Generalized cesaro formulas in 3D and 4D elasticity theories

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Generalized Cesaro formulas are found, allowing to determine the displacement field with an accuracy of up to quadratic polynomials through integro-differential operators from the strain tensor-deviator in 3D elasticity theory and 4D elasticity theory. It is shown that quadratures for the pseudovector (pseudotensor in 4D elasticity) of local rotations and deformation of volume change are determined by the strain deviator field with an accuracy of up to linear polynomials in coordinates. Conditions for the existence of the listed quadratures are presented in the form of five (nine for 4D) third-differential order compatibility equations with respect to the strain tensor-deviator components.

全文:

受限制的访问

作者简介

S. Lurie

Institute of Applied Mechanics of RAS; Ishlinsky Institute for Problems in Mechanics RAS

编辑信件的主要联系方式.
Email: salurie@mail.ru
俄罗斯联邦, Moscow; Moscow

P. Belov

Institute of Applied Mechanics of RAS

Email: belovp@andex.ru
俄罗斯联邦, Moscow

参考

  1. Lejbenzon L.S. Kurs teorii uprugosti [Course in the theory of elasticity]. Moskva, Nauka, 1947. 465 p.
  2. Pobedrya B.E., Sheshenin S.V., Xolmatov T. Zadacha v napryazheniyax [Problem in stresses]. Tashkent, FAN, 1988. 192 p.
  3. Georgievskij D.V. Uravneniya sovmestnosti v sistemax, osnovanny`x na obobshhyonny`x kinematicheskix sootnosheniyax Koshi [Compatibility equations in systems based on generalized Cauchy kinematic relations]. Izvestiya Rossijskoj akademii nauk, Mekhanika tverdogo tela. 2014. № 1. P. 127–134.
  4. Georgievskii D.V., Pobedrya B.E. On the compatibility equations in terms of stresses in many-dimensional elastic medium. Russ. J. Math. Phys. 2015. V. 22. P. 6–8.
  5. Ces˘aro E. Sulle formole del Volterra, fondamentali nella teoria delle distorsioni elastiche // Nuovo Cim. 1906. V. 12. P. 143–154.
  6. Lur`e S.A., Belov P.A. Obobshhenny`e formuly` Chezaro i uravneniya sovmestnosti tret`ego poryadka [Generalized Cesaro formulas and third-order compatibility equations] // Vestnik Moskovskogo universiteta. Seriya 1. Matematika. Meсhanika. 2023. № 4. P. 61–64.
  7. Poynting J.H. On pressure perpendicular to the shear planes in finite pure shears, and on the lengthening on loaded wires when twisted // Proc. Roy. Soc. Lond. A, 1909. V. 82. № 557. P. 546–559.
  8. Lur`e A.I. Nelinejnaya teoriya uprugosti [Nonlinear theory of elasticity]. Moskva, Nauka, 1980. 512 p.
  9. Goldstein R.V., Gorodtsov V.A., Lisovenko D.S. Linear Poynting’s effect at torsion and extension of curvilinearly anisotropic tubes // Doklady Physics. 2015. V. 60. № 9. P. 396–399.
  10. Goldstein R.V., Gorodtsov V.A., Lisovenko D.S. Poynting’s effect of cylindrically anisotropic nano/microtubes. Physical Mesomechanics, 2016. V. 19. № 3. P. 229–238.
  11. Lurie S.A., Belov P.A. On the nature of the relaxation time, the Maxwell–Cattaneo and Fourier law in the thermodynamics of a continuous medium, and the scale effects in thermal conductivity // Continuum Mech. Thermodyn. 2020. № 32. P. 709–728.
  12. Lomakin E.V., Lurie S.A., Belov P.A., Rabinskiy L.N. On the Generalized Heat Conduction Laws in the Reversible Thermodynamics of a Continuous Medium // Doklady Physics. 2018. V. 63. № 12. P. 503–507.
  13. Vasiliev V.V., Fedorov L.V. Spherically Symmetric Problem of General Relativity for a Fluid Sphere // Journal of Modern Physics. 2024. № 15. P. 401–415.
  14. Vasiliev V., Fedorov L. Spherically Symmetric Problem of General Relativity for an Elastic Solid Sphere // Journal of Modern Physics 2023. № 14. P. 818–832.
  15. Müller W.H., Vilchevskaya E.N., Eremeyev V.A. Electrodynamics from the viewpoint of modern continuum theory—A review // ZAMM – Journal of Applied Mathematics and Mechanics. 2023. V. 103. № 4.
  16. Girifalco Louis A. The space–time continuum. The Universal Force: Gravity – Creator of Worlds, Oxford Academic. 2007. № 1. P. 188–194.
  17. Millette P.A. Elastodynamics of the Spacetime Continuum: A Spacetime Physics Theory of Gravitation, Electromagnetism and Quantum Physics. New Mexico, American Research Press, Rehoboth. 2017. 342 p.
  18. Belov P.A, Lurie S.A. Mechanistic Model of Gravitation // Lobachevskii Journal of Mathematics. 2023. V. 44. № 6. P. 2237–2247.
  19. Sokolnikoff I.S. Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua. New York, Wiley, 1964. 361 p.
  20. Vajnberg C. Kosmologiya [Cosmology]. Moskva: URSS, 2013. 608 p.
  21. Blinnikov S.I., Dolgov A.D. Kosmologicheskoe uskorenie [Cosmological acceleration] // UFN. 2019. № 189. P. 561–602

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025