Aromatic Plants as Potential Resources to Combat Osteoarthritis

  • Авторы: Maring M.1, C. B.2, M. K.3, Nandi S.4, S. L.5, H. B.R.6
  • Учреждения:
    1. Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy,, Sri Ramachandra Institute of Higher Education and Research
    2. Department of Rheumatology, Sri Ramachandra Institute of Higher Education and Research
    3. Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science,, Technology & Advanced Studies,
    4. Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research
    5. Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research
    6. Sri Ramachandra Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research
  • Выпуск: Том 27, № 10 (2024)
  • Страницы: 1434-1465
  • Раздел: Chemistry
  • URL: https://kazanmedjournal.ru/1386-2073/article/view/643801
  • DOI: https://doi.org/10.2174/0113862073267213231004094629
  • ID: 643801

Цитировать

Полный текст

Аннотация

Osteoarthritis, which affects an estimated 10% of men and 18% of women over the age of 60 and is increasing in genetic prevalence and incidence, is acknowledged as the condition that degrades the quality of life for older adults in the world. There is currently no known treatment for osteoarthritis. The majority of therapeutic methods slow the progression of arthritis or treat its symptoms, making effective treatment to end the degenerative process of arthritis elusive. When non-pharmacological therapy is ineffective, various pharmacological therapies may be used to treat osteoarthritis. Pharmacological therapy, however, can have major adverse effects and be very expensive. As a result, alternative remedies have been researched. The promise for the safe and efficient management of osteoarthritis has been demonstrated by herbal remedies. Experimental research suggests that herbal extracts and compounds can reduce inflammation, inhibit catabolic processes, and promote anabolic processes that are important for treating osteoarthritis. Due to their therapeutic and innate pharmacological qualities, aromatic herbs are frequently employed as herbal remedies. Recent research has shown that aromatic plants have the potency to treat osteoarthritis. Additionally, complex mixtures of essential oils and their bioactive ingredients, which have anti-inflammatory and antioxidant properties and are obtained from aromatic plants, are frequently utilized as complementary therapies for osteoarthritis. To establish new study avenues, the advantageous anti-osteoarthritic effects of aromatic herbal medicines, including plants, essential oils, and their bioactive components, are extensively discussed.

Об авторах

Maphibanri Maring

Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy,, Sri Ramachandra Institute of Higher Education and Research

Email: info@benthamscience.net

Balaji C.

Department of Rheumatology, Sri Ramachandra Institute of Higher Education and Research

Email: info@benthamscience.net

Komala M.

Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science,, Technology & Advanced Studies,

Email: info@benthamscience.net

Sisir Nandi

Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research

Email: info@benthamscience.net

Latha S.

Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research

Автор, ответственный за переписку.
Email: info@benthamscience.net

Balaji H.

Sri Ramachandra Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Jang, S.; Lee, K.; Ju, J.H. Recent updates of diagnosis, pathophysiology, and treatment on osteoarthritis of the knee. Int. J. Mol. Sci., 2021, 22(5), 2619. doi: 10.3390/ijms22052619 PMID: 33807695
  2. Katz, J.N.; Arant, K.R.; Loeser, R.F. Diagnosis and treatment of hip and knee osteoarthritis. JAMA, 2021, 325(6), 568-578. doi: 10.1001/jama.2020.22171 PMID: 33560326
  3. Yunus, M.H.M.; Nordin, A.; Kamal, H. Pathophysiological perspective of osteoarthritis. Medicina (Kaunas), 2020, 56(11), 614. doi: 10.3390/medicina56110614 PMID: 33207632
  4. Nasiri, A.; Mahmodi, M.A. Aromatherapy massage with lavender essential oil and the prevention of disability in ADL in patients with osteoarthritis of the knee: A randomized controlled clinical trial. Complement. Ther. Clin. Pract., 2018, 30(30), 116-121. doi: 10.1016/j.ctcp.2017.12.012 PMID: 29389470
  5. Barão Paixão, V.L.; Freire de Carvalho, J. Essential oil therapy in rheumatic diseases: A systematic review. Complement. Ther. Clin. Pract., 2021, 43, 101391. doi: 10.1016/j.ctcp.2021.101391 PMID: 33865080
  6. Chen, D.; Shen, J.; Zhao, W.; Wang, T.; Han, L.; Hamilton, J.L. Im, H.J. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res., 2017, 5(1), 16044. doi: 10.1038/boneres.2016.44 PMID: 28149655
  7. Mao, L.; Wu, W.; Wang, M.; Guo, J.; Li, H.; Zhang, S.; Xu, J.; Zou, J. Targeted treatment for osteoarthritis: drugs and delivery system. Drug Deliv., 2021, 28(1), 1861-1876. doi: 10.1080/10717544.2021.1971798 PMID: 34515606
  8. Ahmed, T.; Dey, R.; Mukherjee, J.; Samadder, A.; Nandi, S. Age Related osteoarthritis: regenerative therapy, synthetic drugs, and naturopathy to combat abnormal signal transduction. Curr. Signal Transduct. Ther., 2022, 17(3), 9-25.
  9. Hunter, D.J.; Felson, D.T. Osteoarthritis. BMJ, 2006, 332(7542), 639-642. doi: 10.1136/bmj.332.7542.639 PMID: 16543327
  10. Steinmeyer, J.; Bock, F.; Stöve, J.; Jerosch, J.; Flechtenmacher, J. Pharmacological treatment of knee osteoarthritis: Special considerations of the new German guideline. Orthop. Rev. (Pavia), 2018, 10(4), 7782. doi: 10.4081/or.2018.7782 PMID: 30662685
  11. Habib, G.S. Systemic effects of intra-articular corticosteroids. Clin. Rheumatol., 2009, 28(7), 749-756. doi: 10.1007/s10067-009-1135-x PMID: 19252817
  12. Hahn, D.; Shin, S.H.; Bae, J.S. Natural antioxidant and anti-inflammatory compounds in foodstuff or medicinal herbs inducing heme oxygenase-1 expression. Antioxidants, 2020, 9(12), 1191. doi: 10.3390/antiox9121191 PMID: 33260980
  13. Petrovska, B.; Cekovska, S. Extracts from the history and medical properties of garlic. Pharmacogn. Rev., 2010, 4(7), 106-110. doi: 10.4103/0973-7847.65321 PMID: 22228949
  14. Batiha, G.E.S.; Beshbishy, A.M.; Wasef, L.G.; Elewa, Y.H.A.; Al-Sagan, A.A.; El-Hack, M.E.A. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): a review. Nutrients, 2020, 12(3), 872.
  15. Williams, F.M.K.; Skinner, J.; Spector, T.D.; Cassidy, A.; Clark, I.M.; Davidson, R.M.; MacGregor, A.J. Dietary garlic and hip osteoarthritis: evidence of a protective effect and putative mechanism of action. BMC Musculoskelet. Disord., 2010, 11(1), 280. doi: 10.1186/1471-2474-11-280 PMID: 21143861
  16. Dehghani, S.; Alipoor, E.; Salimzadeh, A.; Yaseri, M.; Hosseini, M.; Feinle-Bisset, C.; Hosseinzadeh-Attar, M.J. The effect of a garlic supplement on the pro-inflammatory adipocytokines, resistin and tumor necrosis factor-alpha, and on pain severity, in overweight or obese women with knee osteoarthritis. Phytomedicine, 2018, 48, 70-75. doi: 10.1016/j.phymed.2018.04.060 PMID: 30195882
  17. Hamidpour, R.; Hamidpour, S.; Hamidpour, M.; Shahlari, M. Frankincense (rǔ xiāng; boswellia species): from the selection of traditional applications to the novel phytotherapy for the prevention and treatment of serious diseases. J. Tradit. Complement. Med., 2013, 3(4), 221-226. doi: 10.4103/2225-4110.119723 PMID: 24716181
  18. Blain, E.J.; Ali, A.Y.; Duance, V.C. Boswellia frereana (frankincense) suppresses cytokine-induced matrix metalloproteinase expression and production of pro-inflammatory molecules in articular cartilage. Phytother. Res., 2010, 24(6), 905-912. doi: 10.1002/ptr.3055 PMID: 19943332
  19. Annaz, H.; Sane, Y.; Bitchagno, G.T.M.; Ben Bakrim, W.; Drissi, B.; Mahdi, I.; El Bouhssini, M.; Sobeh, M. Caper (Capparis spinosa L.):an updated review on its phytochemistry, nutritional value, traditional uses, and therapeutic potential. Front. Pharmacol., 2022, 13, 878749. doi: 10.3389/fphar.2022.878749 PMID: 35935860
  20. Zhang, H.; Ma, Z. Phytochemical and pharmacological properties of Capparis spinosa as a medicinal plant. Nutrients, 2018, 10(2), 116. doi: 10.3390/nu10020116 PMID: 29364841
  21. Maresca, M.; Micheli, L.; Di Cesare Mannelli, L.; Tenci, B.; Innocenti, M.; Khatib, M.; Mulinacci, N.; Ghelardini, C. Acute effect of Capparis spinosa root extracts on rat articular pain. J. Ethnopharmacol., 2016, 193, 456-465. doi: 10.1016/j.jep.2016.09.032 PMID: 27647009
  22. Wang, X.Y.; Hao, J.M.; Ren, Q.R.; Li, H.Y.; Wu, J.S.; Zhu, X.H.; Chen, J.Y.; Wang, Y.N.; Zhang, L.S. Cytotoxicity and apoptosis induced by Chenopodium ambrosioides L. Essential oil in human normal liver cell line L02via the endogenous mitochondrial pathway rather than the endoplasmic reticulum stress. Int. J. Environ. Res. Public Health, 2021, 18(14), 7469. doi: 10.3390/ijerph18147469 PMID: 34299918
  23. Calado, G.P.; Lopes, A.J.O.; Costa, L.M., Junior; Lima, F.C.A.; Silva, L.A.; Pereira, W.S.; Amaral, F.M.M.; Garcia, J.B.S.; Cartágenes, M.S.S.; Nascimento, F.R.F. Chenopodium ambrosioides L. Reduces synovial inflammation and pain in experimental osteoarthritis. PLoS One, 2015, 10(11), e0141886. doi: 10.1371/journal.pone.0141886 PMID: 26524084
  24. Bellamkonda, R.; Karuna, R.; Sasi Bhusana Rao, B.; Haritha, K.; Manjunatha, B.; Silpa, S.; Saralakumari, D. Beneficiary effect of Commiphora mukul ethanolic extract against high fructose diet induced abnormalities in carbohydrate and lipid metabolism in wistar rats. J. Tradit. Complement. Med., 2018, 8(1), 203-211. doi: 10.1016/j.jtcme.2017.05.007 PMID: 29322010
  25. Shah, R.; Gulati, V.; Palombo, E.A. Pharmacological properties of guggulsterones, the major active components of gum guggul. Phytother. Res., 2012, 26(11), 1594-1605. doi: 10.1002/ptr.4647 PMID: 22388973
  26. Sotoudeh, R.; Hadjzadeh, M.A.R.; Gholamnezhad, Z.; Aghaei, A. The anti-diabetic and antioxidant effects of a combination of Commiphora mukul, Commiphora myrrha and Terminalia chebula in diabetic rats. Avicenna J. Phytomed., 2019, 9(5), 454-464. PMID: 31516859
  27. Singh, B.B.; Mishra, L.C.; Vinjamury, S.P.; Aquilina, N.; Singh, V.J.; Shepard, N. The effectiveness of Commiphora mukul for osteoarthritis of the knee: an outcomes study. Altern. Ther. Health Med., 2003, 9(3), 74-79. PMID: 12776478
  28. Micheli, L.; Di Cesare Mannelli, L.; Mattoli, L.; Tamimi, S.; Flamini, E.; Garetto, S.; Lucci, J.; Giovagnoni, E.; Cinci, L.; D’Ambrosio, M.; Luceri, C.; Ghelardini, C. Intra-articular route for the system of molecules 14G1862 from Centella asiatica: pain relieving and protective effects in a rat model of osteoarthritis. Nutrients, 2020, 12(6), 1618. doi: 10.3390/nu12061618 PMID: 32486519
  29. Sun, B.; Wu, L.; Wu, Y.; Zhang, C.; Qin, L.; Hayashi, M.; Kudo, M.; Gao, M.; Liu, T. Therapeutic potential of Centella asiatica and its triterpenes: a review. Front. Pharmacol., 2020, 11, 568032. doi: 10.3389/fphar.2020.568032 PMID: 33013406
  30. Wong, J.H.; Barron, A.M. Abdullah, JM Mitoprotective effects of Centella asiatica (L.) Urb.: Anti-inflammatory and neuroprotective opportunities in neurodegenerative disease. Front. Pharmacol., 2021, 12, 687935.
  31. Rotpenpian, N.; Arayapisit, T.; Roumwong, A.; Pakaprot, N.; Tantisira, M.; Wanasuntronwong, A. A standardized extract of Centella asiatica (ECa 233) prevents temporomandibular joint osteoarthritis by modulating the expression of local inflammatory mediators in mice. J. Appl. Oral Sci., 2021, 29, e20210329. doi: 10.1590/1678-7757-2021-0329 PMID: 34705985
  32. Syamsunarno, M.R.A.A.; Safitri, R.; Kamisah, Y. Protective effects of Caesalpinia sappan Linn. and its bioactive compounds on cardiovascular organs. Front. Pharmacol., 2021, 12, 725745. doi: 10.3389/fphar.2021.725745 PMID: 34603037
  33. Wu, S.Q.; Otero, M.; Unger, F.M.; Goldring, M.B.; Phrutivorapongkul, A.; Chiari, C.; Kolb, A.; Viernstein, H.; Toegel, S. Anti-inflammatory activity of an ethanolic Caesalpinia sappan extract in human chondrocytes and macrophages. J. Ethnopharmacol., 2011, 138(2), 364-372. doi: 10.1016/j.jep.2011.09.011 PMID: 21963554
  34. Toegel, S.; Wu, S.Q.; Otero, M.; Goldring, M.B.; Leelapornpisid, P.; Chiari, C.; Kolb, A.; Unger, F.M.; Windhager, R.; Viernstein, H. Caesalpinia sappan extract inhibits IL1β-mediated overexpression of matrix metalloproteinases in human chondrocytes. Genes Nutr., 2012, 7(2), 307-318. doi: 10.1007/s12263-011-0244-8 PMID: 21850498
  35. Abdel-Lateef, E.; Mahmoud, F.; Hammam, O.; El-Ahwany, E.; El-Wakil, E.; Kandil, S.; Abu Taleb, H.; El-Sayed, M.; Hassenein, H. Bioactive chemical constituents of Curcuma longa L. rhizomes extract inhibit the growth of human hepatoma cell line (HepG2). Acta Pharm., 2016, 66(3), 387-398. doi: 10.1515/acph-2016-0028 PMID: 27383887
  36. Wang, Z.; Jones, G.; Winzenberg, T.; Cai, G.; Laslett, L.L.; Aitken, D.; Hopper, I.; Singh, A.; Jones, R.; Fripp, J.; Ding, C.; Antony, B. Effectiveness of Curcuma longa extract for the treatment of symptoms and effusion-synovitis of knee osteoarthritis. Ann. Intern. Med., 2020, 173(11), 861-869. doi: 10.7326/M20-0990 PMID: 32926799
  37. Henrotin, Y.; Malaise, M.; Wittoek, R.; de Vlam, K.; Brasseur, J.P.; Luyten, F.P.; Jiangang, Q.; Van den Berghe, M.; Uhoda, R.; Bentin, J.; De Vroey, T.; Erpicum, L.; Donneau, A.F.; Dierckxsens, Y. Bio-optimized Curcuma longa extract is efficient on knee osteoarthritis pain: a double-blind multicenter randomized placebo controlled three-arm study. Arthritis Res. Ther., 2019, 21(1), 179. doi: 10.1186/s13075-019-1960-5 PMID: 31351488
  38. Gxaba, N.; Manganyi, M.C. The Fight against Infection and Pain: Devil’s Claw (Harpagophytum procumbens) a rich source of anti-inflammatory activity: 2011–2022. Molecules, 2022, 27(11), 3637. doi: 10.3390/molecules27113637 PMID: 35684573
  39. Mariano, A.; Di Sotto, A.; Leopizzi, M.; Garzoli, S.; Di Maio, V.; Gullì, M.; Dalla Vedova, P.; Ammendola, S.; Scotto d’Abusco, A. Antiarthritic effects of a root extract from Harpagophytum procumbens DC: novel insights into the molecular mechanisms and possible bioactive phytochemicals. Nutrients, 2020, 12(9), 2545. doi: 10.3390/nu12092545 PMID: 32842461
  40. Menghini, L.; Recinella, L.; Leone, S.; Chiavaroli, A.; Cicala, C.; Brunetti, L. Vladimir-Knežević S.; Orlando, G.; Ferrante, C. Devil’s claw (Harpagophytum procumbens) and chronic inflammatory diseases: A concise overview on preclinical and clinical data. Phytother. Res., 2019, 33(9), 2152-2162. doi: 10.1002/ptr.6395 PMID: 31273865
  41. Mariano, A.; Bigioni, I.; Mattioli, R.; Di Sotto, A.; Leopizzi, M.; Garzoli, S.; Mariani, P.F.; Dalla Vedova, P.; Ammendola, S.; Scotto d’Abusco, A. Harpagophytum procumbens root extract mediates anti-inflammatory effects in osteoarthritis synoviocytes through CB2 activation. Pharmaceuticals (Basel), 2022, 15(4), 457. doi: 10.3390/ph15040457 PMID: 35455454
  42. Paparella, A.; Nawade, B.; Shaltiel-Harpaz, L.; Ibdah, M. A review of the botany, volatile composition, biochemical and molecular aspects, and traditional uses of Laurus nobilis. Plants, 2022, 11(9), 1209. doi: 10.3390/plants11091209 PMID: 35567209
  43. Maghsoudi, H.; Khosrogardi, M.; Akbarnejad Eshkalak, A.; Tatar Mamaghani, Y.; Bakhshi Khanaki, G.; Yazdanpanah, E. The effect of the alcoholic essence of Laurus nobilis L. on pro-inflammatory cytokine gene expression in synoviocytes and macrophage/monocyte. Biomed. Sci., 2022, 8(1), 10-19. doi: 10.11648/j.bs.20220801.13
  44. Zhang, L.; Wei, W. Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony. Pharmacol. Ther., 2020, 207, 107452. doi: 10.1016/j.pharmthera.2019.107452 PMID: 31836457
  45. Zhou, Y.X.; Gong, X.H.; Zhang, H.; Peng, C. A review on the pharmacokinetics of paeoniflorin and its anti-inflammatory and immunomodulatory effects. Biomed. Pharmacother., 2020, 130, 110505. doi: 10.1016/j.biopha.2020.110505 PMID: 32682112
  46. Liang, S.B.; Cao, H.J.; Kong, L.Y.; Wei, J.L.; Robinson, N.; Yang, S.H.; Zhu, S.J.; Li, Y.Q.; Fei, Y.T.; Han, M.; Liu, J.P. Systematic review and meta-analysis of Chinese herbal formula Tongxie Yaofang for diarrhea-predominant irritable bowel syndrome: Evidence for clinical practice and future trials. Front. Pharmacol., 2022, 13, 904657. doi: 10.3389/fphar.2022.904657 PMID: 36091782
  47. Lee, D.; Kim, S.J.; Kim, H.A. 12 week, randomized, double-blind, placebo-controlled clinical trial for the evaluation of the efficacy and safety of HT083 on mild osteoarthritis. Medicine (Baltimore), 2020, 99(28), e20907. doi: 10.1097/MD.0000000000020907 PMID: 32664084
  48. Liu, H.; Lu, X.; Hu, Y.; Fan, X. Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy. Pharmacol. Res., 2020, 161, 105263. doi: 10.1016/j.phrs.2020.105263 PMID: 33127555
  49. Xie, W.; Meng, X.; Zhai, Y.; Zhou, P.; Ye, T.; Wang, Z.; Sun, G.; Sun, X. Panax notoginseng saponins: a review of its mechanisms of antidepressant or anxiolytic effects and network analysis on phytochemistry and pharmacology. Molecules, 2018, 23(4), 940. doi: 10.3390/molecules23040940 PMID: 29673237
  50. Zhang, Y.; Cai, W.; Han, G.; Zhou, S.; Li, J.; Chen, M.; Li, H. Panax notoginseng saponins prevent senescence and inhibit apoptosis by regulating the PI3K AKT mTOR pathway in osteoarthritic chondrocytes. Int. J. Mol. Med., 2020, 45(4), 1225-1236. PMID: 32124939
  51. Ju, L.; Hu, P.; Chen, P.; Xue, X.; Li, Z.; He, F.; Qiu, Z.; Cheng, J.; Huang, F. Huoxuezhitong capsule ameliorates MIA-induced osteoarthritis of rats through suppressing PI3K/Akt/NF-κB pathway. Biomed. Pharmacother., 2020, 129, 110471. doi: 10.1016/j.biopha.2020.110471 PMID: 32768958
  52. Jantan, I.; Haque, M.A.; Ilangkovan, M.; Arshad, L. An insight into the modulatory effects and mechanisms of action of Phyllanthus species and their bioactive metabolites on the immune system. Front. Pharmacol., 2019, 10, 878. doi: 10.3389/fphar.2019.00878 PMID: 31440162
  53. Qi, W.; Hua, L.; Gao, K. Chemical constituents of the plants from the genus Phyllanthus. Chem. Biodivers., 2014, 11(3), 364-395. doi: 10.1002/cbdv.201200244 PMID: 24634068
  54. Pinkaew, D.; Kiattisin, K.; Wonglangka, K.; Awoot, P. Phonophoresis of Phyllanthus amarus nanoparticle gel improves functional capacity in individuals with knee osteoarthritis: A randomized controlled trial. J. Bodyw. Mov. Ther., 2020, 24(1), 15-18. doi: 10.1016/j.jbmt.2019.04.013 PMID: 31987536
  55. Buddhachat, K.; Chomdej, S.; Pradit, W.; Nganvongpanit, K.; Ongchai, S. In vitro chondroprotective potential of extracts obtained from various Phyllantus Species. Planta Med., 2017, 83(1-02), 87-96. PMID: 27340791
  56. Perera, P.; Perera, M.; Kumarasinghe, N. Effect of Sri Lankan traditional medicine and Ayurveda on Sandhigata Vata (osteoarthritis of knee joint). Ayu, 2014, 35(4), 411-415. doi: 10.4103/0974-8520.159007 PMID: 26195904
  57. Salehi, B.; Zakaria, Z.A.; Gyawali, R.; Ibrahim, S.A.; Rajkovic, J.; Shinwari, Z.K.; Khan, T.; Sharifi-Rad, J.; Ozleyen, A.; Turkdonmez, E.; Valussi, M.; Tumer, T.B.; Monzote Fidalgo, L.; Martorell, M.; Setzer, W.N. Piper species: a comprehensive review on their phytochemistry, biological activities and applications. Molecules, 2019, 24(7), 1364. doi: 10.3390/molecules24071364 PMID: 30959974
  58. Nirmal, P.S.; Jagtap, S.D.; Devarshi, P.P.; Narkhede, A.N.; Koppikar, S.J.; Ingale, D.R. Cartilage protective effect of Sida cordifolia L. and Piper longum L. is through modulation of MMPs and TIMP. Int. J. Adv. Res. (Indore), 2015, 3(11), 480-488.
  59. Igual, M.; García-Herrera, P.; Cámara, R.M.; Martínez-Monzó, J.; García-Segovia, P.; Cámara, M. Bioactive compounds in rosehip (Rosa canina) powder with encapsulating agents. Molecules, 2022, 27(15), 4737. doi: 10.3390/molecules27154737 PMID: 35897912
  60. Ayati, Z.; Amiri, M.S.; Ramezani, M.; Delshad, E.; Sahebkar, A.; Emami, S.A. Phytochemistry, traditional uses and pharmacological profile of rose hip: a review. Curr. Pharm. Des., 2019, 24(35), 4101-4124. doi: 10.2174/1381612824666181010151849 PMID: 30317989
  61. Schwager, J.; Richard, N.; Schoop, R.; Wolfram, S. A novel rose hip preparation with enhanced anti-inflammatory and chondroprotective effects. Mediators Inflamm., 2014, 2014, 1-10. doi: 10.1155/2014/105710 PMID: 25371599
  62. Jia, Q.; Zhu, R.; Tian, Y.; Chen, B.; Li, R.; Li, L.; Wang, L.; Che, Y.; Zhao, D.; Mo, F.; Gao, S.; Zhang, D. Salvia miltiorrhiza in diabetes: A review of its pharmacology, phytochemistry, and safety. Phytomedicine, 2019, 58, 152871. doi: 10.1016/j.phymed.2019.152871 PMID: 30851580
  63. Jung, I.; Kim, H.; Moon, S.; Lee, H.; Kim, B. Overview of Salvia miltiorrhiza as a potential therapeutic agent for various diseases: an update on efficacy and mechanisms of action. Antioxidants, 2020, 9(9), 857. doi: 10.3390/antiox9090857 PMID: 32933217
  64. Xu, X.; Lv, H.; Li, X.; Su, H.; Zhang, X.; Yang, J. Danshen attenuates cartilage injuries in osteoarthritis in vivo and in vitro by activating JAK2/STAT3 and AKT pathways. Exp. Anim., 2018, 67(2), 127-137. doi: 10.1538/expanim.17-0062 PMID: 29093428
  65. Xu, X.; Lv, H.; Li, X.; Su, H.; Zhang, X.; Yang, J. Danshen attenuates osteoarthritis-related cartilage degeneration through inhibition of NF-κB signaling pathway in vivo and in vitro. Biochem. Cell Biol., 2017, 95(6), 644-651. doi: 10.1139/bcb-2017-0025 PMID: 28662337
  66. Mandlik Ingawale, D.S.; Namdeo, A.G. Pharmacological evaluation of Ashwagandha highlighting its healthcare claims, safety, and toxicity aspects. J. Diet. Suppl., 2021, 18(2), 183-226. doi: 10.1080/19390211.2020.1741484 PMID: 32242751
  67. White, P.T.; Subramanian, C.; Motiwala, H.F.; Cohen, M.S. Natural withanolides in the treatment of chronic diseases. Adv. Exp. Med. Biol., 2016, 928, 329-373. doi: 10.1007/978-3-319-41334-1_14 PMID: 27671823
  68. Ramakanth, G.S.H.; Uday Kumar, C.; Kishan, P.V.; Usharani, P. A randomized, double blind placebo controlled study of efficacy and tolerability of Withaina somnifera extracts in knee joint pain. J. Ayurveda Integr. Med., 2016, 7(3), 151-157. doi: 10.1016/j.jaim.2016.05.003 PMID: 27647541
  69. Ganesan, K.; Sehgal, P.K.; Mandal, A.B.; Sayeed, S. Protective effect of Withania somnifera and Cardiospermum halicacabum extracts against collagenolytic degradation of collagen. Appl. Biochem. Biotechnol., 2011, 165(3-4), 1075-1091. doi: 10.1007/s12010-011-9326-8 PMID: 21789568
  70. Mao, Q.Q.; Xu, X.Y.; Cao, S.Y.; Gan, R.Y.; Corke, H.; Beta, T.; Li, H.B. Bioactive compounds and bioactivities of ginger (Zingiber officinale roscoe). Foods, 2019, 8(6), 185. doi: 10.3390/foods8060185 PMID: 31151279
  71. Aborehab, N.M.; El Bishbishy, M.H.; Refaiy, A.; Waly, N.E. A putative Chondroprotective role for IL-1β and MPO in herbal treatment of experimental osteoarthritis. BMC Complement. Altern. Med., 2017, 17(1), 495. doi: 10.1186/s12906-017-2002-y PMID: 28049463
  72. Mozaffari-Khosravi, H.; Naderi, Z.; Dehghan, A.; Nadjarzadeh, A.; Fallah Huseini, H. Effect of ginger supplementation on proinflammatory cytokines in older patients with osteoarthritis: outcomes of a randomized controlled clinical trial. J. Nutr. Gerontol. Geriatr., 2016, 35(3), 209-218. doi: 10.1080/21551197.2016.1206762 PMID: 27559855
  73. Kooshki, A.; Forouzan, R.; Rakhshani, M.H.; Mohammadi, M. Effect of topical application of Nigella Sativa Oil and oral acetaminophen on pain in elderly with knee osteoarthritis: a crossover clinical trial. Electron. Physician, 2016, 8(11), 3193-3197. doi: 10.19082/3193 PMID: 28344755
  74. Tuna, H.I.; Babadag, B.; Ozkaraman, A.; Balci Alparslan, G. Investigation of the effect of black cumin oil on pain in osteoarthritis geriatric individuals. Complement. Ther. Clin. Pract., 2018, 31, 290-294. doi: 10.1016/j.ctcp.2018.03.013 PMID: 29705470
  75. Turhan, Y. Arıcan, M.; Karaduman, Z.O.; Turhal, O.; Gamsızkan, M.; Aydın, D.; Kılıç, B.; Özkan, K. Chondroprotective effect of Nigella sativa oil in the early stages of osteoarthritis: an experimental study in rabbits. J. Musculoskelet. Neuronal Interact., 2019, 19(3), 362-369. PMID: 31475944
  76. Huseini, H.F.; Mohtashami, R.; Sadeghzadeh, E.; Shadmanfar, S.; Hashem-Dabaghian, F.; Kianbakht, S. Efficacy and safety of oral Nigella sativa oil for symptomatic treatment of knee osteoarthritis: A double-blind, randomized, placebo-controlled clinical trial. Complement. Ther. Clin. Pract., 2022, 49, 101666. doi: 10.1016/j.ctcp.2022.101666 PMID: 36150238
  77. Diefenbach, A.L.; Muniz, F.W.M.G.; Oballe, H.J.R.; Rösing, C.K. Antimicrobial activity of copaiba oil (Copaifera ssp.) on oral pathogens: Systematic review. Phytother. Res., 2018, 32(4), 586-596. doi: 10.1002/ptr.5992 PMID: 29193389
  78. Bahr, T.; Allred, K.; Martinez, D.; Rodriguez, D.; Winterton, P. Effects of a massage-like essential oil application procedure using Copaiba and Deep Blue oils in individuals with hand arthritis. Complement. Ther. Clin. Pract., 2018, 33, 170-176. doi: 10.1016/j.ctcp.2018.10.004 PMID: 30396617
  79. Xavier-Junior, F.H.; Maciuk, A.; Rochelle do Vale Morais, A.; Alencar, E.N.; Garcia, V.L.; Tabosa do Egito, E.S.; Vauthier, C. Development of a gas chromatography method for the analysis of copaiba oil. J. Chromatogr. Sci., 2017, 55(10), 969-978. doi: 10.1093/chromsci/bmx065 PMID: 28977501
  80. Cavaleiro, C.; Gonçalves, M.J.; Serra, D.; Santoro, G.; Tomi, F.; Bighelli, A.; Salgueiro, L.; Casanova, J. Composition of a volatile extract of Eryngium duriaei subsp. juresianum (M. Laínz) M. Laínz, signalised by the antifungal activity. J. Pharm. Biomed. Anal., 2011, 54(3), 619-622. doi: 10.1016/j.jpba.2010.09.039 PMID: 21036502
  81. Tavares, A.C.; Loureiro, J.; Cavaleiro, C.; Salgueiro, L.; Canhoto, J.M.; Paiva, J. Characterization and distinction of two subspecies of Eryngium duriaei J. Gay ex Boiss., an Iberian endemic Apiaceae, using flow cytometry and essential oils composition. Plant Syst. Evol., 2013, 299(3), 611-618. doi: 10.1007/s00606-012-0747-9
  82. Rufino, A.T.; Cavaleiro, C.; Judas, F.; Salgueiro, L.; Lopes, M.C.; Mendes, A.F. The essential oil of Eryngium duriaei subsp. juresianum inhibits IL-1β induced NF-kB and MAPK activation in human chondrocytes. Osteoarthritis Cartilage, 2012, 20, S290. doi: 10.1016/j.joca.2012.02.502
  83. Zahra Emami-Razavi, S.; Khamessi, M.; Forough, B.; Karimi, M.; Mansoori, K.; Sajadi, S. Effects of galbanum oil on patients with knee osteoarthritis: a randomized controlled clinical. Trad. Integr. Med., 2016, 1(3), 101-107.
  84. Sonigra, P.; Meena, M. Metabolic profile, bioactivities, and variations in the chemical constituents of essential oils of the Ferula genus (Apiaceae). Front. Pharmacol., 2021, 11, 608649. doi: 10.3389/fphar.2020.608649 PMID: 33776754
  85. Wang, X.; Shen, Y.; Thakur, K.; Han, J.; Zhang, J.G.; Hu, F.; Wei, Z.J. Antibacterial activity and mechanism of ginger essential oil against Escherichia coli and Staphylococcus aureus. Molecules, 2020, 25(17), 3955. doi: 10.3390/molecules25173955 PMID: 32872604
  86. Jeena, K.; Liju, V.B.; Kuttan, R. Antioxidant, anti-inflammatory and antinociceptive activities of essential oil from ginger. Indian J. Physiol. Pharmacol., 2013, 57(1), 51-62. PMID: 24020099
  87. Tosun, B.; Unal, N.; Yigit, D.; Can, N.; Aslan, O.; Tunay, S. Effects of self-knee massage with ginger oil in patients with osteoarthritis: an experimental study. Res. Theory Nurs. Pract., 2017, 31(4), 379-392. doi: 10.1891/1541-6577.31.4.379 PMID: 29137696
  88. de Groot, A.; Schmidt, E. Essential Oils, Part V: peppermint oil, lavender oil, and lemongrass oil. Dermatitis, 2016, 27(6), 325-332. doi: 10.1097/DER.0000000000000218 PMID: 27775966
  89. Białoń M.; Krzyśko-Łupicka, T.; Nowakowska-Bogdan, E.; Wieczorek, P.P. Chemical composition of two different lavender essential oils and their effect on facial skin microbiota. Molecules, 2019, 24(18), 3270. doi: 10.3390/molecules24183270 PMID: 31500359
  90. Silva, G.L.D.; Luft, C.; Lunardelli, A.; Amaral, R.H.; Melo, D.A.D.S.; Donadio, M.F.; Nunes, F.B.; Azambuja, M.S.D.; Santana, J.C.; Moraes, C.M.B.; Mello, R.O.; Cassel, E.; Pereira, M.A.D.A.; Oliveira, J.R.D. Antioxidant, analgesic and anti-inflammatory effects of lavender essential oil. An. Acad. Bras. Cienc., 2015, 87(2)(Suppl.), 1397-1408. doi: 10.1590/0001-3765201520150056 PMID: 26247152
  91. Nasiri, A.; Mahmodi, M.A.; Nobakht, Z. Effect of aromatherapy massage with lavender essential oil on pain in patients with osteoarthritis of the knee: A randomized controlled clinical trial. Complement. Ther. Clin. Pract., 2016, 25, 75-80. doi: 10.1016/j.ctcp.2016.08.002 PMID: 27863613
  92. Rodríguez-Chávez, J.L.; Egas, V.; Linares, E.; Bye, R.; Hernández, T.; Espinosa-García, F.J.; Delgado, G. Mexican Arnica (Heterotheca inuloides Cass. Asteraceae: Astereae): Ethnomedical uses, chemical constituents and biological properties. J. Ethnopharmacol., 2017, 195, 39-63. doi: 10.1016/j.jep.2016.11.021 PMID: 27847336
  93. Martin, D.F-S.; Perea-Flores, M.J.; Morales-López, J.; Centeno-Alvarez, M.M.; Pérez-Ishiwara, G.; Pérez-Hernández, N.; Pérez-Hernández, E. Effect of Heterotheca inuloides essential oil on rat cytoskeleton articular chondrocytes. Nat. Prod. Res., 2013, 27(24), 2347-2350. doi: 10.1080/14786419.2013.828289 PMID: 24088175
  94. Shetty, S.B.; Mahin-Syed-Ismail, P.; Varghese, S.; Thomas-George, B. Kandathil- Thajuraj, P.; Baby, D.; Haleem, S.; Sreedhar, S.; Devang-Divakar, D. Antimicrobial effects of Citrus sinensis peel extracts against dental caries bacteria: An in vitro study. J. Clin. Exp. Dent., 2016, 8(1), 0. doi: 10.4317/jced.52493 PMID: 26855710
  95. Mannucci, C.; Calapai, F.; Cardia, L.; Inferrera, G.; D’Arena, G.; Di Pietro, M.; Navarra, M.; Gangemi, S.; Ventura Spagnolo, E.; Calapai, G. Clinical pharmacology of Citrus aurantium and Citrus sinensis for the treatment of anxiety. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-18. doi: 10.1155/2018/3624094 PMID: 30622597
  96. Torres-Alvarez, C.; Castillo, S.; Sánchez-García, E.; Aguilera González, C.; Galindo-Rodríguez, S.A.; Gabaldón-Hernández, J.A.; Báez-González, J.G. Inclusion complexes of concentrated orange oils and β-cyclodextrin: physicochemical and biological characterizations. Molecules, 2020, 25(21), 5109. doi: 10.3390/molecules25215109 PMID: 33153206
  97. Hekmatpou, D.; Pourandish, Y.; Farahani, P.; Parvizrad, R. The effect of aromatherapy with the essential oil of orange on pain and vital signs of patients with fractured limbs admitted to the emergency ward: A randomized clinical trial. Indian J. Palliat. Care, 2017, 23(4), 431-436. doi: 10.4103/IJPC.IJPC_37_17 PMID: 29123351
  98. Kamatou, G.P.P.; Vermaak, I.; Viljoen, A.M.; Lawrence, B.M. Menthol: A simple monoterpene with remarkable biological properties. Phytochemistry, 2013, 96, 15-25. doi: 10.1016/j.phytochem.2013.08.005 PMID: 24054028
  99. Mohammadifar, M.; Aarabi, M.H.; Aghighi, F.; Kazemi, M.; Vakili, Z.; Memarzadeh, M.R.; Talaei, S.A. Anti-osteoarthritis potential of peppermint and rosemary essential oils in a nanoemulsion form: behavioral, biochemical, and histopathological evidence. BMC Compl. Med. Ther., 2021, 21(1), 57. doi: 10.1186/s12906-021-03236-y PMID: 33563269
  100. Ghasemzadeh Rahbardar, M.; Hosseinzadeh, H. Therapeutic effects of rosemary (Rosmarinus officinalis L.) and its active constituents on nervous system disorders. Iran. J. Basic Med. Sci., 2020, 23(9), 1100-1112. PMID: 32963731
  101. Rašković A.; Milanović I.; Pavlović N.; Ćebović T.; Vukmirović S.; Mikov, M. Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential. BMC Complement. Altern. Med., 2014, 14(1), 225. doi: 10.1186/1472-6882-14-225 PMID: 25002023
  102. Belkhodja, H.; Meddah, B. Meddah TirTouil, A.; Slimani, K.; Tou, A. Radiographic and histopathologic analysis on osteoarthritis rat model treated with essential oils of Rosmarinus officinalis and Populus Alba. Ulum-i Daruyi, 2017, 23(1), 12-17. doi: 10.15171/PS.2017.03
  103. Pehlivan, S.; Karadakovan, A. Effects of aromatherapy massage on pain, functional state, and quality of life in an elderly individual with knee osteoarthritis. Jpn. J. Nurs. Sci., 2019, 16(4), 450-458. doi: 10.1111/jjns.12254 PMID: 31144450
  104. Qiu, D.; Bai, S.; Ma, J.; Zhang, L.; Shao, F.; Zhang, K.; Yang, Y.; Sun, T.; Huang, J.; Zhou, Y.; Galbraith, D.W.; Wang, Z.; Sun, G. The genome of Populus alba x Populus tremula var. glandulosa clone 84K. DNA Res., 2019, 26(5), 423-431. doi: 10.1093/dnares/dsz020 PMID: 31580414
  105. Pobłocka-Olech, L.; Głód, D.; Jesionek, A.; Łuczkiewicz, M.; Krauze-Baranowska, M. Studies on the polyphenolic composition and the antioxidant properties of the leaves of poplar (populus spp.) various species and hybrids. Chem. Biodivers., 2021, 18(7), e2100227. doi: 10.1002/cbdv.202100227 PMID: 34138528
  106. Tawfeek, N.; Sobeh, M.; Hamdan, D.I.; Farrag, N.; Roxo, M.; El-Shazly, A.M.; Wink, M. Phenolic compounds from Populus alba L. and Salix subserrataWilld. (Salicaceae) counteract oxidative stress in Caenorhabditis elegans. Molecules, 2019, 24(10), 1999. doi: 10.3390/molecules24101999 PMID: 31137712
  107. Allenspach, M. Steuer, C. α-Pinene: A never-ending story. Phytochemistry, 2021, 190, 112857. doi: 10.1016/j.phytochem.2021.112857 PMID: 34365295
  108. Salehi, B.; Upadhyay, S.; Erdogan Orhan, I.; Kumar Jugran, A.; L.D., Jayaweera S.; A Dias, D.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; Cho, W.C.; Sharifi-Rad, J. Therapeutic potential of α-and β-pinene: a miracle gift of nature. Biomolecules, 2019, 9(11), 738. doi: 10.3390/biom9110738 PMID: 31739596
  109. Rufino, A.T.; Ribeiro, M.; Judas, F.; Salgueiro, L.; Lopes, M.C.; Cavaleiro, C.; Mendes, A.F. Anti-inflammatory and chondroprotective activity of (+)-α-pinene: structural and enantiomeric selectivity. J. Nat. Prod., 2014, 77(2), 264-269. doi: 10.1021/np400828x PMID: 24455984
  110. Fidyt, K.; Fiedorowicz, A. Strządała, L.; Szumny, A. β -caryophyllene and β -caryophyllene oxide-natural compounds of anticancer and analgesic properties. Cancer Med., 2016, 5(10), 3007-3017. doi: 10.1002/cam4.816 PMID: 27696789
  111. Scandiffio, R.; Geddo, F.; Cottone, E.; Querio, G.; Antoniotti, S.; Gallo, M.P.; Maffei, M.E.; Bovolin, P. Protective effects of (E)-β-caryophyllene (BCP) in chronic inflammation. Nutrients, 2020, 12(11), 3273. doi: 10.3390/nu12113273 PMID: 33114564
  112. Mlost, J.; Kac, P. Kędziora, M.; Starowicz, K. Antinociceptive and chondroprotective effects of prolonged β-caryophyllene treatment in the animal model of osteoarthritis: Focus on tolerance development. Neuropharmacology, 2022, 204, 108908. doi: 10.1016/j.neuropharm.2021.108908 PMID: 34856202
  113. Mattiuzzo, E.; Faggian, A.; Venerando, R.; Benetti, A.; Belluzzi, E.; Abatangelo, G.; Ruggieri, P.; Brun, P. In vitro effects of low doses of β-caryophyllene, ascorbic acid and d-glucosamine on human chondrocyte viability and inflammation. Pharmaceuticals (Basel), 2021, 14(3), 286. doi: 10.3390/ph14030286 PMID: 33806983
  114. Imran, M.; Aslam, M.; Alsagaby, S.A.; Saeed, F.; Ahmad, I.; Afzaal, M.; Arshad, M.U.; Abdelgawad, M.A.; El-Ghorab, A.H.; Khames, A.; Shariati, M.A.; Ahmad, A.; Hussain, M.; Imran, A.; Islam, S. Therapeutic application of carvacrol: A comprehensive review. Food Sci. Nutr., 2022, 10(11), 3544-3561. doi: 10.1002/fsn3.2994 PMID: 36348778
  115. Sharifi-Rad, M.; Varoni, E.M.; Iriti, M.; Martorell, M.; Setzer, W.N.; del Mar Contreras, M.; Salehi, B.; Soltani-Nejad, A.; Rajabi, S.; Tajbakhsh, M.; Sharifi-Rad, J. Carvacrol and human health: A comprehensive review. Phytother. Res., 2018, 32(9), 1675-1687. doi: 10.1002/ptr.6103 PMID: 29744941
  116. Xiao, Y.; Li, B.; Liu, J.; Ma, X. Carvacrol ameliorates inflammatory response in interleukin 1β-stimulated human chondrocytes. Mol. Med. Rep., 2018, 17(3), 3987-3992. PMID: 29257341
  117. Usai, F.; Di Sotto, A. Trans-cinnamaldehyde as a novel candidate to overcome bacterial resistance: an overview of in vitro studies. Antibiotics (Basel), 2023, 12(2), 254. doi: 10.3390/antibiotics12020254 PMID: 36830165
  118. Zhu, R.; Liu, H.; Liu, C.; Wang, L.; Ma, R.; Chen, B.; Li, L.; Niu, J.; Fu, M.; Zhang, D.; Gao, S. Cinnamaldehyde in diabetes: A review of pharmacology, pharmacokinetics and safety. Pharmacol. Res., 2017, 122, 78-89. doi: 10.1016/j.phrs.2017.05.019 PMID: 28559210
  119. Xia, T.; Gao, R.; Zhou, G.; Liu, J.; Li, J.; Shen, J. Trans-cinnamaldehyde inhibits IL-1β-stimulated inflammation in chondrocytes by suppressing NF-κB and p38-JNK pathways and exerts chondrocyte protective effects in a rat model of osteoarthritis. BioMed Res. Int., 2019, 2019, 1-12. doi: 10.1155/2019/4039472 PMID: 31205941
  120. Atabaki, M.; Shariati-Sarabi, Z.; Tavakkol-Afshari, J.; Mohammadi, M. Significant immunomodulatory properties of curcumin in patients with osteoarthritis; a successful clinical trial in Iran. Int. Immunopharmacol., 2020, 85, 106607. doi: 10.1016/j.intimp.2020.106607 PMID: 32540725
  121. Jamali, N.; Adib-Hajbaghery, M.; Soleimani, A. The effect of curcumin ointment on knee pain in older adults with osteoarthritis: a randomized placebo trial. BMC Compl. Med. Ther., 2020, 20(1), 305. doi: 10.1186/s12906-020-03105-0 PMID: 33032585
  122. Velusami, C.C.; Bethapudi, B.; Murugan, S.; Illuri, R.; Mundkinajeddu, D. Bioactive turmerosaccharides from Curcuma longa Extract (NR-INF-02): Potential ameliorating effect on osteoarthritis pain. Pharmacogn. Mag., 2017, 13(51)(Suppl. 3), 623. doi: 10.4103/pm.pm_465_16 PMID: 29142423
  123. Yuan, T.; Cai, D.; Hu, B.; Zhu, Y.; Qin, J. Therapeutic effects of curcumin on osteoarthritis and its protection of chondrocytes through the WNT/β-catenin signaling pathway. Altern. Ther. Health Med., 2022, 28(5), 28-37. PMID: 35452417
  124. Mitra, S.; Das, R.; Emran, T.B.; Labib, R.K. Noor-E-Tabassum; Islam, F.; Sharma, R.; Ahmad, I.; Nainu, F.; Chidambaram, K.; Alhumaydhi, F.A.; Chandran, D.; Capasso, R.; Wilairatana, P. Diallyl disulfide: a bioactive garlic compound with anticancer potential. Front. Pharmacol., 2022, 13, 943967. doi: 10.3389/fphar.2022.943967 PMID: 36071845
  125. Song, X.; Yue, Z.; Nie, L.; Zhao, P.; Zhu, K.; Wang, Q. Biological functions of diallyl disulfide, a garlic-derived natural organic sulfur compound. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-13. doi: 10.1155/2021/5103626 PMID: 34745287
  126. Yang, J.; Tang, R.; Yi, J.; Chen, Y.; Li, X.; Yu, T.; Fei, J. Diallyl disulfide alleviates inflammatory osteolysis by suppressing osteoclastogenesis via NF-κB-NFATc1 signal pathway. FASEB J., 2019, 33(6), 7261-7273. doi: 10.1096/fj.201802172R PMID: 30857415
  127. Mikaili, P.; Mojaverrostami, S.; Moloudizargari, M.; Aghajanshakeri, S. Pharmacological and therapeutic effects of Mentha Longifolia L. and its main constituent, menthol. Anc. Sci. Life, 2013, 33(2), 131-138. PMID: 25284948
  128. Topp, R.; Brosky, J.A., Jr; Pieschel, D. The effect of either topical menthol or a placebo on functioning and knee pain among patients with knee OA. J. Geriatr. Phys. Ther., 2013, 36(2), 92-99. doi: 10.1519/JPT.0b013e318268dde1 PMID: 22976810
  129. Surendran, S.; Qassadi, F.; Surendran, G.; Lilley, D.; Heinrich, M. Myrcene-what are the potential health benefits of this flavouring and aroma agent? Front. Nutr., 2021, 8, 699666. doi: 10.3389/fnut.2021.699666 PMID: 34350208
  130. Rufino, A.T.; Ribeiro, M.; Sousa, C.; Judas, F.; Salgueiro, L.; Cavaleiro, C.; Mendes, A.F. Evaluation of the anti-inflammatory, anti-catabolic and pro-anabolic effects of E-caryophyllene, myrcene and limonene in a cell model of osteoarthritis. Eur. J. Pharmacol., 2015, 750, 141-150. doi: 10.1016/j.ejphar.2015.01.018 PMID: 25622554
  131. Zhou, J.; Xie, X.; Tang, H.; Peng, C.; Peng, F. The bioactivities of sclareol: A mini review. Front. Pharmacol., 2022, 13, 1014105. doi: 10.3389/fphar.2022.1014105 PMID: 36263135
  132. Zhong, Y.; Huang, Y.; Santoso, M.B.; Wu, L.D. Sclareol exerts anti-osteoarthritic activities in interleukin-1β-induced rabbit chondrocytes and a rabbit osteoarthritis model. Int. J. Clin. Exp. Pathol., 2015, 8(3), 2365-2374. PMID: 26045743
  133. Huang, G.J.; Pan, C.H.; Wu, C.H. Sclareol exhibits anti-inflammatory activity in both lipopolysaccharide-stimulated macrophages and the λ-carrageenan-induced paw edema model. J. Nat. Prod., 2012, 75(1), 54-59. doi: 10.1021/np200512a PMID: 22250858
  134. Pottoo, F.H.; Ibrahim, A.M.; Alammar, A.; Alsinan, R.; Aleid, M.; Alshehhi, A.; Alshehri, M.; Mishra, S.; Alhajri, N. Thymoquinone: review of its potential in the treatment of neurological diseases. Pharmaceuticals (Basel), 2022, 15(4), 408. doi: 10.3390/ph15040408 PMID: 35455405
  135. Chen, W.P.; Tang, J.L.; Bao, J.P.; Wu, L.D. Thymoquinone inhibits matrix metalloproteinase expression in rabbit chondrocytes and cartilage in experimental osteoarthritis. Exp. Biol. Med. (Maywood), 2010, 235(12), 1425-1431. doi: 10.1258/ebm.2010.010174 PMID: 21127340
  136. Kalamegam, G.; Alfakeeh, S.M.; Bahmaid, A.O.; AlHuwait, E.A.; Gari, M.A.; Abbas, M.M.; Ahmed, F.; Abu-Elmagd, M.; Pushparaj, P.N. In vitro evaluation of the anti-inflammatory effects of thymoquinone in osteoarthritis and in silico analysis of inter-related pathways in age-related degenerative diseases. Front. Cell Dev. Biol., 2020, 8, 646. doi: 10.3389/fcell.2020.00646 PMID: 32793594
  137. Wang, D.; Qiao, J.; Zhao, X.; Chen, T.; Guan, D. Thymoquinone inhibits IL-1β-induced inflammation in human osteoarthritis chondrocytes by suppressing NF-κB and MAPKs signaling pathway. Inflammation, 2015, 38(6), 2235-2241. doi: 10.1007/s10753-015-0206-1 PMID: 26156811
  138. Kowalczyk, A.; Przychodna, M.; Sopata, S.; Bodalska, A.; Fecka, I. Thymol and thyme essential oil-new insights into selected therapeutic applications. Molecules, 2020, 25(18), 4125. doi: 10.3390/molecules25184125 PMID: 32917001
  139. Bouhtit, F.; Najar, M.; Rahmani, S.; Melki, R.; Najimi, M.; Sadki, K.; Boukhatem, N.; Twizere, J.C.; Meuleman, N.; Lewalle, P.; Lagneaux, L.; Merimi, M. Bioscreening and pre-clinical evaluation of the impact of bioactive molecules from Ptychotis verticillata on the multilineage potential of mesenchymal stromal cells towards immune- and inflammation-mediated diseases. Inflamm. Res., 2022, 71(7-8), 887-898. doi: 10.1007/s00011-022-01573-3 PMID: 35716172
  140. Ibáñez, M.D.; Sánchez-Ballester, N.M.; Blázquez, M.A. Healthy Zerumbone: From natural sources to strategies to improve its bioavailability and oral administration. Plants, 2022, 12(1), 5. doi: 10.3390/plants12010005 PMID: 36616138
  141. Chien, T.Y.; Huang, S.; Lee, C.J.; Tsai, P.W.; Wang, C.C. Antinociceptive and anti-inflammatory effects of zerumbone against mono-iodoacetate-induced arthritis. Int. J. Mol. Sci., 2016, 17(2), 249. doi: 10.3390/ijms17020249 PMID: 26901193
  142. Available from: https://www.nccih.nih.gov/health/glucosamine-and-chondroitin-for-osteoarthritis
  143. Available from: https://www.webmd.com/vitamins/ai/ingredientmono-1033/hesperidin
  144. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Capsaicin
  145. Hylan polymers A and B (Injection route, intra-articular route) description and brand names - mayo clinic. Available from: https://www.mayoclinic.org/drugs-supplements/hylan-polymers-a-and-b-injection-route-intra-articular-route/description/drg-20074573 (Accessed on: 2023 May 28).
  146. Sodium hyaluronate injection uses, side effects & warning. Available from: https://www.drugs.com/mtm/sodium-hyaluronate-inject ion.html (Accessed on: 2023 May 28).
  147. Migliore, A.; Procopio, S. Effectiveness and utility of hyaluronic acid in osteoarthritis. Clin. Cases Miner. Bone Metab., 2015, 12(1), 31-33. doi: 10.11138/ccmbm/2015.12.1.031 PMID: 26136793

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024