Protective Effects of Liriodendrin on Myocardial Infarction-Induced Fibrosis in Rats via the PI3K/Akt Autophagy Pathway: A Network Pharmacology Study
- Авторы: Zhang P.1, Liu X.2, Yu X.2, Zhuo Y.3, Li D.3, Yang L.3, Lu Y.4
-
Учреждения:
- Department of Cardiology, Tianjin Nankai Hospital
- Graduate School, Tianjin University of Traditional Chinese Medicine
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital
- Выпуск: Том 27, № 11 (2024)
- Страницы: 1566-1575
- Раздел: Chemistry
- URL: https://kazanmedjournal.ru/1386-2073/article/view/643872
- DOI: https://doi.org/10.2174/1386207326666230717155641
- ID: 643872
Цитировать
Полный текст
Аннотация
Background:Liriodendrin (LIR) has been reported to improve cardiac function in rats following myocardial infarction. However, its role and mechanism in reparative myocardial fibrosis remain unclear.
Methods:In this study, a rat model of myocardial fibrosis was established via left anterior descending artery ligation and randomly divided into three groups (n = 6 per group): sham-operated, myocardial infarction, and LIR intervention (100 mg/kg/day) groups. The pharmacological effects of LIR were assessed using echocardiography, hematoxylin, and eosin (H&E) staining, and Masson staining. Network pharmacology and bioinformatics were utilized to identify potential mechanisms of LIR, which were further validated via western blot analysis.
Results:Our findings demonstrated that LIR improved cardiac function, histology scores, and col lagen volume fraction. Moreover, LIR downregulated the expression of Beclin-1, LC3-II/LC3-I while upregulating the expression of p62, indicating LIR-inhibited autophagy in the heart after myocardial infarction. Further analysis revealed that the PI3K/Akt signaling pathway was significantly enriched and validated by western blot. This analysis suggested that the ratios of p- PI3K/PI3K, p-Akt/Akt, and p-mTOR/mTOR were significantly increased.
Conclusion:LIR may attenuate myocardial infarction-induced fibrosis in rats by inhibiting excessive myocardial autophagy, with the potential mechanism involving the activation of the PI3K/Akt/mTOR pathway.
Об авторах
Ping Zhang
Department of Cardiology, Tianjin Nankai Hospital
Email: info@benthamscience.net
Xuanming Liu
Graduate School, Tianjin University of Traditional Chinese Medicine
Email: info@benthamscience.net
Xin Yu
Graduate School, Tianjin University of Traditional Chinese Medicine
Email: info@benthamscience.net
Yuzhen Zhuo
Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital
Email: info@benthamscience.net
Dihua Li
Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital
Email: info@benthamscience.net
Lei Yang
Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital
Автор, ответственный за переписку.
Email: info@benthamscience.net
Yanmin Lu
Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Musher, D.M.; Abers, M.S.; Corrales-Medina, V.F. Acute infection and myocardial infarction. N. Engl. J. Med., 2019, 380(2), 171-176. doi: 10.1056/NEJMra1808137 PMID: 30625066
- Roger, V.L.; Go, A.S.; Lloyd-Jones, D.M.; Adams, R.J.; Berry, J.D.; Brown, T.M.; Carnethon, M.R.; Dai, S.; de Simone, G.; Ford, E.S.; Fox, C.S.; Fullerton, H.J.; Gillespie, C.; Greenlund, K.J.; Hailpern, S.M.; Heit, J.A.; Ho, P.M.; Howard, V.J.; Kissela, B.M.; Kittner, S.J.; Lackland, D.T.; Lichtman, J.H.; Lisabeth, L.D.; Makuc, D.M.; Marcus, G.M.; Marelli, A.; Matchar, D.B.; McDermott, M.M.; Meigs, J.B.; Moy, C.S.; Mozaffarian, D.; Mussolino, M.E.; Nichol, G.; Paynter, N.P.; Rosamond, W.D.; Sorlie, P.D.; Stafford, R.S.; Turan, T.N.; Turner, M.B.; Wong, N.D.; Wylie-Rosett, J. Heart disease and stroke statistics--2011 update: a report from the American Heart Association. Circulation, 2011, 123(4), e18-e209. doi: 10.1161/CIR.0b013e3182009701 PMID: 21160056
- Abdallah, M.H.; Arnaout, S.; Karrowni, W.; Dakik, H.A. The management of acute myocardial infarction in developing countries. Int. J. Cardiol., 2006, 111(2), 189-194. doi: 10.1016/j.ijcard.2005.11.003 PMID: 16364475
- Barnes, M.; Heywood, A.E.; Mahimbo, A.; Rahman, B.; Newall, A.T.; Macintyre, C.R. Acute myocardial infarction and influenza: a meta-analysis of casecontrol studies. Heart, 2015, 101(21), 1738-1747. doi: 10.1136/heartjnl-2015-307691 PMID: 26310262
- Saleh, M.; Ambrose, J.A. Understanding myocardial infarction. F1000 Res., 2018, 7, 1378. doi: 10.12688/f1000research.15096.1 PMID: 30228871
- Lv, S.; Yuan, P.; Dong, J.; Lu, C.; Li, M.; Qu, F.; Zhu, Y.; Yuan, Z.; Zhang, J. QiShenYiQi pill improves the reparative myocardial fibrosis by regulating autophagy. J. Cell. Mol. Med., 2020, 24(19), 11283-11293. doi: 10.1111/jcmm.15695 PMID: 32881330
- Gatica, D.; Lahiri, V.; Klionsky, D.J. Cargo recognition and degradation by selective autophagy. Nat. Cell Biol., 2018, 20(3), 233-242. doi: 10.1038/s41556-018-0037-z PMID: 29476151
- Wang, X.; Dai, Y.; Ding, Z.; Khaidakov, M.; Mercanti, F.; Mehta, J.L. Regulation of autophagy and apoptosis in response to angiotensin II in HL-1 cardiomyocytes. Biochem. Biophys. Res. Commun., 2013, 440(4), 696-700. doi: 10.1016/j.bbrc.2013.09.131 PMID: 24099770
- Cătană, C.S.; Atanasov, A.G.; Berindan-Neagoe, I. Natural products with anti-aging potential: Affected targets and molecular mechanisms. Biotechnol. Adv., 2018, 36(6), 1649-1656. doi: 10.1016/j.biotechadv.2018.03.012 PMID: 29597027
- Wang, P.; Shao, B.Z.; Deng, Z.; Chen, S.; Yue, Z.; Miao, C.Y. Autophagy in ischemic stroke. Prog. Neurobiol., 2018, 163-164, 98-117. doi: 10.1016/j.pneurobio.2018.01.001 PMID: 29331396
- Matsui, Y.; Takagi, H.; Qu, X.; Abdellatif, M.; Sakoda, H.; Asano, T.; Levine, B.; Sadoshima, J. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ. Res., 2007, 100(6), 914-922. doi: 10.1161/01.RES.0000261924.76669.36 PMID: 17332429
- Sciarretta, S.; Yee, D.; Nagarajan, N.; Bianchi, F.; Saito, T.; Valenti, V.; Tong, M.; Del Re, D.P.; Vecchione, C.; Schirone, L.; Forte, M.; Rubattu, S.; Shirakabe, A.; Boppana, V.S.; Volpe, M.; Frati, G.; Zhai, P.; Sadoshima, J. Trehalose-Induced Activation of Autophagy improves cardiac remodeling after myocardial infarction. J. Am. Coll. Cardiol., 2018, 71(18), 1999-2010. doi: 10.1016/j.jacc.2018.02.066 PMID: 29724354
- Sciarretta, S.; Yee, D.; Shenoy, V.; Nagarajan, N.; Sadoshima, J. The importance of autophagy in cardioprotection. High Blood Press. Cardiovasc. Prev., 2014, 21(1), 21-28. doi: 10.1007/s40292-013-0029-9 PMID: 24235024
- Li, Y.; Liu, M.; Song, X.; Zheng, X.; Yi, J.; Liu, D.; Wang, S.; Chu, C.; Yang, J. Exogenous hydrogen sulfide ameliorates diabetic myocardial fibrosis by inhibiting cell aging through SIRT6/AMPK autophagy. Front. Pharmacol., 2020, 11, 1150. doi: 10.3389/fphar.2020.01150 PMID: 32903815
- Ba, L.; Gao, J.; Chen, Y.; Qi, H.; Dong, C.; Pan, H.; Zhang, Q.; Shi, P.; Song, C.; Guan, X.; Cao, Y.; Sun, H. Allicin attenuates pathological cardiac hypertrophy by inhibiting autophagy via activation of PI3K/Akt/mTOR and MAPK/ERK/mTOR signaling pathways. Phytomedicine, 2019, 58, 152765. doi: 10.1016/j.phymed.2018.11.025 PMID: 31005720
- Heras-Sandoval, D.; Pérez-Rojas, J.M.; Hernández-Damián, J.; Pedraza-Chaverri, J. The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell. Signal., 2014, 26(12), 2694-2701. doi: 10.1016/j.cellsig.2014.08.019 PMID: 25173700
- Feng, C.; Li, B.G.; Gao, X.P.; Qi, H.Y.; Zhang, G.L. A new triterpene and an antiarrhythmic liriodendrin from Pittosporum brevicalyx. Arch. Pharm. Res., 2010, 33(12), 1927-1932. doi: 10.1007/s12272-010-1206-1 PMID: 21191756
- Jung, H.J.; Park, H.J.; Kim, R.G.; Shin, K.M.; Ha, J.; Choi, J.W.; Kim, H.J.; Lee, Y.S.; Lee, K.T. In vivo anti-inflammatory and antinociceptive effects of liriodendrin isolated from the stem bark of Acanthopanax senticosus. Planta Med., 2003, 69(7), 610-616. doi: 10.1055/s-2003-41127 PMID: 12898415
- Zhang, Z.; Yang, L.; Wang, B.; Zhang, L.; Zhang, Q.; Li, D.; Zhang, S.; Gao, H.; Wang, X. Protective role of liriodendrin in mice with dextran sulphate sodium-induced ulcerative colitis. Int. Immunopharmacol., 2017, 52, 203-210. doi: 10.1016/j.intimp.2017.09.012 PMID: 28941417
- Sohn, Y.A.; Hwang, S.A.; Lee, S.Y.; Hwang, I.Y.; Kim, S.W.; Kim, S.Y.; Moon, A.; Lee, Y.S.; Kim, Y.H.; Kang, K.J.; Jeong, C.S. Protective Effect of Liriodendrin Isolated from Kalopanax pictus against Gastric Injury. Biomol. Ther. (Seoul), 2015, 23(1), 53-59. doi: 10.4062/biomolther.2014.103 PMID: 25593644
- Kim, D.H.; Lee, K.T.; Bae, E.A.; Han, M.J.; Park, H.J. Metabolism of liriodendrin and syringin by human intestinal bacteria and their relation toin vitro cytotoxicity. Arch. Pharm. Res., 1999, 22(1), 30-34. doi: 10.1007/BF02976432 PMID: 10071956
- Li, G.; Yang, L.; Feng, L.; Yang, J.; Li, Y.; An, J.; Li, D.; Xu, Y.; Gao, Y.; Li, J.; Liu, J.; Yang, L.; Qi, Z. Syringaresinol Protects against Type 1 Diabetic Cardiomyopathy by Alleviating Inflammation Responses, Cardiac Fibrosis, and Oxidative Stress. Mol. Nutr. Food Res., 2020, 64(18), 2000231. doi: 10.1002/mnfr.202000231 PMID: 32729956
- Li, D.H.; Wang, Y.; Lv, Y.S.; Liu, J.H.; Yang, L.; Zhang, S.K.; Zhuo, Y.Z. Preparative Purification of Liriodendrin from Sargentodoxa cuneata by Macroporous Resin. BioMed Res. Int., 2015, 2015, 861256. PMID: 26236742
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res., 2019, 47(W1), W357-W364. doi: 10.1093/nar/gkz382 PMID: 31106366
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: customizable proteinprotein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 2021, 49(D1), D605-D612. doi: 10.1093/nar/gkaa1074 PMID: 33237311
- Yu, T.; Wang, Z.; You, X.; Zhou, H.; He, W.; Li, B.; Xia, J.; Zhu, H.; Zhao, Y.; Yu, G.; Xiong, Y.; Yang, Y. Resveratrol promotes osteogenesis and alleviates osteoporosis by inhibiting p53. Aging (Albany NY), 2020, 12(11), 10359-10369. doi: 10.18632/aging.103262 PMID: 32459661
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; Fu, X.; Liu, S.; Bo, X.; Yu, G. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation, 2021, 2(3), 100141. doi: 10.1016/j.xinn.2021.100141 PMID: 34557778
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant, 2020, 13(8), 1194-1202. doi: 10.1016/j.molp.2020.06.009 PMID: 32585190
- Walter, W.; Sánchez-Cabo, F.; Ricote, M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics, 2015, 31(17), 2912-2914. doi: 10.1093/bioinformatics/btv300 PMID: 25964631
- Park, S.; Nguyen, N.B.; Pezhouman, A.; Ardehali, R. Cardiac fibrosis: potential therapeutic targets. Transl. Res., 2019, 209, 121-137. doi: 10.1016/j.trsl.2019.03.001 PMID: 30930180
- Aujla, P.K.; Kassiri, Z. Diverse origins and activation of fibroblasts in cardiac fibrosis. Cell. Signal., 2021, 78, 109869. doi: 10.1016/j.cellsig.2020.109869 PMID: 33278559
- Mavrogeni, S.; Markousis-Mavrogenis, G.; Koutsogeorgopoulou, L.; Kolovou, G. Cardiovascular magnetic resonance imaging: clinical implications in the evaluation of connective tissue diseases. J. Inflamm. Res., 2017, 10, 55-61. doi: 10.2147/JIR.S115508 PMID: 28546762
- Samsamshariat, S.A.; Samsamshariat, Z.A.; Movahed, M.R. A novel method for safe and accurate left anterior descending coronary artery ligation for research in rats. Cardiovasc. Revasc. Med., 2005, 6(3), 121-123. doi: 10.1016/j.carrev.2005.07.001 PMID: 16275608
- Schirone, L.; Forte, M.; Palmerio, S.; Yee, D.; Nocella, C.; Angelini, F.; Pagano, F.; Schiavon, S.; Bordin, A.; Carrizzo, A.; Vecchione, C.; Valenti, V.; Chimenti, I.; De Falco, E.; Sciarretta, S.; Frati, G. A Review of the Molecular Mechanisms Underlying the Development and Progression of Cardiac Remodeling. Oxid. Med. Cell. Longev., 2017, 2017, 1-16. doi: 10.1155/2017/3920195 PMID: 28751931
- Jung, C.H.; Jun, C.B.; Ro, S.H.; Kim, Y.M.; Otto, N.M.; Cao, J.; Kundu, M.; Kim, D.H. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell, 2009, 20(7), 1992-2003. doi: 10.1091/mbc.e08-12-1249 PMID: 19225151
- Lv, S.; Yuan, P.; Lu, C.; Dong, J.; Li, M.; Qu, F.; Zhu, Y.; Zhang, J. QiShenYiQi pill activates autophagy to attenuate reactive myocardial fibrosis via the PI3K/AKT/mTOR pathway. Aging, 2021, 13(4), 5525-5538. doi: 10.18632/aging.202482 PMID: 33582656
Дополнительные файлы
