beta. Nat. Immun., 2008, 200(9), 857-865. doi: 10.1038/ni.1636
- Heneka, M.T.; Kummer, M.P.; Stutz, A.; Delekate, A.; Schwartz, S.; Vieira-Saecker, A.; Griep, A.; Axt, D.; Remus, A.; Tzeng, T.C.; Gelpi, E.; Halle, A.; Korte, M.; Latz, E.; Golenbock, D.T. NLRP3 is activated in Alzheimers disease and contributes to pathology in APP/PS1 mice. Nature, 2013, 493(7434), 674-678. doi: 10.1038/nature11729 PMID: 23254930
- Lee, S.W.; de Rivero Vaccari, J.P.; Truettner, J.S.; Dietrich, W.D.; Keane, R.W. The role of microglial inflammasome activation in pyroptotic cell death following penetrating traumatic brain injury. J. Neuroinflammation, 2019, 16(1), 27. doi: 10.1186/s12974-019-1423-6 PMID: 30736791
- Rui, W.; Xiao, H.; Fan, Y.; Ma, Z.; Xiao, M.; Li, S.; Shi, J. Systemic inflammasome activation and pyroptosis associate with the progression of amnestic mild cognitive impairment and Alzheimers disease. J. Neuroinflammation, 2021, 18(1), 280. doi: 10.1186/s12974-021-02329-2 PMID: 34856990
- Shen, H.; Han, C.; Yang, Y.; Guo, L.; Sheng, Y.; Wang, J.; Li, W.; Zhai, L.; Wang, G.; Guan, Q. Pyroptosis executive protein GSDMD as a biomarker for diagnosis and identification of Alzheimers disease. Brain Behav., 2021, 11(4), e02063. doi: 10.1002/brb3.2063 PMID: 33587329
- Xue, W.; Cui, D.; Qiu, Y. Research progress of pyroptosis in Alzheimers disease. Front. Mol. Neurosci., 2022, 15, 872471. doi: 10.3389/fnmol.2022.872471 PMID: 35782390
- Wu, K.; Wang, W.; Cheng, Q.; Li, H.; Yan, W.; Zhou, F.; Zhang, R. Pyroptosis in neurodegenerative diseases: From bench to bedside. Cell Biol. Toxicol., 2023, 39(6), 2467-2499. doi: 10.1007/s10565-023-09820-x PMID: 37491594
- Li, Y.; Xu, P.; Shan, J.; Sun, W.; Ji, X.; Chi, T.; Liu, P.; Zou, L. Interaction between hyperphosphorylated tau and pyroptosis in forskolin and streptozotocin induced AD models. Biomed. Pharmacother., 2020, 121(121), 109618. doi: 10.1016/j.biopha.2019.109618 PMID: 31731189
- Ju, Y.; Zhao, L.; Li, S.; Zhao, Q. The role of pyroptosis in Alzheimers disease. J. Integr. Neurosci., 2023, 22(5), 129. doi: 10.31083/j.jin2205129 PMID: 37735117
- Tan, M-S.; Tan, L.; Jiang, T.; Zhu, X-C.; Wang, H-F.; Jia, C-D.; Yu, J-T. Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimers disease. Cell Death Dis., 2014, 5(8), e1382. doi: 10.1038/cddis.2014.348 PMID: 25144717
- Zhao, Y.; Tian, Y.; Feng, T. Sodium houttuyfonate ameliorates β-amyloid1-42-induced memory impairment and neuroinflammation through inhibiting the NLRP3/GSDMD pathway in Alzheimers disease. Mediators Inflamm., 2021, 2021, 1-11. doi: 10.1155/2021/8817698 PMID: 34188608
- Han, C.; Yang, Y.; Guan, Q.; Zhang, X.; Shen, H.; Sheng, Y.; Wang, J.; Zhou, X.; Li, W.; Guo, L.; Jiao, Q. New mechanism of nerve injury in Alzheimers disease: β-amyloid-induced neuronal pyroptosis. J. Cell. Mol. Med., 2020, 24(14), 8078-8090. doi: 10.1111/jcmm.15439 PMID: 32521573
- Moonen, S.; Koper, M.J.; Van Schoor, E.; Schaeverbeke, J.M.; Vandenberghe, R.; von Arnim, C.A.F.; Tousseyn, T.; De Strooper, B.; Thal, D.R. Pyroptosis in Alzheimers disease: Cell type-specific activation in microglia, astrocytes and neurons. Acta Neuropathol., 2023, 145(2), 175-195. doi: 10.1007/s00401-022-02528-y PMID: 36481964
- Bai, Y.; Liu, D.; Zhang, H.; Wang, Y.; Wang, D.; Cai, H.; Wen, H.; Yuan, G.; An, H.; Wang, Y.; Shi, T.; Wang, Z. N-salicyloyl tryptamine derivatives as potential therapeutic agents for Alzheimers disease with neuroprotective effects. Bioorg. Chem., 2021, 115, 105255. doi: 10.1016/j.bioorg.2021.105255 PMID: 34435574
- Chen, H.; Zhao, J.; Hu, J.; Xiao, X.; Shi, W.; Yao, Y.; Wang, Y. Identification of diagnostic biomarkers, immune infiltration characteristics, and potential compounds in rheumatoid arthritis. BioMed Res. Int., 2022, 2022, 1-15. doi: 10.1155/2022/1926661 PMID: 35434133
- Yao, Y.; Zhao, J.; Zhou, X.; Hu, J.; Wang, Y. Potential role of a three-gene signature in predicting diagnosis in patients with myocardial infarction. Bioengineered, 2021, 12(1), 2734-2749. doi: 10.1080/21655979.2021.1938498 PMID: 34130601
- OConnor, L.M.; OConnor, B.A.; Zeng, J.; Lo, C.H. Data mining of microarray datasets in translational neuroscience. Brain Sci., 2023, 13(9), 1318. doi: 10.3390/brainsci13091318 PMID: 37759919
- Wang, Z.; Lachmann, A.; Maayan, A. Mining data and metadata from the gene expression omnibus. Biophys. Rev., 2019, 11(1), 103-110. doi: 10.1007/s12551-018-0490-8 PMID: 30594974
- OConnor, L.M.; OConnor, B.A.; Lim, S.B.; Zeng, J.; Lo, C.H. Integrative multi-omics and systems bioinformatics in translational neuroscience: A data mining perspective. J. Pharm. Anal., 2023, 13(8), 836-850. doi: 10.1016/j.jpha.2023.06.011 PMID: 37719197
- Narayanan, M.; Huynh, J.L.; Wang, K.; Yang, X.; Yoo, S.; McElwee, J.; Zhang, B.; Zhang, C.; Lamb, J.R.; Xie, T.; Suver, C.; Molony, C.; Melquist, S.; Johnson, A.D.; Fan, G.; Stone, D.J.; Schadt, E.E.; Casaccia, P.; Emilsson, V.; Zhu, J. Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative diseases. Mol. Syst. Biol., 2014, 10(7), 743. doi: 10.15252/msb.20145304 PMID: 25080494
- Liang, W.S.; Dunckley, T.; Beach, T.G.; Grover, A.; Mastroeni, D.; Walker, D.G.; Caselli, R.J.; Kukull, W.A.; McKeel, D.; Morris, J.C.; Hulette, C.; Schmechel, D.; Alexander, G.E.; Reiman, E.M.; Rogers, J.; Stephan, D.A. Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain. Physiol. Genomics, 2007, 28(3), 311-322. doi: 10.1152/physiolgenomics.00208.2006 PMID: 17077275
- Berchtold, N.C.; Coleman, P.D.; Cribbs, D.H.; Rogers, J.; Gillen, D.L.; Cotman, C.W. Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimers disease. Neurobiol. Aging, 2013, 34(6), 1653-1661. doi: 10.1016/j.neurobiolaging.2012.11.024 PMID: 23273601
- Hübner, S.; Sunny, D.E.; Pöhlke, C.; Ruhnau, J.; Vogelgesang, A.; Reich, B.; Heckmann, M. Protective effects of fetal zone steroids are comparable to estradiol in hyperoxiainduced cell death of immature glia. Endocrinology, 2017, 158(5), 1419-1435. doi: 10.1210/en.2016-1763 PMID: 28323976
- Kayagaki, N.; Stowe, I.B.; Lee, B.L.; ORourke, K.; Anderson, K.; Warming, S.; Cuellar, T.; Haley, B.; Roose-Girma, M.; Phung, Q.T.; Liu, P.S.; Lill, J.R.; Li, H.; Wu, J.; Kummerfeld, S.; Zhang, J.; Lee, W.P.; Snipas, S.J.; Salvesen, G.S.; Morris, L.X.; Fitzgerald, L.; Zhang, Y.; Bertram, E.M.; Goodnow, C.C.; Dixit, V.M. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature, 2015, 526(7575), 666-671. doi: 10.1038/nature15541 PMID: 26375259
- He, W.; Wan, H.; Hu, L.; Chen, P.; Wang, X.; Huang, Z.; Yang, Z.H.; Zhong, C.Q.; Han, J. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res., 2015, 25(12), 1285-1298. doi: 10.1038/cr.2015.139 PMID: 26611636
- Li, S.; Sun, Y.; Song, M.; Song, Y.; Fang, Y.; Zhang, Q.; Li, X.; Song, N.; Ding, J.; Lu, M.; Hu, G. NLRP3/caspase-1/GSDMDmediated pyroptosis exerts a crucial role in astrocyte pathological injury in mouse model of depression. JCI Insight, 2021, 6(23), e146852. doi: 10.1172/jci.insight.146852 PMID: 34877938
- Li, Z.; Ji, S.; Jiang, M.L.; Xu, Y.; Zhang, C.J. The regulation and modification of GSDMD signaling in diseases. Front. Immunol., 2022, 13, 893912. doi: 10.3389/fimmu.2022.893912 PMID: 35774778
- Shao, R.; Lou, X.; Xue, J.; Ning, D.; Chen, G.; Jiang, L. Review: The role of GSDMD in sepsis. Inflamm. Res., 2022, 71(10-11), 1191-1202. doi: 10.1007/s00011-022-01624-9 PMID: 35969260
- Hong, W.; Hu, C.; Wang, C.; Zhu, B.; Tian, M.; Qin, H. Effects of amyloid β (Aβ)42 and Gasdermin D on the progression of Alzheimers disease in vitro and in vivo through the regulation of astrocyte pyroptosis. Aging , 2023, 15(21), 12209-12224. doi: 10.18632/aging.205174 PMID: 37921870
- Weindel, C.G.; Martinez, E.L.; Zhao, X.; Mabry, C.J.; Bell, S.L.; Vail, K.J.; Coleman, A.K.; VanPortfliet, J.J.; Zhao, B.; Wagner, A.R.; Azam, S.; Scott, H.M.; Li, P.; West, A.P.; Karpac, J.; Patrick, K.L.; Watson, R.O. Mitochondrial ROS promotes susceptibility to infection via gasdermin D-mediated necroptosis. Cell, 2022, 185(17), 3214-3231.e23. doi: 10.1016/j.cell.2022.06.038 PMID: 35907404
- Kepp, K.P.; Robakis, N.K.; Høilund-Carlsen, P.F.; Sensi, S.L.; Vissel, B. The amyloid cascade hypothesis: An updated critical review. Brain, 2023, 146(10), 3969-3990. doi: 10.1093/brain/awad159 PMID: 37183523
- Fedele, E. Anti-amyloid therapies for Alzheimers disease and the amyloid cascade hypothesis. Int. J. Mol. Sci., 2023, 24(19), 14499. doi: 10.3390/ijms241914499 PMID: 37833948
- Itoh, S.G.; Yagi-Utsumi, M.; Kato, K.; Okumura, H. Key residue for aggregation of Amyloid-β peptides. ACS Chem. Neurosci., 2022, 13(22), 3139-3151. doi: 10.1021/acschemneuro.2c00358 PMID: 36302506
- Siddiqi, M.K.; Malik, S.; Majid, N.; Alam, P.; Khan, R.H. Cytotoxic species in amyloid-associated diseases: Oligomers or mature fibrils. Adv. Protein Chem. Struct. Biol., 2019, 118, 333-369. doi: 10.1016/bs.apcsb.2019.06.001 PMID: 31928731
- Seubert, P.; Vigo-Pelfrey, C.; Esch, F.; Lee, M.; Dovey, H.; Davis, D.; Sinha, S.; Schiossmacher, M.; Whaley, J.; Swindlehurst, C.; McCormack, R.; Wolfert, R.; Selkoe, D.; Lieberburg, I.; Schenk, D. Isolation and quantification of soluble Alzheimers β-peptide from biological fluids. Nature, 1992, 359(6393), 325-327. doi: 10.1038/359325a0 PMID: 1406936
- Iwatsubo, T.; Odaka, A.; Suzuki, N.; Mizusawa, H.; Nukina, N.; Ihara, Y. Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: Evidence that an initially deposited species is Aβ42(43). Neuron, 1994, 13(1), 45-53. doi: 10.1016/0896-6273(94)90458-8 PMID: 8043280
- Shulman, D.; Dubnov, S.; Zorbaz, T.; Madrer, N.; Paldor, I.; Bennett, D.A.; Seshadri, S.; Mufson, E.J.; Greenberg, D.S.; Loewenstein, Y.; Soreq, H. Sex-specific declines in cholinergic-targeting tRNA fragments in the nucleus accumbens in Alzheimers disease. Alzheimers Dement., 2023, 19(11), 5159-5172. doi: 10.1002/alz.13095 PMID: 37158312
- Zheng, M.; Liu, Z.; Mana, L.; Qin, G.; Huang, S.; Gong, Z.; Tian, M.; He, Y.; Wang, P. Shenzhiling oral liquid protects the myelin sheath against Alzheimers disease through the PI3K/Akt-mTOR pathway. J. Ethnopharmacol., 2021, 278, 114264. doi: 10.1016/j.jep.2021.114264 PMID: 34082015
- Stockert, J.C.; Horobin, R.W.; Colombo, L.L.; Blázquez-Castro, A. Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem., 2018, 120(3), 159-167. doi: 10.1016/j.acthis.2018.02.005 PMID: 29496266
- Benov, L. Improved formazan dissolution for bacterial MTT assay. Microbiol. Spectr., 2021, 9(3), e01637-e21. doi: 10.1128/spectrum.01637-21 PMID: 34937171
- Parhamifar, L.; Andersen, H.; Moghimi, S.M. Lactate dehydrogenase assay for assessment of polycation cytotoxicity. Methods Mol. Biol., 2019, 1943, 291-299. doi: 10.1007/978-1-4939-9092-4_18 PMID: 30838623
- Chen, X.; He, W.T.; Hu, L.; Li, J.; Fang, Y.; Wang, X.; Xu, X.; Wang, Z.; Huang, K.; Han, J. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res., 2016, 26(9), 1007-1020. doi: 10.1038/cr.2016.100
- Martens, S.; Bridelance, J.; Roelandt, R.; Vandenabeele, P.; Takahashi, N. MLKL in cancer: More than a necroptosis regulator. Cell Death Differ., 2021, 28(6), 1757-1772. doi: 10.1038/s41418-021-00785-0 PMID: 33953348
- Zhan, C.; Huang, M.; Yang, X.; Hou, J. MLKL: Functions beyond serving as the executioner of necroptosis. Theranostics, 2021, 11(10), 4759-4769. doi: 10.7150/thno.54072 PMID: 33754026
- Frank, D.; Vince, J.E. Pyroptosis versus necroptosis: Similarities, differences, and crosstalk. Cell Death Differ., 2019, 26(1), 99-114. doi: 10.1038/s41418-018-0212-6 PMID: 30341423
- Wang, K.; Sun, Q.; Zhong, X.; Zeng, M.; Zeng, H.; Shi, X.; Li, Z.; Wang, Y.; Zhao, Q.; Shao, F.; Ding, J. Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis. Cell, 2020, 180(5), 941-955.e20. doi: 10.1016/j.cell.2020.02.002 PMID: 32109412
- Ding, J.; Wang, K.; Liu, W.; She, Y.; Sun, Q.; Shi, J.; Sun, H.; Wang, D.C.; Shao, F. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature, 2016, 535(7610), 111-116. doi: 10.1038/nature18590 PMID: 27281216
- Asimakidou, E.; Reynolds, R.; Barron, A.M.; Lo, C.H. Autolysosomal acidification impairment as a mediator for TNFR1 induced neuronal necroptosis in Alzheimers disease. Neural Regen. Res., 2024, 19(9), 1869-1870. doi: 10.4103/1673-5374.390979 PMID: 38227498
- Rühl, S.; Shkarina, K.; Demarco, B.; Heilig, R.; Santos, J.C.; Broz, P. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science, 2018, 362(6417), 956-960. doi: 10.1126/science.aar7607 PMID: 30467171
Supplementary files
