Potential Antidiabetic Activity of β-sitosterol from Zingiber roseum Rosc. via Modulation of Peroxisome Proliferator-activated Receptor Gamma (PPARγ)
- Авторы: Amanat M.1, Daula A.F.2, Singh R.1
-
Учреждения:
- Pharmacology, Central University of Punjab
- Pharmacy, Noakhali Science and Technology University
- Выпуск: Том 27, № 11 (2024)
- Страницы: 1676-1699
- Раздел: Chemistry
- URL: https://kazanmedjournal.ru/1386-2073/article/view/643928
- DOI: https://doi.org/10.2174/0113862073260323231120134826
- ID: 643928
Цитировать
Полный текст
Аннотация
Aim::To evaluate the antidiabetic potential of β-sitosterol from Zingiber roseum.
Background::Diabetes mellitus is a cluster of metabolic disorders, and 90% of diabetic patients are affected with Type II diabetes (DM2). For the treatment of DM2, thiazolidinedione drugs (TZDs) were proposed, but recent studies have shown that TZDs have several detrimental effects, such as weight gain, kidney enlargement (hypertrophy), fluid retention, increased risk of bone fractures, and potential harm to the liver (hepatotoxicity). That is why a new molecule is needed to treat DM2.
Objective::The current research aimed to assess the efficacy of β-Sitosterol from methanolic extract of Zingiber roseum in managing diabetes via PPARγ modulation.
Methods::Zingiber roseum was extracted using methanol, and GC-MS was employed to analyze the extract. Through homology modeling, PPARγ structure was predicted. Molecular docking, MD simulation, free binding energies, QSAR, ADMET, and bioactivity and toxicity scores were all used during the in-depth computer-based research.
Results::Clinically, agonists of synthetic thiazolidinedione (TZDs) have been used therapeutically to treat DM2, but these TZDs are associated with significant risks. Hence, GC-MS identified phytochemicals to search for a new PPAR-γ agonist. Based on the in-silico investigation, β-sitosterol was found to have a higher binding affinity (-8.9 kcal/mol) than standard drugs. MD simulations and MMGBSA analysis also demonstrated that β-sitosterol bound to the PPAR-γ active site stably.
Conclusion::It can be concluded that β-sitosterol from Z. roseum attenuates Type-II diabetes by modulating PPARγ activity.
Ключевые слова
Об авторах
Muhammed Amanat
Pharmacology, Central University of Punjab
Email: info@benthamscience.net
A. Daula
Pharmacy, Noakhali Science and Technology University
Email: info@benthamscience.net
Randhir Singh
Pharmacology, Central University of Punjab
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Bosch, X.; Alfonso, F.; Bermejo, J. 1. Diabetes y enfermedad cardiovascular. Una mirada hacia la nueva epidemia del siglo XXI. Rev. Esp. Cardiol., 2002, 55(5), 525-527. doi: 10.1016/S0300-8932(02)76645-1 PMID: 12015933
- Bermúdez-Pirela, V.J.; Cano, C.; Medina, M.T.; Souki, A.; Lemus, M.A.; Leal, E.M.; Seyfi, H.A.; Cano, R.; Ciscek, A.; Bermúdez-Arias, F.; Contreras, F.; Israili, Z.H.; Hernández-Hernández, R.; Valasco, M. Metformin plus low-dose glimeperide significantly improves Homeostasis Model Assessment for insulin resistance (HOMA(IR)) and β-cell function (HOMA(β-cell)) without hyperinsulinemia in patients with type 2 diabetes mellitus. Am. J. Ther., 2007, 14(2), 194-202. doi: 10.1097/01.pap.0000249909.54047.0e PMID: 17414590
- Ahmed, H. A.; Alkali, I. Y. In silico molecular docking studies of some phytochemicals against peroxisome-proliferator activated receptor gamma (PPAR-γ). GSC Biol. Pharm. Sci., 2018, 5(2), 001-005.
- Tesauro, M.; Mazzotta, F.A. Pathophysiology of diabetes.Transplantation, bioengineering, and regeneration of the endocrine pancreas; Elsevier, 2020, pp. 37-47. doi: 10.1016/B978-0-12-814833-4.00003-4
- Bermúdez, V.; Finol, F.; Parra, N.; Parra, M.; Pérez, A.; Peñaranda, L.; Vílchez, D.; Rojas, J.; Arráiz, N.; Velasco, M. PPAR-γ agonists and their role in type 2 diabetes mellitus management. Am. J. Ther., 2010, 17(3), 274-283. doi: 10.1097/MJT.0b013e3181c08081 PMID: 20216208
- Copps, K.D.; White, M.F. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia, 2012, 55(10), 2565-2582. doi: 10.1007/s00125-012-2644-8 PMID: 22869320
- Dong, X.; Park, S.; Lin, X.; Copps, K.; Yi, X.; White, M.F. Irs1 and Irs2 signaling is essential for hepatic glucose homeostasis and systemic growth. J. Clin. Invest., 2006, 116(1), 101-114. doi: 10.1172/JCI25735 PMID: 16374520
- Kim, H.S.; Noh, J.H.; Hong, S.H.; Hwang, Y.C.; Yang, T.Y.; Lee, M.S.; Kim, K.W.; Lee, M.K. Rosiglitazone stimulates the release and synthesis of insulin by enhancing GLUT-2, glucokinase and BETA2/NeuroD expression. Biochem. Biophys. Res. Commun., 2008, 367(3), 623-629. doi: 10.1016/j.bbrc.2007.12.192 PMID: 18191635
- Chung, M.J.; Cho, S.Y.; Bhuiyan, M.J.H.; Kim, K.H.; Lee, S.J. Anti-diabetic effects of lemon balm (Melissa officinalis) essential oil on glucose- and lipid-regulating enzymes in type 2 diabetic mice. Br. J. Nutr., 2010, 104(2), 180-188. doi: 10.1017/S0007114510001765 PMID: 20487577
- Hassani-Nezhad-Gashti, F.; Rysä, J.; Kummu, O.; Näpänkangas, J.; Buler, M.; Karpale, M.; Hukkanen, J.; Hakkola, J. Activation of nuclear receptor PXR impairs glucose tolerance and dysregulates GLUT2 expression and subcellular localization in liver. Biochem. Pharmacol., 2018, 148, 253-264. doi: 10.1016/j.bcp.2018.01.001 PMID: 29309761
- Cho, Y.M.; Kim, T.H.; Lim, S.; Choi, S.H.; Shin, H.D.; Lee, H.K.; Park, K.S.; Jang, H.C. Type 2 diabetes-associated genetic variants discovered in the recent genome-wide association studies are related to gestational diabetes mellitus in the Korean population. Diabetologia, 2009, 52(2), 253-261. doi: 10.1007/s00125-008-1196-4 PMID: 19002430
- Saadi, H.; Nagelkerke, N.; Carruthers, S.G.; Benedict, S.; Abdulkhalek, S.; Reed, R.; Lukic, M.; Nicholls, M.G. Association of TCF7L2 polymorphism with diabetes mellitus, metabolic syndrome, and markers of beta cell function and insulin resistance in a population-based sample of Emirati subjects. Diabetes Res. Clin. Pract., 2008, 80(3), 392-398. doi: 10.1016/j.diabres.2008.01.008 PMID: 18282631
- Christodoulides, C.; Vidal-Puig, A. PPARs and adipocyte function. Mol. Cell. Endocrinol., 2010, 318(1-2), 61-68. doi: 10.1016/j.mce.2009.09.014 PMID: 19772894
- Wafer, R.; Tandon, P.; Minchin, J.E.N. The role of peroxisome proliferator-activated receptor gamma (PPARG) in adipogenesis: Applying knowledge from the fish aquaculture industry to biomedical research. Front. Endocrinol. (Lausanne), 2017, 8, 102. doi: 10.3389/fendo.2017.00102 PMID: 28588550
- Moller, D.E.; Berger, J.P. Role of PPARs in the regulation of obesity-related insulin sensitivity and inflammation. Int. J. Obes., 2003, 27(S3)(Suppl. 3), S17-S21. doi: 10.1038/sj.ijo.0802494 PMID: 14704738
- Ferré, P. The biology of peroxisome proliferator-activated receptors: Relationship with lipid metabolism and insulin sensitivity. Diabetes, 2004, 53(1), S43-S50. doi: 10.2337/diabetes.53.2007.S43 PMID: 14749265
- Małodobra-Mazur, M.; Cierzniak, A.; Ryba, M.; Sozański, T.; Piórecki, N.; Kucharska, A.Z. Cornus mas L. Increases glucose uptake and the expression of PPARG in insulin-resistant adipocytes. Nutrients, 2022, 14(11), 2307. doi: 10.3390/nu14112307 PMID: 35684107
- Nathan, D.M.; Buse, J.B.; Davidson, M.B.; Ferrannini, E.; Holman, R.R.; Sherwin, R.; Zinman, B. Medical management of hyperglycemia in type 2 diabetes: A consensus algorithm for the initiation and adjustment of therapy: A consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care, 2009, 32(1), 193-203. doi: 10.2337/dc08-9025 PMID: 18945920
- Encinar, J.A.; Fernández-Ballester, G.J.; Galiano-Ibarra, V.; Micol-Molina, V. In silico approach for the discovery of new PPARγ modulators among plant-derived polyphenols. Drug Des. Devel. Ther., 2015, 9, 5877-5895. doi: 10.2147/DDDT.S93449 PMID: 26604687
- Reddy, J.K.; Hashimoto, T. Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: An adaptive metabolic system. Annu. Rev. Nutr., 2001, 21(1), 193-230. doi: 10.1146/annurev.nutr.21.1.193 PMID: 11375435
- Brun, R.P.; Tontonoz, P.; Forman, B.M.; Ellis, R.; Chen, J.; Evans, R.M.; Spiegelman, B.M. Differential activation of adipogenesis by multiple PPAR isoforms. Genes Dev., 1996, 10(8), 974-984. doi: 10.1101/gad.10.8.974 PMID: 8608944
- Fox, C.S.; Pencina, M.J.; Meigs, J.B.; Vasan, R.S.; Levitzky, Y.S.; DAgostino, R.B., Sr Trends in the incidence of type 2 diabetes mellitus from the 1970s to the 1990s: The Framingham Heart Study. Circulation, 2006, 113(25), 2914-2918. doi: 10.1161/CIRCULATIONAHA.106.613828 PMID: 16785337
- Prabhu, S.; Vijayakumar, S.; Manogar, P.; Maniam, G.P.; Govindan, N. Homology modeling and molecular docking studies on Type II diabetes complications reduced PPARγ receptor with various ligand molecules. Biomed. Pharmacother., 2017, 92, 528-535. doi: 10.1016/j.biopha.2017.05.077 PMID: 28575810
- Berger, J.; Moller, D.E. The mechanisms of action of PPARs. Annu. Rev. Med., 2002, 53(1), 409-435. doi: 10.1146/annurev.med.53.082901.104018 PMID: 11818483
- Willson, T.M.; Lambert, M.H.; Kliewer, S.A. Peroxisome proliferator activated receptor gamma and metabolic disease. Annu. Rev. Biochem., 2001, 70(1), 341-367. doi: 10.1146/annurev.biochem.70.1.341 PMID: 11395411
- Ahmadian, M.; Suh, J.M.; Hah, N.; Liddle, C.; Atkins, A.R.; Downes, M.; Evans, R.M. PPARγ signaling and metabolism: The good, the bad and the future. Nat. Med., 2013, 19(5), 557-566. doi: 10.1038/nm.3159 PMID: 23652116
- Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov., 2015, 14(2), 111-129. doi: 10.1038/nrd4510 PMID: 25614221
- Clardy, J.; Walsh, C. Lessons from natural molecules. Nature, 2004, 432(7019), 829-837. doi: 10.1038/nature03194 PMID: 15602548
- Amanat, M.; Reza, M.S.; Shuvo, M.S.R.; Ahmed, K.S.; Hossain, H.; Tawhid, M.; Saifuzzaman, M.; Islam, M.S.; Mazumder, T.; Islam, M.A.; Daula, A.F.M.S.U. Zingiber roseum Rosc. rhizome: A rich source of hepatoprotective polyphenols. Biomed. Pharmacother., 2021, 139, 111673. doi: 10.1016/j.biopha.2021.111673 PMID: 33965729
- Ganesan, S.; Pandi, N.R.; Banumathy, N. Ethnomedicinal survey of Alagarkoil hills (reserved forest), Tamil nadu, India. J. Indian Med, 2007, 1(1), 18-18.
- Padal, S.; Ramakrishna, H.; Devender, R. Ethnomedicinal studies for endemic diseases by the tribes of Munchingiputtu Mandal, Visakhapatnam district, Andhra Pradesh, India. Int. J. Med. Aromat. Plants, 2012, 2(3), 453-459.
- Prakash, O.; Kasana, V.K.; Pant, A.K.; Zafar, A.; Hore, S.K.; Mathela, C.S. Phytochemical composition of essential oil from seeds of Zingiber roseum Rosc. and its antispasmodic activity in rat duodenum. J. Ethnopharmacol., 2006, 106(3), 344-347. doi: 10.1016/j.jep.2006.01.016 PMID: 16510259
- Williamson, E.M.; Okpako, D.T.; Evans, F.J. Selection. Preparation and Pharmacological Evaluation of Plant Material; John Wiley & Sons, 1996, 1, .
- Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem. Heterocycl. Compd., 2014, 50(3), 444-457. doi: 10.1007/s10593-014-1496-1
- Kiefer, F.; Arnold, K.; Künzli, M.; Bordoli, L.; Schwede, T. The SWISS-MODEL Repository and associated resources. Nucleic Acids Res., 2009, 37(Database)(1), D387-D392. doi: 10.1093/nar/gkn750 PMID: 18931379
- Dev Sharma, A. Homology modeling and molecular docking of Natural metabolites from eucalyptus essential oil against SARS-CoV-2 spike protein. Arab. J. Med. Aromat. Plants., 2021, 7(3), 282-303.
- Laskowski, R.A.; Jabłońska, J.; Pravda, L.; Vařeková, R.S.; Thornton, J.M. PDBsum: Structural summaries of PDB entries. Protein Sci., 2018, 27(1), 129-134. doi: 10.1002/pro.3289 PMID: 28875543
- tekláč, M.; Zajaček, D.; Bučinský, L. 3CLpro and PLpro affinity, a docking study to fight COVID19 based on 900 compounds from PubChem and literature. Are there new drugs to be found? J. Mol. Struct., 2021, 1245, 130968. doi: 10.1016/j.molstruc.2021.130968 PMID: 34219808
- Xie, X.Q.S. Exploiting PubChem for virtual screening. Expert Opin. Drug Discov., 2010, 5(12), 1205-1220. doi: 10.1517/17460441.2010.524924 PMID: 21691435
- Vishvakarma, V.K.; Pal, S.; Singh, P.; Bahadur, I. Interactions between main protease of SARS-CoV-2 and testosterone or progesterone using computational approach. J. Mol. Struct., 2022, 1251, 131965. doi: 10.1016/j.molstruc.2021.131965 PMID: 34840349
- Sahu, A.; Pradhan, D.; Raza, K.; Qazi, S.; Jain, A.; Verma, S. In silico library design, screening and MD simulation of COX-2 inhibitors for anticancer activity Proceedings of the 12th International Conference, 2020, pp. 21-32.
- Berendsen, H.J.C.; Grigera, J.R.; Straatsma, T.P. The missing term in effective pair potentials. J. Phys. Chem., 1987, 91(24), 6269-6271. doi: 10.1021/j100308a038
- Amanat, M.; Daula, A.S.U.; Islam, F. Potential usage of Zerumbone to suppress inflammation: An in silico study. Am. J. Sci. Med. Res., 2022, 8(2), 1-11.
- Yang, J.F.; Wang, F.; Chen, Y.Z.; Hao, G.F.; Yang, G.F. LARMD: integration of bioinformatic resources to profile ligand-driven protein dynamics with a case on the activation of estrogen receptor. Brief. Bioinform., 2020, 21(6), 2206-2218. doi: 10.1093/bib/bbz141 PMID: 31799600
- Dolinsky, T.J.; Czodrowski, P.; Li, H.; Nielsen, J.E.; Jensen, J.H.; Klebe, G.; Baker, N.A. PDB2PQR: Expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res., 2007, 35(Web Server)(2), W522-W525. doi: 10.1093/nar/gkm276 PMID: 17488841
- Raha, K.; Merz, K.M., Jr Large-scale validation of a quantum mechanics based scoring function: Predicting the binding affinity and the binding mode of a diverse set of protein-ligand complexes. J. Med. Chem., 2005, 48(14), 4558-4575. doi: 10.1021/jm048973n PMID: 15999994
- Bahar, I.; Lezon, T.R.; Bakan, A.; Shrivastava, I.H. Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins. Chem. Rev., 2010, 110(3), 1463-1497. doi: 10.1021/cr900095e PMID: 19785456
- Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett., 1997, 78(14), 2690-2693. doi: 10.1103/PhysRevLett.78.2690
- Opo, F.A.D.M.; Rahman, M.M.; Ahammad, F.; Ahmed, I.; Bhuiyan, M.A.; Asiri, A.M. Structure based pharmacophore modeling, virtual screening, molecular docking and ADMET approaches for identification of natural anti-cancer agents targeting XIAP protein. Sci. Rep., 2021, 11(1), 4049. doi: 10.1038/s41598-021-83626-x PMID: 33603068
- Aja, P.M.; Agu, P.C.; Ezeh, E.M.; Awoke, J.N.; Ogwoni, H.A.; Deusdedit, T.; Ekpono, E.U.; Igwenyi, I.O.; Alum, E.U.; Ugwuja, E.I.; Ibiam, A.U.; Afiukwa, C.A.; Adegboyega, A.E. Prospect into therapeutic potentials of Moringa oleifera phytocompounds against cancer upsurge: de novo synthesis of test compounds, molecular docking, and ADMET studies. Bull. Natl. Res. Cent., 2021, 45(1), 99. doi: 10.1186/s42269-021-00554-6
- Chan, K.W.; Yu, K.Y.; Yiu, W.H.; Xue, R.; Lok, S.W.; Li, H.; Zou, Y.; Ma, J.; Lai, K.N.; Tang, S.C. Potential therapeutic targets of rehmannia formulations on diabetic nephropathy: A comparative network pharmacology analysis. Front. Pharmacol., 2022, 13, 794139. doi: 10.3389/fphar.2022.794139 PMID: 35387335
- Montanari, R.M.; Barbosa, L.C.A.; Demuner, A.J.; Silva, C.J.; Carvalho, L.S.; Andrade, N.J. Chemical composition and antibacterial activity of essential oils from verbenaceae species: alternative sources of (E)-caryophyllene and germacrene-D. Quim. Nova, 2011, 34(9), 1550-1555. doi: 10.1590/S0100-40422011000900013
- Noge, K.; Becerra, J. Germacrene D, a common sesquiterpene in the genus Bursera (Burseraceae). Molecules, 2009, 14(12), 5289-5297. doi: 10.3390/molecules14125289 PMID: 20032892
- de Moura, D.F.; Rocha, T.A.; de Melo Barros, D.; da Silva, M.M.; dos Santos Santana, M.; Neta, B.M.; Cavalcanti, I.M.F.; Martins, R.D.; da Silva, M.V. Evaluation of the antioxidant, antibacterial, and antibiofilm activity of the sesquiterpene nerolidol. Arch. Microbiol., 2021, 203(7), 4303-4311. doi: 10.1007/s00203-021-02377-5 PMID: 34110480
- Saito, A.Y.; Marin Rodriguez, A.A.; Menchaca Vega, D.S.; Sussmann, R.A.C.; Kimura, E.A.; Katzin, A.M. Antimalarial activity of the terpene nerolidol. Int. J. Antimicrob. Agents, 2016, 48(6), 641-646. doi: 10.1016/j.ijantimicag.2016.08.017 PMID: 27742206
- Judzentiene, A.; Budiene, J.; Svediene, J.; Garjonyte, R. Toxic, radical scavenging, and antifungal activity of Rhododendron tomentosum H. essential oils. Molecules, 2020, 25(7), 1676. doi: 10.3390/molecules25071676 PMID: 32260539
- Collins, T.; Jones, G.; Sadgrove, N. Volatiles from the rare Australian desert plant Prostanthera centralis BJ Conn (Lamiaceae): Chemical composition and antimicrobial activity. Agriculture, 2014, 4(4), 308-316. doi: 10.3390/agriculture4040308
- Abd-ElGawad, A.M.; Elshamy, A.I.; Elgorban, A.M.; Hassan, E.M.; Zaghloul, N.S.; Alamery, S.F.; El Gendy, A.E.N.G.; Elhindi, K.M.; EI-Amier, Y.A. Essential oil of ipomoea carnea: Chemical profile, chemometric analysis, free radical scavenging, and antibacterial activities. Sustainabilit, 2022, 14(15), 9504. doi: 10.3390/su14159504
- Ferreira, M.G.P.R.; Kayano, A.M.; Silva-Jardim, I.; Silva, T.O.; Zuliani, J.P.; Facundo, V.A.; Calderon, L.A.; Almeida-e-Silva, A.; Ciancaglini, P.; Stábeli, R.G. Antileishmanial activity of 3-(3,4,5-trimethoxyphenyl) propanoic acid purified from Amazonian Piper tuberculatum Jacq., Piperaceae, fruits. Rev. Bras. Farmacogn., 2010, 20(6), 1003-1006. doi: 10.1590/S0102-695X2010005000033
- Mokale, S.N.; Shinde, S.S.; Elgire, R.D.; Sangshetti, J.N.; Shinde, D.B. Synthesis and anti-inflammatory activity of some 3-(4,6-disubtituted-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-yl) propanoic acid derivatives. Bioorg. Med. Chem. Lett., 2010, 20(15), 4424-4426. doi: 10.1016/j.bmcl.2010.06.058 PMID: 20594837
- Tesfay, D.; Endale, M.; Getaneh, E.; Abdisa, E.; Guta, L.; Melaku, Y. Chemical composition and antibacterial activity of essential oils from various parts of Gladiolus candidus, Ranunculus multifidus, Artemisia abyssinica and Crinum abyscinicum. Bull. Chem. Soc. Ethiop., 2022, 36(4), 865-878. doi: 10.4314/bcse.v36i4.12
- do Nascimento, K.F.; Moreira, F.M.F.; Alencar Santos, J.; Kassuya, C.A.L.; Croda, J.H.R.; Cardoso, C.A.L.; Vieira, M.C.; Góis Ruiz, A.L.T.; Ann Foglio, M.; de Carvalho, J.E.; Formagio, A.S.N. Antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of Psidium guineense Sw. and spathulenol. J. Ethnopharmacol., 2018, 210, 351-358. doi: 10.1016/j.jep.2017.08.030 PMID: 28844678
- Costa, I.F.J.B.; Simão, T.L.B.V.; Calixto, S.D.; Pereira, R.V.; Konno, T.U.P.; Pinto, S.C.; Tinoco, L.W.; Lasunskaia, E.; Leal, I.C.R.; Muzitano, M.F. Anti-mycobacterial and immunomodulatory activity of n-hexane fraction and spathulenol from Ocotea notata leaves. Rodriguésia, 2021, 72, e01162019. doi: 10.1590/2175-7860202172041
- Nirmal, S.A.; Pal, S.C.; Mandal, S.C.; Patil, A.N. Analgesic and anti-inflammatory activity of β-sitosterol isolated from Nyctanthes arbortristis leaves. Inflammopharmacology, 2012, 20(4), 219-224. doi: 10.1007/s10787-011-0110-8 PMID: 22207496
- Babu, S.; Jayaraman, S. An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomed. Pharmacother., 2020, 131, 110702. doi: 10.1016/j.biopha.2020.110702 PMID: 32882583
- Sen, A.; Dhavan, P.; Shukla, K.K.; Singh, S.; Tejovathi, G. Analysis of IR, NMR and antimicrobial activity of β-sitosterol isolated from Momordica charantia. Sci. Secure J. Biotechnol., 2012, 1(1), 9-13.
- Vivancos, M.; Moreno, J.J. β-Sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages. Free Radic. Biol. Med., 2005, 39(1), 91-97. doi: 10.1016/j.freeradbiomed.2005.02.025 PMID: 15925281
- Saeidnia, S.; Manayi, A.; Gohari, A.R.; Abdollahi, M.J.E. The story of beta-sitosterol-a review. European J. Med. Plants, 2014, 4(5), 590-609. doi: 10.9734/EJMP/2014/7764
- Wald, G. Molecular basis of visual excitation. Science, 1968, 162(3850), 230-239. doi: 10.1126/science.162.3850.230 PMID: 4877437
- Sorg, O.; Didierjean, L.; Saurat, J.H. Metabolism of topical retinaldehyde. Dermatology, 1999, 199(1), 13-17. doi: 10.1159/000051372 PMID: 10473954
- Sorg, O.; Kasraee, B.; Salomon, D.; Saurat, J.H. The potential depigmenting activity of retinaldehyde. Dermatology, 2013, 227(3), 231-237. doi: 10.1159/000354294 PMID: 24080511
- Islam, F.; Islam, M.S.; Ahmed, K.; Amanat, M. Unveiling the Anthelminthic Potential of Merremia vitifolia Stem through in Vitro and in Silico Approach. Chem. Biodivers., 2023, 20(10), e202300860. doi: 10.1002/cbdv.202300860 PMID: 37715726
- Konappa, N.; Udayashankar, A.C.; Krishnamurthy, S.; Pradeep, C.K.; Chowdappa, S.; Jogaiah, S. GCMS analysis of phytoconstituents from Amomum nilgiricum and molecular docking interactions of bioactive serverogenin acetate with target proteins. Sci. Rep., 2020, 10(1), 16438. doi: 10.1038/s41598-020-73442-0 PMID: 33009462
- Vijayakumar, S.; Manogar, P.; Prabhu, S. Potential therapeutic targets and the role of technology in developing novel cannabinoid drugs from cyanobacteria. Biomed. Pharmacother., 2016, 83, 362-371. doi: 10.1016/j.biopha.2016.06.052 PMID: 27416557
- Jamroz, M.; Kolinski, A.; Kmiecik, S. CABS-flex predictions of protein flexibility compared with NMR ensembles. Bioinformatics, 2014, 30(15), 2150-2154. doi: 10.1093/bioinformatics/btu184 PMID: 24735558
- Gorai, S.; Junghare, V.; Kundu, K.; Gharui, S.; Kumar, M.; Patro, B.S.; Nayak, S.K.; Hazra, S.; Mula, S. Synthesis of Dihydrobenzofuro3,2‐bchromenes as Potential 3CLpro Inhibitors of SARS‐CoV‐2: A Molecular Docking and Molecular Dynamics Study. ChemMedChem, 2022, 17(8), e202100782. doi: 10.1002/cmdc.202100782 PMID: 35112482
- Mazumder, T.; Hasan, T.; Ahmed, K.S.; Hossain, H.; Debnath, T.; Jahan, E.; Rahman, N.; Rahman Shuvo, M.S.; Daula, A.F.M.S.U. Phenolic compounds and extracts from Crotalaria calycina Schrank potentially alleviate pain and inflammation through inhibition of cyclooxygenase-2: An in vivo and molecular dynamics studies. Heliyon, 2022, 8(12), e12368. doi: 10.1016/j.heliyon.2022.e12368 PMID: 36590510
- Mir, S.; Dash, G.C.; Chopdar, K.S.; Mohanta, P.; Mohapatra, P.K.; Baitharu, I.; Behera, A.K.; Raval, M.K.; Nayak, B. Molecular modeling of novel fluorophoric thiazolo-2, 3-B quinazolinones to study epidermal growth factor receptor tyrosine kinase inhibition potency. ChemRxiv, 2021. doi: 10.26434/chemrxiv.14174282.v1
- Mir, S.A.; Dash, G.C.; Meher, R.K.; Mohanta, P.P.; Chopdar, K.S.; Mohapatra, P.K.; Baitharu, I.; Behera, A.K.; Raval, M.K.; Nayak, B. Biotechnology, In Silico and In Vitro evaluations of fluorophoric thiazolo-2,3-b quinazolinones as anti-cancer agents targeting EGFR-TKD. Appl. Biochem. Biotechnol., 2022, 1-27.
- Kazius, J.; McGuire, R.; Bursi, R. Derivation and validation of toxicophores for mutagenicity prediction. J. Med. Chem., 2005, 48(1), 312-320. doi: 10.1021/jm040835a PMID: 15634026
- El Kerdawy, A.M.; Osman, A.A.; Zaater, M. Receptor based pharmacophore modeling, virtual screening, and molecular docking studies for the discovery of novel GSK-3β inhibitors. J. Med. Chem., 2019, 25, 1-21.
- Sunkara, M.S.; Kuchana, V.; Sree, J.P.; Prabugari, R.; Pilli, A.; Irum, F.; Tangeda, S.J.; Bhowmik, D. Pharmacophore based virtual screening & molecular docking studies on selected plant constituents of Plantago major. J. Appl. Pharm. Sci., 2023, 13(4), 157-167.
- Nisha, C. M.; Kumar, A.; Nair, P.; Gupta, N.; Silakari, C.; Tripathi, T.; Kumar, A. Molecular docking and in silico ADMET study reveals acylguanidine 7a as a potential inhibitor of β-secretase. Adv. Bioinform., 2016, 2016
Дополнительные файлы
