Analysis of angle resolved x-ray photoelectron emission spectra of highly oriented pyrolytic graphite

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The interest in Van-der-Waals structures is associated with their unique physical and chemical properties and the prospects for technological applications. In this work, the object of study is highly oriented pyrolytic graphite as a model of such materials. The experimental results of measuring the spectra of angle resolved X-ray photoelectron spectroscopy are presented. The experiments were performed for detection angles of 0°, 60°, 80° and 85° from the surface normal, which made it possible to maximally localize the XPS signal generated by the upper layer of the highly oriented pyrolytic graphite. A technique for reconstructing the differential cross section of inelastic electron energy losses from experimental X-ray photoelectron spectroscopy spectra is presented. According to this technique, the differential cross section of inelastic electron scattering in the highly oriented pyrolytic graphite was reconstructed for each detection angle. The obtained cross sections are compared with those reconstructed for graphene with a different number of layers. The determining influence of collective plasmon electron energy losses on the formation of the energy loss spectrum in heterogeneous Van der Waals structures is indicated.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Afanas′ev

National Research University “MPEI”

Хат алмасуға жауапты Автор.
Email: v.af@mail.ru
Ресей, Moscow

L. Lobanova

National Research University “MPEI”

Email: v.af@mail.ru
Ресей, Moscow

A. Eletskii

National Research University “MPEI”

Email: v.af@mail.ru
Ресей, Moscow

K. Maslakov

Lomonosov Moscow State University

Email: v.af@mail.ru
Ресей, Moscow

М. Semenov-Shefov

National Research University “MPEI”

Email: v.af@mail.ru
Ресей, Moscow

G. Bocharov

National Research University “MPEI”

Email: v.af@mail.ru
Ресей, Moscow

Әдебиет тізімі

  1. Geim A.K., Grigorieva I.V. // Nature. 2013. V. 499. P. 419. https://www.doi.org/10.1038/nature12385
  2. Novoselov K.S., Castro Neto A.H. // Phys. Scr. 2012. V. 2012. № T146. P. 014006. https://www.doi.org/10.1088/0031-8949/2012/T146/014006
  3. Barrett N., Krasovskii E.E., Themlin J.M., Strocov V.N. // Surf. Sci. 2004. V. 566–568. P. 532. https://www.doi.org/10.1016/j.susc.2004.05.104
  4. Werner W.S.M., Bellissimo A., Leber R., Ashraf A., Segui S. // Surf. Sci. 2015. V. 635. P. L1. https://www.doi.org/10.1016/j.susc.2014.12.016
  5. Werner W.S.M., Astašauskas V., Ziegler P., Bellissimo A., Stefani G., Linhart L., Libisch F. // Phys. Rev. Lett. 2020. V. 125. № 19. P. 196603. https://www.doi.org/10.1103/PhysRevLett.125.196603
  6. Taft E.A., Philip H.R. // Phys. Rev. 1965. V. 138. № 1A. https://www.doi.org/10.1103/PhysRev.138.A197
  7. Wallace P. // Phys. Rev. 1947. V. 71. № 9. P. 622. https://www.doi.org/10.1103/PhysRev.71.622
  8. Marinopoulos A.G., Reining L., Olevano V., Rubio A., Pichler T., Liu X., Knupfer M., Fink J. // Phys. Rev. Lett. 2002. V. 89. № 7. P. 076402. https://www.doi.org/10.1103/PhysRevLett.89.076402
  9. Papageorgiou N., Portail M., Layet J. M. // Surf. Sci. 2000. V. 454–456. P. 462. https://www.doi.org/10.1016/S0039-6028(00)00127-8
  10. Eberlein T., Bangert U., Nair R.R., Jones R., Gass M., Bleloch A.L., Novoselov K.S., Geim A., Briddon P.R. // Phys. Rev. B. 2008. V. 77. № 23. P. 233406. https://www.doi.org/10.1103/PhysRevB.77.233406
  11. Pauly N., Novák M., Tougaard S. // Surf. Interface Anal. 2013. V. 45. № 4. P. 811. https://www.doi.org/10.1002/sia.5167
  12. Tanuma S., Powell C., Penn D. // Surf. Interface Anal. 2011. V. 43. № 3. P. 689. https://www.doi.org/10.1002/sia.3522
  13. Hoffman S. Auger and X-Ray Photoelectron Spectroscopy in Materials Science. Berlin Heidelberg: Springer, 2012. 528 pp. https://doi.org/10.1007/978-3-642-27381-0
  14. NIST Electron Elastic-Scattering Cross-Section Database, Version 5.0. (2002) https://srdata.nist.gov/srd64/
  15. Salvat F., Jablonski A., Powell C.J. // Comput. Phys. Commun. 2005. V. 165. № 2. P. 157. https://www.doi.org/10.1016/j.cpc.2004.09.006
  16. Garcia-Molina R., Abril I., Denton C.D., Heredia-Avalos S. // Nucl. Instrum. Meth. B. 2006. V. 249. № 1–2. P. 6. https://www.doi.org/10.1016/j.nimb.2006.03.011
  17. Strehlow W.H., Cook E.L. // J. Phys. Chem. Ref. Data. 1973. V. 2. № 1. P. 163.
  18. Afanas′ev V.P., Bocharov G S., Gryazev A.S., Eletskii A.V., Kaplya P.S., Ridzel O.Y. // J. Phys.: Conf. Ser. 2018. V. 1121. P. 012001. https://www.doi.org/10.1088/1742-6596/1121/1/012001
  19. Afanas′ev V.P., Bocharov G.S., Eletskii A.V., Ridzel O.Yu., Kaplya P.S., Köppen M. // J. Vac. Sci. Technol. B. 2017. V. 35. № 4. P. 041804. https://www.doi.org/10.1116/1.4994788
  20. Afanas′ev V.P., Bocharov G.S., Gryazev A.S., Eletskii A.V., Kaplya P.S., Ridzel O.Yu. // J. Surf. Invest. X-ray, Synchrotron Neutron Tech. 2020. V. 14. № 2. P. 366. https://www.doi.org/10.1134/S102745102002041X

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Рис. 1. Энергетические спектры характерных потерь энергии электронов, измеренные при прохождении электронов с энергией 100 кэВ через однослойный (1), двухслойный (2), пятислойный (3), десятислойный (4) графен [10].

Жүктеу (30KB)
3. Рис. 2. Обзорный спектр RFES высокоориентированного пиролитического графита.

Жүктеу (16KB)
4. Рис. 3. Экспериментальный спектр RFES в области пика углерода 1s высокоориентированного пиролитического графита при углах детектирования фотоэлектронов 0° (4), 60° (3), 80° (2) и 85° (1) относительно оси с структуры графита.

Жүктеу (27KB)
5. Рис. 4. Дифференциальные сечения неупругого рассеяния электронов, восстановленные из экспериментальных данных [10] по методу (2) для однослойного (1), двухслойного (2), пятислойного (3) и десятислойного графена (4).

Жүктеу (23KB)
6. Рис. 5. Дифференциальные сечения неупругого рассеяния электронов в высокоориентированном пиролитическом графите при углах регистрации фотоэлектронов 0° (4), 60° (3), 80° (2) и 85° (1), измеренные от нормали к плоскостям графена.

Жүктеу (20KB)

© Russian Academy of Sciences, 2025