Study on Fu-Fang-Jin-Qian-Cao Inhibiting Autophagy in Calcium Oxalate-induced Renal Injury by UHPLC/Q-TOF-MS-based Metabonomics and Network Pharmacology Approaches
- Authors: Liu W.1, Li M.1, Zhou Q.1, Gao S.2, Hou J.3, Yang G.4, Liu N.5, Jia-Yan 1, Yu J.1, Cheng J.5, Guo Z.1
-
Affiliations:
- Department of Nephrology, Changhai Hospital, Navy Medical University
- Institute of Translational Medicine, Shanghai University
- Department of Nephrology, the Second Medical Centre, Chinese PLA General Hospital
- Department of Nephrology, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine
- International Medicine III (Nephrology & Endocrinology), Navy Medical Center of PLA, Navy Medical University
- Issue: Vol 27, No 1 (2024)
- Pages: 90-100
- Section: Chemistry
- URL: https://kazanmedjournal.ru/1386-2073/article/view/643717
- DOI: https://doi.org/10.2174/1386207326666230515151302
- ID: 643717
Cite item
Full Text
Abstract
Introduction:Fu-Fang-Jin-Qian-Cao is a Chinese herbal preparation used to treat urinary calculi. Fu-Fang-Jin-Qian-Cao can protect renal tubular epithelial cells from calcium oxalateinduced renal injury by inhibiting ROS-mediated autopathy. The mechanism still needs further exploration. Metabonomics is a new subject; the combination of metabolomics and network pharmacology can find pathways for drugs to act on targets more efficiently.
Methods:Comprehensive metabolomics and network pharmacology to study the mechanism of Fu-Fang-Jin-Qian-Cao inhibiting autophagy in calcium oxalate-induced renal injury. Based on UHPLC-Q-TOF-MS, combined with biochemical analysis, a mice model of Calcium oxalateinduced renal injury was established to study the therapeutic effect of Fu-Fang-Jin-Qian-Cao. Based on the network pharmacology, the target signaling pathway and the protective effect of Fu- Fang-Jin-Qian-Cao on Calcium oxalate-induced renal injury by inhibiting autophagy were explored. Autophagy-related proteins LC3-II, BECN1, ATG5, and ATG7 were studied by immunohistochemistry.
Results:Combining network pharmacology and metabolomics, 50 differential metabolites and 2482 targets related to these metabolites were found. Subsequently, the targets enriched in PI3KAkt, MAPK and Ras signaling pathways. LC3-II, BECN1, ATG5 and ATG7 were up-regulated in Calcium oxalate-induced renal injury. All of them could be reversed after the Fu-Fang-Jin-Qian- Cao treatment.
Conclusions:Fu-Fang-Jin-Qian-Cao can reverse ROS-induced activation of the MAPK signaling pathway and inhibition of the PI3K-Akt signaling pathway, thereby reducing autophagy damage of renal tubular epithelial cells in Calcium oxalate-induced renal injury.
About the authors
Wen-Rui Liu
Department of Nephrology, Changhai Hospital, Navy Medical University
Email: info@benthamscience.net
Mao-Ting Li
Department of Nephrology, Changhai Hospital, Navy Medical University
Email: info@benthamscience.net
Qi Zhou
Department of Nephrology, Changhai Hospital, Navy Medical University
Email: info@benthamscience.net
Song-Yan Gao
Institute of Translational Medicine, Shanghai University
Email: info@benthamscience.net
Jie-Bin Hou
Department of Nephrology, the Second Medical Centre, Chinese PLA General Hospital
Email: info@benthamscience.net
Guo-Bin Yang
Department of Nephrology, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine
Email: info@benthamscience.net
Nan-Mei Liu
International Medicine III (Nephrology & Endocrinology), Navy Medical Center of PLA, Navy Medical University
Email: info@benthamscience.net
Jia-Yan
Department of Nephrology, Changhai Hospital, Navy Medical University
Email: info@benthamscience.net
Jian-Peng Yu
Department of Nephrology, Changhai Hospital, Navy Medical University
Email: info@benthamscience.net
Jin Cheng
International Medicine III (Nephrology & Endocrinology), Navy Medical Center of PLA, Navy Medical University
Author for correspondence.
Email: info@benthamscience.net
Zhi-Yong Guo
Department of Nephrology, Changhai Hospital, Navy Medical University
Author for correspondence.
Email: info@benthamscience.net
References
- Thongprayoon, C.; Krambeck, A.E.; Rule, A.D. Determining the true burden of kidney stone disease. Nat. Rev. Nephrol., 2020, 16(12), 736-746. doi: 10.1038/s41581-020-0320-7 PMID: 32753740
- Wang, C.H.; Wu, S.B.; Wu, Y.T.; Wei, Y.H. Oxidative stress response elicited by mitochondrial dysfunction: Implication in the pathophysiology of aging. Exp. Biol. Med., 2013, 238(5), 450-460. doi: 10.1177/1535370213493069 PMID: 23856898
- Evan, A.P. Physiopathology and etiology of stone formation in the kidney and the urinary tract. Pediatr. Nephrol., 2010, 25(5), 831-841. doi: 10.1007/s00467-009-1116-y PMID: 19198886
- Khan, S.R. Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: Evidence from clinical and experimental investigations. J. Urol., 2013, 189(3), 803-811. doi: 10.1016/j.juro.2012.05.078 PMID: 23022011
- Khan, S.R. Reactive oxygen species, inflammation and calcium oxalate nephrolithiasis. Transl. Androl. Urol., 2014, 3(3), 256-276. doi: 10.3978/j.issn.2223-4683.2014.06.04 PMID: 25383321
- Chen, Z.; Liu, X.; Ma, S. The roles of Mitochondria in Autophagic Cell Death. Cancer Biother. Radiopharm., 2016, 31(8), 269-276. doi: 10.1089/cbr.2016.2057 PMID: 27754749
- Kroemer, G.; Mariño, G.; Levine, B. Autophagy and the integrated stress response. Mol. Cell, 2010, 40(2), 280-293. doi: 10.1016/j.molcel.2010.09.023 PMID: 20965422
- Reggiori, F.; Ungermann, C. Autophagosome maturation and fusion. J. Mol. Biol., 2017, 429(4), 486-496. doi: 10.1016/j.jmb.2017.01.002 PMID: 28077293
- Nishida, K.; Yamaguchi, O.; Otsu, K. Crosstalk between autophagy and apoptosis in heart disease. Circ. Res., 2008, 103(4), 343-351. doi: 10.1161/CIRCRESAHA.108.175448 PMID: 18703786
- Xu, Y.; Yang, S.; Huang, J.; Ruan, S.; Zheng, Z.; Lin, J. Tgf-β1 induces autophagy and promotes apoptosis in renal tubular epithelial cells. Int. J. Mol. Med., 2012, 29(5), 781-790. doi: 10.3892/ijmm.2012.911 PMID: 22322529
- Yang, C.; Kaushal, V.; Shah, S.V.; Kaushal, G.P. Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells. Am. J. Physiol. Renal Physiol., 2008, 294(4), F777-F787. doi: 10.1152/ajprenal.00590.2007 PMID: 18256309
- Hou, J.; Chen, W.; Lu, H.; Zhao, H.; Gao, S.; Liu, W.; Dong, X.; Guo, Z. Exploring the therapeutic mechanism of Desmodium styracifolium on oxalate crystal-induced kidney injuries using comprehensive approaches based on proteomics and network pharmacology. Front. Pharmacol., 2018, 9, 620. doi: 10.3389/fphar.2018.00620 PMID: 29950996
- Zhou, J.; Jin, J.; Li, X.; Zhao, Z.; Zhang, L.; Wang, Q.; Li, J.; Zhang, Q.; Xiang, S. Total flavonoids of Desmodium styracifolium attenuates the formation of hydroxy-l-proline-induced calcium oxalate urolithiasis in rats. Urolithiasis, 2018, 46(3), 231-241. doi: 10.1007/s00240-017-0985-y PMID: 28567512
- Liu, W.R.; Lu, H.T.; Zhao, T.T.; Ding, J.R.; Si, Y.C.; Chen, W.; Hou, J.B.; Gao, S.Y.; Dong, X.; Yu, B.; Guo, Z.Y.; Lu, J.R. Fu-Fang-Jin-Qian-Cao herbal granules protect against the calcium oxalate-induced renal EMT by inhibiting the TGF-β/smad pathway. Pharm. Biol., 2020, 58(1), 1124-1131. doi: 10.1080/13880209.2020.1844241 PMID: 33191819
- Chen, W.; Liu, W.R.; Hou, J.B.; Ding, J.R.; Peng, Z.J.; Gao, S.Y.; Dong, X.; Ma, J.H.; Lin, Q.S.; Lu, J.R.; Guo, Z.Y. Metabolomic analysis reveals a protective effect of Fu-Fang-Jin-Qian-Chao herbal granules on oxalate-induced kidney injury. Biosci. Rep., 2019, 39(2), BSR20181833. doi: 10.1042/BSR20181833 PMID: 30737304
- Zheng, Y.; Shi, X.; Hou, J.; Gao, S.; Chao, Y.; Ding, J.; Chen, L.; Qian, Y.; Shao, G.; Si, Y.; Chen, W. Integrating metabolomics and network pharmacology to explore Rhizoma Coptidis extracts against sepsis-associated acute kidney injury. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2021, 1164, 122525. doi: 10.1016/j.jchromb.2021.122525 PMID: 33454441
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res., 2018, 46(W1), W486-W494. doi: 10.1093/nar/gky310 PMID: 29762782
- Szklarczyk, D.; Santos, A.; von Mering, C.; Jensen, L.J.; Bork, P.; Kuhn, M. STITCH 5: Augmenting proteinchemical interaction networks with tissue and affinity data. Nucleic Acids Res., 2016, 44(D1), D380-D384. doi: 10.1093/nar/gkv1277 PMID: 26590256
- Cline, M.S.; Smoot, M.; Cerami, E.; Kuchinsky, A.; Landys, N.; Workman, C.; Christmas, R.; Avila-Campilo, I.; Creech, M.; Gross, B.; Hanspers, K.; Isserlin, R.; Kelley, R.; Killcoyne, S.; Lotia, S.; Maere, S.; Morris, J.; Ono, K.; Pavlovic, V.; Pico, A.R.; Vailaya, A.; Wang, P.L.; Adler, A.; Conklin, B.R.; Hood, L.; Kuiper, M.; Sander, C.; Schmulevich, I.; Schwikowski, B.; Warner, G.J.; Ideker, T.; Bader, G.D. Integration of biological networks and gene expression data using Cytoscape. Nat. Protoc., 2007, 2(10), 2366-2382. doi: 10.1038/nprot.2007.324 PMID: 17947979
- Laplante, M.; Sabatini, D.M. mTOR signaling in growth control and disease. Cell, 2012, 149(2), 274-293. doi: 10.1016/j.cell.2012.03.017 PMID: 22500797
- Wang, J.; Zhou, J.Y.; Kho, D.; Reiners, J.J., Jr; Wu, G.S. Role for DUSP1 (dual-specificity protein phosphatase 1) in the regulation of autophagy. Autophagy, 2016, 12(10), 1791-1803. doi: 10.1080/15548627.2016.1203483 PMID: 27459239
- Guo, J.Y.; Chen, H.Y.; Mathew, R.; Fan, J.; Strohecker, A.M.; Karsli-Uzunbas, G.; Kamphorst, J.J.; Chen, G.; Lemons, J.M.S.; Karantza, V.; Coller, H.A.; DiPaola, R.S.; Gelinas, C.; Rabinowitz, J.D.; White, E. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev., 2011, 25(5), 460-470. doi: 10.1101/gad.2016311 PMID: 21317241
- Zeng, Y.; Yang, X.; Wang, J.; Fan, J.; Kong, Q.; Yu, X. Aristolochic acid I induced autophagy extenuates cell apoptosis via ERK 1/2 pathway in renal tubular epithelial cells. PLoS One, 2012, 7(1), e30312. doi: 10.1371/journal.pone.0030312 PMID: 22276178
- Kaushal, G.P.; Kaushal, V.; Herzog, C.; Yang, C. Autophagy delays apoptosis in renal tubular epithelial cells in cisplatin cytotoxicity. Autophagy, 2008, 4(5), 710-712. doi: 10.4161/auto.6309 PMID: 18497570
- Li, C.; Deng, Y.; Sun, B. Effects of apocynin and losartan treatment on renal oxidative stress in a rat model of calcium oxalate nephrolithiasis. Int. Urol. Nephrol., 2009, 41(4), 823-833. doi: 10.1007/s11255-009-9534-0 PMID: 19241135
- Veena, C.K.; Josephine, A.; Preetha, S.P.; Rajesh, N.G.; Varalakshmi, P. Mitochondrial dysfunction in an animal model of hyperoxaluria: A prophylactic approach with fucoidan. Eur. J. Pharmacol., 2008, 579(1-3), 330-336. doi: 10.1016/j.ejphar.2007.09.044 PMID: 18001705
- Vakifahmetoglu-Norberg, H.; Ouchida, A.T.; Norberg, E. The role of mitochondria in metabolism and cell death. Biochem. Biophys. Res. Commun., 2017, 482(3), 426-431. doi: 10.1016/j.bbrc.2016.11.088 PMID: 28212726
- Jalmi, S.K.; Sinha, A.K. ROS mediated MAPK signaling in abiotic and biotic stress- striking similarities and differences. Front. Plant Sci., 2015, 6, 769. doi: 10.3389/fpls.2015.00769 PMID: 26442079
- Kim, G.D.; Oh, J.; Park, H.J.; Bae, K.; Lee, S.K. Magnolol inhibits angiogenesis by regulating ROS-mediated apoptosis and the PI3K/AKT/mTOR signaling pathway in mES/EB-derived endothelial-like cells. Int. J. Oncol., 2013, 43(2), 600-610. doi: 10.3892/ijo.2013.1959 PMID: 23708970
- Milone, M.R.; Pucci, B.; Bruzzese, F.; Carbone, C.; Piro, G.; Costantini, S.; Capone, F.; Leone, A.; Di Gennaro, E.; Caraglia, M.; Budillon, A. Acquired resistance to zoledronic acid and the parallel acquisition of an aggressive phenotype are mediated by p38-MAP kinase activation in prostate cancer cells. Cell Death Dis., 2013, 4(5), e641. doi: 10.1038/cddis.2013.165 PMID: 23703386
- Duan, W.J.; Li, Q.S.; Xia, M.Y.; Tashiro, S.I.; Onodera, S.; Ikejima, T. Silibinin activated p53 and induced autophagic death in human fibrosarcoma HT1080 cells via reactive oxygen species-p38 and c-Jun N-terminal kinase pathways. Biol. Pharm. Bull., 2011, 34(1), 47-53. doi: 10.1248/bpb.34.47 PMID: 21212516
- Yuan, H.; Perry, C.N.; Huang, C.; Iwai-Kanai, E.; Carreira, R.S.; Glembotski, C.C.; Gottlieb, R.A. LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection. Am. J. Physiol. Heart Circ. Physiol., 2009, 296(2), H470-H479. doi: 10.1152/ajpheart.01051.2008 PMID: 19098111
- Schmukler, E.; Kloog, Y.; Pinkas-Kramarski, R. Ras and autophagy in cancer development and therapy. Oncotarget, 2014, 5(3), 577-586. doi: 10.18632/oncotarget.1775 PMID: 24583697
- Rodríguez-Peña, A.B.; Santos, E.; Arévalo, M.; López-Novoa, J.M. Activation of small GTPase Ras and renal fibrosis. J. Nephrol., 2005, 18(3), 341-349. PMID: 16013027
- Hendry, B.M.; Sharpe, C.C. Targeting Ras genes in kidney disease. Nephron, Exp. Nephrol., 2004, 93(4), e129-e133. doi: 10.1159/000070236 PMID: 12759573
Supplementary files
