Generalized solution of equations of dynamics of thermoelastic medium with crack

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The dynamics of an isotropic thermoelastic medium during the formation of cracks with an arbitrary surface geometry and non-opening edges is considered. The shock thermoelastic waves arise in the medium during such a process. The energy conservation law for a thermoelastic medium is considered considering shock waves. For shock thermoelastic waves, using the method of generalized functions, conditions are obtained for jumps in stresses, velocities, heat fluxes and energy density on their fronts. The crack model determines the relationship between jumps in stresses and velocities of relative displacement of the crack edges. The problem is posed and solved in the space of generalized vector functions. The solution is presented as a tensor-functional convolution of the Green’s tensor of the equations of coupled thermoelasticity with a singular mass forces containing simple and double layers whose densities are determined by the jump in velocities, stresses, temperatures and heat fluxes on the crack edges. The latter determine the crack model and are assumed to be known.

Толық мәтін

Рұқсат жабық

Авторлар туралы

L. Аlexeyeva

Institute of Mathematics and Mathematical Modeling

Хат алмасуға жауапты Автор.
Email: alexeeva@math.kz
Қазақстан, Almaty

B. Аlipova

International Information Technology University; University of Kentucky

Email: alipova.bakhyt@gmail.com
Қазақстан, Almaty; Lexington, KY, USA

Әдебиет тізімі

  1. Rice J. Mechanics of the earthquake focus. М.: Mir, 1982. 217 p.
  2. Cherepanov G.P. Methods of Fracture Mechanics. Solid Matter Physics. Dordrecht: “Kluwer”, 1997. 314 p.
  3. Guz A.N., Kaminskyi А.А., Gavrilov D.A., Zozulya V.V. Nonclassical problems of fracturemechanics. Kiev: Naukova Dumka. 4 vol. 1990–1994.
  4. Slepian L.I. Mechanics of cracks. Shipbuilding. 1990. 295 p.
  5. Lykotrafitis G., Georgiadis H.G., Brock L.M. Three-dimensional thermoelastic wave motions in a half-space under the action of a buried source // Int. J. Solids Struct. 2001. V. 38. P. 4857–4878. https://doi.org/10.1016/S0020-7683(00)00311-5
  6. Naeeni M.R.,. Eskandari-Ghadi M., Ardalan A.А., Sture S., Rahimian M.. Transient response of a thermoelastic half-space to mechanical and thermal buried sources // ZAMM. 2015. V. 95. № 4. P. 354–376. https://doi.org/10.1002/zamm.201300055
  7. Alexeyeva L.A., Dildabayeva I.Sh. Generalized solutions of the equations of the dynamics of an elastic medium with a crack // Mathematical J. 2007. V. 8. № 3. P. 11–20.
  8. Kupradze V.D., Gegelia T.G., Basheleshvili M.O., Burchuladze T.V. Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity. M: Nauka, 1976. 664 p.
  9. Alexeyeva L.A., Kupesova B.N. The method of generalized functions in boundary value problems of coupled thermoelastodynamics // Applied Mathematics and Mechanics. 2001. V. 65. № 2. P. 334–345.
  10. Alexeyeva L.A., Аlipova B.N., Dadaeva A.N. Shock waves as generalized solutions of thermoelastodynamics equations. On the uniqueness of boundary value problems solutions // AIP Conference Proceedings. 2017. V. 1798. P. 020003. https://doi.org/10.1063/1.4972595
  11. Nowacki W. Dynamic problems of thermoelasticity. M.: Mir, 1970. 256 p.
  12. Vladimirov V.S. Generalized functions in mathematical physics. M.: Nauka, 1976.
  13. Vladimirov V.S. Equations of mathematical physics. M.: Nauka, 1976.
  14. Petrashen G.I. Propagation of waves in anisotropic elastic media. M.: Nauka. 1980. 280 p.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025