Changes in the structure of the amorphous phase under heat treatment and deformation
- Авторлар: Abrosimova G.E.1
-
Мекемелер:
- Institute of Solid State Physics RAS
- Шығарылым: № 1 (2024)
- Беттер: 3-10
- Бөлім: Articles
- URL: https://kazanmedjournal.ru/1028-0960/article/view/664679
- DOI: https://doi.org/10.31857/S1028096024010017
- EDN: https://elibrary.ru/DRJGUN
- ID: 664679
Дәйексөз келтіру
Аннотация
The influence of heat treatment and deformation on the change in the structure of amorphous alloys Co67Fe7Si12B9Nb5, Al87Ni8Y5, Al88Ni6Y6, Al87Ni8Gd5, Al87Ni8La5, Zr50Cu15Ti16Ni19 obtained by melt quen-ching has been studied. It has been established that both heat treatment and deformation lead to the for-mation of a heterogeneous structure, while structure inhomogeneities can be due to formation the regions both with different concentrations of components (during heat treatment) or/and with different density (free volume concentration). At the early stages of crystallization, the phase composition of the emerging struc-ture depends on the type of impact on the amorphous structure and processing parameters (temperature, type and degree of deformation). The sizes of nanocrystals and the fraction of the nanocrystalline component depend on the prehistory of the sample.
Негізгі сөздер
Толық мәтін

Авторлар туралы
G. Abrosimova
Institute of Solid State Physics RAS
Хат алмасуға жауапты Автор.
Email: gea@issp.ac.ru
Ресей, 142432, Chernogolovka
Әдебиет тізімі
- Yavari A.R. // Acta Metall. 1988. ,V. 36. P. 1863.
- Abrosimova G.E., Aronin A.S., Pankratov S.P., Serebryakov A.V. // Scr. Metall. 1980. V.14. P. 967.
- Altounian Z., Batalla E., Strom-Olsen J.O., WalterJ.L. // J. Appl. Phys. 1987. V. 61. P. 149.
- Abrosimova G., Aronin A., Ignatieva E. // Mater. Sci. Eng. A. 2007. V. 449–451. P. 485. https://doi.org/10.016/j.msea.2006.02.344
- Абросимова Г.Е., Аронин А.С., Стельмух В.А. // ФТТ. 1991. Т. 33. С. 3570.
- Jiang, W.H., Atzmon, M. // Acta Mater. 2003. V. 51. Iss. 14. P. 4095. https://doi.org/10.1016/S1359-6454(03)00229 -5
- Pan J., Chen Q., Liu L., Li Y. // Acta Mater. 2011. V. 59. P. 5146. https://doi.org/10.1016/j.actamat.2011.04.047
- Maaß R., Samwer K., Arnold W., Volkert C.A. // Appl. Phys. Lett. 2014. V. 10. P. 17190. https://doi.org/10.1063/1.4900791
- Rösner H., Peterlechler M., Kűbel C., Schmidt V., Wil-de G. // Ultramicroscopy. 2014. V. 142. P. 1. https://doi.org/10.1016/j.ultramic.2014.03.006
- Greer A.L., Cheng Y.Q., Ma E. // Mater. Sci. Eng. R. 2013. V. 74. Iss. 4. P. 71. https://doi.org/10.1016/j.mser.2013.04.001
- Csontos A.A, Shiflet G.J. // Nano Struct. Mater. 1997. V. 9. P. 281.
- Georgarakis K., Aljerf M., Li Y., LeMoulec A., Char-lot F., Yavari A.R., Chornokhvostenko K., Tabachniko- va E., Evangelakis G.A., Miracle D.B., Greer A.L., Zhang T. // App. Phys. Lett. 2008. V. 93. P. 031907. https://doi.org/10.1063/1.2956666
- Jiang W.H., Atzmon M. // Acta Mater. 2003. V. 51. P. 4095. https://doi.org/10.1016/S1359-6454 (03)002 29-5
- Schmidt V., Rösner H., Peterlechler M., Wilde G. // Phys. Rev. Lett. 2015. V. 115. P. 035501. https://doi.org/10.1103/PhysRevLett.115.035501
- Seleznev M., Vinogradov A. // Metals. 2020. V. 10. P. 374. https://doi.org/10.3390/Met10030374
- Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. // Prog. Mater. Sci. 2000. V. 45. P. 103.
- Chen H.S., Turnbull D. // Acta Metal. 1969. V. 17. P. 1021.
- Mehra M., Schulz R., Johnson W.L. // J. Non-Cryst. Solids. 1984. V. 61–62. P. 859.
- Osamura K. // Colloid. Polymer Sci. 1981. V. 259. P. 677
- Mak A., Samwer K., Johnson W.L. // Phys. Lett. 1093. V. 98A. P. 353.
- Hermann H., Mattern N., Kuhn U., Heinemann A., Lazarev N. // J. Non-Cryst. Solids. 2003. V. 317. P. 91. https://doi org/10.1016/S0022-3093(02)019-87-7
- Terauchi H. // J. Phys. Soc. Jpn. 1983. V. 52. P. 3454.
- Osamura K.J. // Mater. Sci. 1984. V. 19. P. 1917.
- Yavari A.R. // Inter. J. Rapid Solidi. 1986. V. 2. P. 047.
- Inoue A., Yamamoto M., Kimura H.M., Masomoto T. // J. Mater. Sci.
- Abrosimova G.E., Aronin A.S., Ignat’eva E.Yu., Molokanov V.V. // JMMM. 1999. V. 203. P. 169. https://doi.org/10.1016/S0304-8853(99)00216-4
- Zeng Q.S. // Proc. Nat. Acad. Sci. USA. 2007. V. 104. P. 13565.
- Naudon A., Flank V. // J. Non-Cryst. Solids. 1984. V. 61–62. P. 355.
- Gunderov D., Astanin V., Churakova A., Sitdikov V., Ubyivovk E., Islamov A., Jing Tao Wang. // Metals. 2020. V. 10. P. 1433. https://doi.org/10.3390/met 10111433
- Abrosimova G., Gunderov D., Postnova E., Aro- nin A. // Materials. 2023. V. 16. P. 1321. https://doi.org/10.3390/ma16031321
- Liu C., Roddatis V., Kenesei P., Maaß R. // Acta Materialia. 2017. V. 140. P. 206. http://dx.doi.org/10.1016/j.actamat.2017.08.032
- Aronin A.S., Louzguine-Luzgin D.V. // Mechanics Mater. 2017. V. 10. P. 19. https://doi.org/10.1016/j.mechmat.2017.07.007
- Aronin A., Budchenko A., Matveev D., Pershina E., Tkatch V., Abrosimova G. // Rev. Adv. Mater. Sci. 2016. V. 46. P. 53. www.ipme.ru/e-journals/RAMS/no_14616/05_14616_aronin.pdf
- Aronin A., Abrosimova G., Matveev D., Rybchen- ko O. // Rev. Adv. Mater. Sci. 2010. V. 25. P. 52.
- Abrosimova G., Gnesin B., Gunderov D., Drozden-ko A., Matveev D., Mironchuk B., Pershina E., Sho- lin I., Aronin A. // Metals. 2020. V. 10. P. 1329. https://doi.org/10.3390/met10101329
- Barkalov O.I., Aronin A.S., Abrosimova G.E., Ponyatovsky E.G. // J. Non-Cryst. Solids. 1996. V. 202. P. 262.
- Абросимова Г.Е., Аронин А.С., Гантмахер В.Ф., Левин Ю.Б., Ошеров М.В. // ФТТ. 1988. Т. 30. С. 1424.
Қосымша файлдар
