The Biological Function of POLA2 in Hepatocellular Carcinoma


Цитировать

Полный текст

Аннотация

Introduction::The role and prognostic value of POLA2 in liver cancer were comprehensively analyzed through TCGA, GEO, and ICGC databases, and the role of POLA2 in liver cancer cells and the regulatory mechanism involved were further verified through cell experiments. Hepatocellular carcinoma (HCC) is the most prevalent malignancy with high morbidity and mortality. Consequently, it is critical to identify robust and reliable predictive biomarkers and therapeutic targets for HCC patients. POLA2 is involved in the regulation of various tumors, but the specific role of POLA2 in HCC has not been reported. The regulatory role and prognostic value of POLA2 in HCC were determined by bioinformatics techniques and cell experiments.

Method::The specific role and prognostic value of POLA2 in HCC were comprehensively analyzed by combining the expression data of POLA2 in TCGA, GEO, and ICGC databases and clinical data. In clinical samples, the expression of POLA2 in liver cancer was verified by QPCR. Further, the regulatory role of POLA2 in HCC was explored through cell experiments such as CCK-8, clonal formation experiment, EDU cell proliferation experiment, and flow cytometry. In terms of mechanism exploration, western blot was used to verify the specific regulatory mechanism that POLA2 participated in. Finally, the relationship between POLA2 and immune invasion of HCC was analyzed by using the TIMER database.

Result::A POLA2 expression and prognosis analysis of HCC patients was conducted using the TCGA, GEO, and ICGC databases. We hypothesized that POLA2 might be one of the key factors contributing to the HCC progression. According to a combined analysis of TCGA, ICGC, and GEO databases, POLA2 was highly expressed in HCC. This was further confirmed in clinical samples using the qPCR. POLA2 knockdown was also performed in vitro on HCC cell lines to study the changes in their biological behavior. We confirmed that POLA2 was associated with HCC proliferation by CCK-8, Colony Formation, and EDU assay. We verified the POLA2's involvement in cell cycle regulation using flow techniques. The relationship between POLA2 and PI3K/AKT/mTOR pathway was explored using Western Blotting experiments regarding its mechanism. Further analysis revealed that the POLA2 expression was significantly associated with HCC immune infiltration.

Conclusion::Our study demonstrated POLA2's importance in HCC development and progression and its potential role as a biomarker for disease progression on multiple levels. POLA2 has an important role in regulating the cell cycle and cell proliferation. By interfering with the cell cycle and proliferation, HCC cell growth is inhibited. Furthermore, POLA2 expression was significantly associated with immune infiltration. POLA2 may play a role in HCC immunotherapy based on its correlation with several immune cell types' genetic markers. The findings of this study are expected to lead to new anticancer strategies for HCC.

Об авторах

Zhen Yang

, Dalian Medical University

Email: info@benthamscience.net

Xingyuan Shen

, Dalian Medical University

Email: info@benthamscience.net

Zhihuai Wang

, Dalian Medical University,

Email: info@benthamscience.net

Renzhi Li

, Dalian Medical University,

Email: info@benthamscience.net

Wenqiang Hou

, Dalian Medical University

Email: info@benthamscience.net

Zengyuan Liu

, Dalian Medical University

Email: info@benthamscience.net

Yuan Gao

Department of General Surgery,, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University,

Email: info@benthamscience.net

Chunfu Zhu

, Dalian Medical University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Xihu Qin

, Dalian Medical University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  2. Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever‐increasing importance of cancer as a leading cause of premature death worldwide. Cancer, 2021, 127(16), 3029-3030. doi: 10.1002/cncr.33587 PMID: 34086348
  3. Suresh, D.; Srinivas, A.N.; Kumar, D.P. Etiology of hepatocellular carcinoma: Special focus on fatty liver disease. Front. Oncol., 2020, 10, 601710. doi: 10.3389/fonc.2020.601710 PMID: 33330100
  4. Cervello, M.; Emma, M.R.; Augello, G.; Cusimano, A.; Giannitrapani, L.; Soresi, M.; Akula, S.M.; Abrams, S.L.; Steelman, L.S.; Gulino, A.; Belmonte, B.; Montalto, G.; McCubrey, J.A. New landscapes and horizons in hepatocellular carcinoma therapy. Aging, 2020, 12(3), 3053-3094. doi: 10.18632/aging.102777 PMID: 32018226
  5. Rebouissou, S.; Nault, J.C. Advances in molecular classification and precision oncology in hepatocellular carcinoma. J. Hepatol., 2020, 72(2), 215-229. doi: 10.1016/j.jhep.2019.08.017 PMID: 31954487
  6. Dhanasekaran, R.; Nault, J.C.; Roberts, L.R.; Zucman-Rossi, J. Genomic medicine and implications for hepatocellular carcinoma prevention and therapy. Gastroenterology, 2019, 156(2), 492-509. doi: 10.1053/j.gastro.2018.11.001 PMID: 30404026
  7. Yang, J.D.; Hainaut, P.; Gores, G.J.; Amadou, A.; Plymoth, A.; Roberts, L.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(10), 589-604. doi: 10.1038/s41575-019-0186-y PMID: 31439937
  8. Collins, K.L.; Russo, A.A.R.; Tseng’, B.Y.; Kelly, T.J. The role of the 70 kDa subunit of human DNA polymerase alpha in DNA replication. EMBO J., 1993, 12(12), 4555-4566. doi: 10.1002/j.1460-2075.1993.tb06144.x
  9. Foiani, M.; Marini, F.; Gamba, D.; Lucchini, G.; Plevani, P. The B subunit of the DNA polymerase alpha-primase complex in Saccharomyces cerevisiae executes an essential function at the initial stage of DNA replication. Mol. Cell. Biol., 1994, 14(2), 923-933. doi: 10.1128/MCB.14.2.923 PMID: 8289832
  10. Flotho, C.; Coustan-Smith, E.; Pei, D.; Cheng, C.; Song, G.; Pui, C.H.; Downing, J.R.; Campana, D. A set of genes that regulate cell proliferation predicts treatment outcome in childhood acute lymphoblastic leukemia. Blood, 2007, 110(4), 1271-1277. doi: 10.1182/blood-2007-01-068478 PMID: 17456722
  11. Røe, O.D.; Szulkin, A.; Anderssen, E.; Flatberg, A.; Sandeck, H.; Amundsen, T.; Erlandsen, S.E.; Dobra, K.; Sundstrøm, S.H. Molecular resistance fingerprint of pemetrexed and platinum in a long-term survivor of mesothelioma. PLoS One, 2012, 7(8), e40521. doi: 10.1371/journal.pone.0040521 PMID: 22905093
  12. Dang, T.T.; Morales, J.C. Involvement of POLA2 in double strand break repair and genotoxic stress. Int. J. Mol. Sci., 2020, 21(12), 4245. doi: 10.3390/ijms21124245 PMID: 32549188
  13. Willis, S.; Villalobos, V.M.; Gevaert, O.; Abramovitz, M.; Williams, C.; Sikic, B.I.; Leyland-Jones, B. Single gene prognostic biomarkers in ovarian cancer: A meta-analysis. PLoS One, 2016, 11(2), e0149183. doi: 10.1371/journal.pone.0149183 PMID: 26886260
  14. Kang, G.; Yun, H.; Sun, C.H.; Park, I.; Lee, S.; Kwon, J.; Do, I.; Hong, M.E.; Van Vrancken, M.; Lee, J.; Park, J.O.; Cho, J.; Kim, K.M.; Sohn, T.S. Integrated genomic analyses identify frequent gene fusion events and VHL inactivation in gastrointestinal stromal tumors. Oncotarget, 2016, 7(6), 6538-6551. doi: 10.18632/oncotarget.3731 PMID: 25987131
  15. Koh, V.; Kwan, H.Y.; Tan, W.L.; Mah, T.L.; Yong, W.P. Knockdown of POLA2 increases gemcitabine resistance in lung cancer cells. BMC Genomics, 2016, 17(S13), 1029. doi: 10.1186/s12864-016-3322-x PMID: 28155658
  16. Kim, T.Y.; Ji, E.S.; Lee, J.Y.; Kim, J.Y.; Yoo, J.S.; Szasz, A.M.; Dome, B.; Marko-Varga, G.; Kwon, H.J. DNA polymerase alpha subunit b is a binding protein for erlotinib resistance in non-small cell lung cancer. Cancers, 2020, 12(9), 2613. doi: 10.3390/cancers12092613 PMID: 32933200
  17. Tomczak, K.; Czerwińska, P.; Wiznerowicz, M. The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge. Contemp. Oncol., 2015, 19(1A), A68-A77. doi: 10.5114/wo.2014.47136
  18. Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; Yefanov, A.; Lee, H.; Zhang, N.; Robertson, C.L.; Serova, N.; Davis, S.; Soboleva, A. NCBI GEO: Archive for functional genomics data sets—update. Nucleic Acids Res., 2012, 41(D1), D991-D995. doi: 10.1093/nar/gks1193 PMID: 23193258
  19. Hudson, T.J.; Anderson, W.; Artez, A.; Barker, A.D.; Bell, C.; Bernabé, R.R.; Bhan, M.K.; Calvo, F.; Eerola, I.; Gerhard, D.S.; Guttmacher, A.; Guyer, M.; Hemsley, F.M.; Jennings, J.L.; Kerr, D.; Klatt, P.; Kolar, P.; Kusada, J.; Lane, D.P.; Laplace, F.; Youyong, L.; Nettekoven, G.; Ozenberger, B.; Peterson, J.; Rao, T.S.; Remacle, J.; Schafer, A.J.; Shibata, T.; Stratton, M.R.; Vockley, J.G.; Watanabe, K.; Yang, H.; Yuen, M.M.; Knoppers, B.M.; Bobrow, M.; Cambon-Thomsen, A.; Dressler, L.G.; Dyke, S.O.; Joly, Y.; Kato, K.; Kennedy, K.L.; Nicolás, P.; Parker, M.J.; Rial-Sebbag, E.; Romeo-Casabona, C.M.; Shaw, K.M.; Wallace, S.; Wiesner, G.L.; Zeps, N.; Lichter, P.; Biankin, A.V.; Chabannon, C.; Chin, L.; Clément, B.; de Alava, E.; Degos, F.; Ferguson, M.L.; Geary, P.; Hayes, D.N.; Hudson, T.J.; Johns, A.L.; Kasprzyk, A.; Nakagawa, H.; Penny, R.; Piris, M.A.; Sarin, R.; Scarpa, A.; Shibata, T.; van de Vijver, M.; Futreal, P.A.; Aburatani, H.; Bayés, M.; Botwell, D.D.; Campbell, P.J.; Estivill, X.; Gerhard, D.S.; Grimmond, S.M.; Gut, I.; Hirst, M.; López-Otín, C.; Majumder, P.; Marra, M.; McPherson, J.D.; Nakagawa, H.; Ning, Z.; Puente, X.S.; Ruan, Y.; Shibata, T.; Stratton, M.R.; Stunnenberg, H.G.; Swerdlow, H.; Velculescu, V.E.; Wilson, R.K.; Xue, H.H.; Yang, L.; Spellman, P.T.; Bader, G.D.; Boutros, P.C.; Campbell, P.J.; Flicek, P.; Getz, G.; Guigó, R.; Guo, G.; Haussler, D.; Heath, S.; Hubbard, T.J.; Jiang, T.; Jones, S.M.; Li, Q.; López-Bigas, N.; Luo, R.; Muthuswamy, L.; Ouellette, B.F.; Pearson, J.V.; Puente, X.S.; Quesada, V.; Raphael, B.J.; Sander, C.; Shibata, T.; Speed, T.P.; Stein, L.D.; Stuart, J.M.; Teague, J.W.; Totoki, Y.; Tsunoda, T.; Valencia, A.; Wheeler, D.A.; Wu, H.; Zhao, S.; Zhou, G.; Stein, L.D.; Guigó, R.; Hubbard, T.J.; Joly, Y.; Jones, S.M.; Kasprzyk, A.; Lathrop, M.; López-Bigas, N.; Ouellette, B.F.; Spellman, P.T.; Teague, J.W.; Thomas, G.; Valencia, A.; Yoshida, T.; Kennedy, K.L.; Axton, M.; Dyke, S.O.; Futreal, P.A.; Gerhard, D.S.; Gunter, C.; Guyer, M.; Hudson, T.J.; McPherson, J.D.; Miller, L.J.; Ozenberger, B.; Shaw, K.M.; Kasprzyk, A.; Stein, L.D.; Zhang, J.; Haider, S.A.; Wang, J.; Yung, C.K.; Cros, A.; Liang, Y.; Gnaneshan, S.; Guberman, J.; Hsu, J.; Bobrow, M.; Chalmers, D.R.; Hasel, K.W.; Joly, Y.; Kaan, T.S.; Kennedy, K.L.; Knoppers, B.M.; Lowrance, W.W.; Masui, T.; Nicolás, P.; Rial-Sebbag, E.; Rodriguez, L.L.; Vergely, C.; Yoshida, T.; Grimmond, S.M.; Biankin, A.V.; Bowtell, D.D.; Cloonan, N.; deFazio, A.; Eshleman, J.R.; Etemadmoghadam, D.; Gardiner, B.B.; Kench, J.G.; Scarpa, A.; Sutherland, R.L.; Tempero, M.A.; Waddell, N.J.; Wilson, P.J.; McPherson, J.D.; Gallinger, S.; Tsao, M.S.; Shaw, P.A.; Petersen, G.M.; Mukhopadhyay, D.; Chin, L.; DePinho, R.A.; Thayer, S.; Muthuswamy, L.; Shazand, K.; Beck, T.; Sam, M.; Timms, L.; Ballin, V.; Lu, Y.; Ji, J.; Zhang, X.; Chen, F.; Hu, X.; Zhou, G.; Yang, Q.; Tian, G.; Zhang, L.; Xing, X.; Li, X.; Zhu, Z.; Yu, Y.; Yu, J.; Yang, H.; Lathrop, M.; Tost, J.; Brennan, P.; Holcatova, I.; Zaridze, D.; Brazma, A.; Egevard, L.; Prokhortchouk, E.; Banks, R.E.; Uhlén, M.; Cambon-Thomsen, A.; Viksna, J.; Ponten, F.; Skryabin, K.; Stratton, M.R.; Futreal, P.A.; Birney, E.; Borg, A.; Børresen-Dale, A.L.; Caldas, C.; Foekens, J.A.; Martin, S.; Reis-Filho, J.S.; Richardson, A.L.; Sotiriou, C.; Stunnenberg, H.G.; Thoms, G.; van de Vijver, M.; van’t Veer, L.; Calvo, F.; Birnbaum, D.; Blanche, H.; Boucher, P.; Boyault, S.; Chabannon, C.; Gut, I.; Masson-Jacquemier, J.D.; Lathrop, M.; Pauporté, I.; Pivot, X.; Vincent-Salomon, A.; Tabone, E.; Theillet, C.; Thomas, G.; Tost, J.; Treilleux, I.; Calvo, F.; Bioulac-Sage, P.; Clément, B.; Decaens, T.; Degos, F.; Franco, D.; Gut, I.; Gut, M.; Heath, S.; Lathrop, M.; Samuel, D.; Thomas, G.; Zucman-Rossi, J.; Lichter, P.; Eils, R.; Brors, B.; Korbel, J.O.; Korshunov, A.; Landgraf, P.; Lehrach, H.; Pfister, S.; Radlwimmer, B.; Reifenberger, G.; Taylor, M.D.; von Kalle, C.; Majumder, P.P.; Sarin, R.; Rao, T.S.; Bhan, M.K.; Scarpa, A.; Pederzoli, P.; Lawlor, R.A.; Delledonne, M.; Bardelli, A.; Biankin, A.V.; Grimmond, S.M.; Gress, T.; Klimstra, D.; Zamboni, G.; Shibata, T.; Nakamura, Y.; Nakagawa, H.; Kusada, J.; Tsunoda, T.; Miyano, S.; Aburatani, H.; Kato, K.; Fujimoto, A.; Yoshida, T.; Campo, E.; López-Otín, C.; Estivill, X.; Guigó, R.; de Sanjosé, S.; Piris, M.A.; Montserrat, E.; González-Díaz, M.; Puente, X.S.; Jares, P.; Valencia, A.; Himmelbauer, H.; Quesada, V.; Bea, S.; Stratton, M.R.; Futreal, P.A.; Campbell, P.J.; Vincent-Salomon, A.; Richardson, A.L.; Reis-Filho, J.S.; van de Vijver, M.; Thomas, G.; Masson-Jacquemier, J.D.; Aparicio, S.; Borg, A.; Børresen-Dale, A.L.; Caldas, C.; Foekens, J.A.; Stunnenberg, H.G.; van’t Veer, L.; Easton, D.F.; Spellman, P.T.; Martin, S.; Barker, A.D.; Chin, L.; Collins, F.S.; Compton, C.C.; Ferguson, M.L.; Gerhard, D.S.; Getz, G.; Gunter, C.; Guttmacher, A.; Guyer, M.; Hayes, D.N.; Lander, E.S.; Ozenberger, B.; Penny, R.; Peterson, J.; Sander, C.; Shaw, K.M.; Speed, T.P.; Spellman, P.T.; Vockley, J.G.; Wheeler, D.A.; Wilson, R.K.; Hudson, T.J.; Chin, L.; Knoppers, B.M.; Lander, E.S.; Lichter, P.; Stein, L.D.; Stratton, M.R.; Anderson, W.; Barker, A.D.; Bell, C.; Bobrow, M.; Burke, W.; Collins, F.S.; Compton, C.C.; DePinho, R.A.; Easton, D.F.; Futreal, P.A.; Gerhard, D.S.; Green, A.R.; Guyer, M.; Hamilton, S.R.; Hubbard, T.J.; Kallioniemi, O.P.; Kennedy, K.L.; Ley, T.J.; Liu, E.T.; Lu, Y.; Majumder, P.; Marra, M.; Ozenberger, B.; Peterson, J.; Schafer, A.J.; Spellman, P.T.; Stunnenberg, H.G.; Wainwright, B.J.; Wilson, R.K.; Yang, H. International network of cancer genome projects. Nature, 2010, 464(7291), 993-998. doi: 10.1038/nature08987 PMID: 20393554
  20. Lánczky, A.; Győrffy, B. Web-based survival analysis tool tailored for medical research (KMplot): Development and implementation. J. Med. Internet Res., 2021, 23(7), e27633. doi: 10.2196/27633 PMID: 34309564
  21. Li, T.; Fu, J.; Zeng, Z.; Cohen, D.; Li, J.; Chen, Q.; Li, B.; Liu, X.S. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res., 2020, 48(W1), W509-W514. doi: 10.1093/nar/gkaa407
  22. Reimand, J.; Isserlin, R.; Voisin, V.; Kucera, M.; Tannus-Lopes, C.; Rostamianfar, A.; Wadi, L.; Meyer, M.; Wong, J.; Xu, C.; Merico, D.; Bader, G.D. Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat. Protoc., 2019, 14(2), 482-517. doi: 10.1038/s41596-018-0103-9 PMID: 30664679
  23. Pan, J.; Zhou, H.; Cooper, L.; Huang, J.; Zhu, S.; Zhao, X.; Ding, H.; Pan, Y.; Rong, L. LAYN Is a prognostic biomarker and correlated with immune infiltrates in gastric and colon cancers. Front. Immunol., 2019, 10, 6. doi: 10.3389/fimmu.2019.00006 PMID: 30761122
  24. Granville, C.A.; Memmott, R.M.; Balogh, A.; Mariotti, J.; Kawabata, S.; Han, W.; LoPiccolo, J.; Foley, J.; Liewehr, D.J.; Steinberg, S.M.; Fowler, D.H.; Hollander, M.C.; Dennis, P.A. A central role for Foxp3+ regulatory T cells in K-Ras-driven lung tumorigenesis. PLoS One, 2009, 4(3), e5061. doi: 10.1371/journal.pone.0005061 PMID: 19330036
  25. Llovet, J.M.; Montal, R.; Sia, D.; Finn, R.S. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol., 2018, 15(10), 599-616. doi: 10.1038/s41571-018-0073-4 PMID: 30061739
  26. Pan, Y.; Chen, H.; Yu, J. Biomarkers in hepatocellular carcinoma: Current status and future perspectives. Biomedicines, 2020, 8(12), 576. doi: 10.3390/biomedicines8120576 PMID: 33297335
  27. Brückner, A.; Stadlbauer, F.; Guarino, L.A.; Brunahl, A.; Schneider, C.; Rehfuess, C.; Previes, C.; Fanning, E.; Nasheuer, H.P. The mouse DNA polymerase alpha-primase subunit p48 mediates species-specific replication of polyomavirus DNA in vitro. Mol. Cell. Biol., 1995, 15(3), 1716-1724. doi: 10.1128/MCB.15.3.1716 PMID: 7862163
  28. Waga, S.; Stillman, B. The DNA replication fork in eukaryotic cells. Annu. Rev. Biochem., 1998, 67(1), 721-751. doi: 10.1146/annurev.biochem.67.1.721 PMID: 9759502
  29. Song, Q.; Wang, H.; Bao, J.; Pullikuth, A.K.; Li, K.C.; Miller, L.D.; Zhou, X. Systems biology approach to studying proliferation-dependent prognostic subnetworks in breast cancer. Sci. Rep., 2015, 5(1), 12981. doi: 10.1038/srep12981 PMID: 26257336
  30. Pillai, A.; Ahn, J.; Kulik, L. Integrating genomics into clinical practice in hepatocellular carcinoma: The challenges ahead. Am. J. Gastroenterol., 2020, 115(12), 1960-1969. doi: 10.14309/ajg.0000000000000843 PMID: 33038134
  31. Dimri, M.; Satyanarayana, A. Molecular signaling pathways and therapeutic targets in hepatocellular carcinoma. Cancers, 2020, 12(2), 491. doi: 10.3390/cancers12020491 PMID: 32093152
  32. Weichhart, T.; Säemann, M.D. The PI3K/Akt/mTOR pathway in innate immune cells: Emerging therapeutic applications. Ann. Rheum. Dis., 2008, 67(Suppl. 3), iii70-iii74. doi: 10.1136/ard.2008.098459 PMID: 19022819
  33. Ruf, B.; Heinrich, B.; Greten, T.F. Immunobiology and immunotherapy of HCC: Spotlight on innate and innate-like immune cells. Cell. Mol. Immunol., 2021, 18(1), 112-127. doi: 10.1038/s41423-020-00572-w PMID: 33235387
  34. Oura, K.; Morishita, A.; Tani, J.; Masaki, T. Tumor immune microenvironment and immunosuppressive therapy in hepatocellular carcinoma: A review. Int. J. Mol. Sci., 2021, 22(11), 5801. doi: 10.3390/ijms22115801 PMID: 34071550
  35. Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer, 2012, 12(4), 252-264. doi: 10.1038/nrc3239 PMID: 22437870

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024