Effects of the energy dissipation pattern on the controlability processes in systems with distributed parameters

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The paper considers the problem of damping vibrations of a membrane and a plate with the help of forces distributed over their entire area. The proposed method allows us to consider restrictions not only on the absolute value of the control, but also on the absolute value of the derivatives of the functions that specify the control. Sufficient conditions are given for the initial conditions under which the problem of bringing the system to rest in a finite time is solvable, and the time of bringing to rest is estimated.

Толық мәтін

Рұқсат жабық

Авторлар туралы

T. Bobyleva

Moscow State University of Civil Engineering

Хат алмасуға жауапты Автор.
Email: bobyleva-tn@yandex.ru
Ресей, Moscow

A. Shamaev

Ishlinsky Institute for problems in mechanics RAS

Email: sham@rambler.ru
Ресей, Moscow

Әдебиет тізімі

  1. Butkovsky A.G. Control Methods of the Systems with Distributed Parameters. Moscow: Nauka, 1965. 474 p. (in Russian)
  2. Lions J.L. Exact controllability, stabilization and perturbations for distributed systems // SIAM Rev. 1988. V. 30, № 1. P. 1–68. https://doi.org/10.1137/1030001
  3. Chernous’ko F.L. Bounded controls in distributed-parameter systems // JAMM. 1992. V. 56. № 3. P. 707–723.
  4. Romanov I., Shamaev A. Exact controllability of the distributed system, governed by string equation with memory // J. of Dyn.&Control Syst. 2013. V. 19. № 4. P. 611–623. https://doi.org/10.1007/s10883-013-9199-y
  5. Romanov I., Shamaev A. Noncontrollability to rest of the two-dimensional distributed system governed by the integro-differential equation // J. of Optimiz. Theory&Appl. 2016. V. 170. P. 772–782. https://doi.org/10.1007/s10957-016-0945-7
  6. Romanov I., Shamaev A. Some problems of distributed and boundary control for systems with integral aftereffect // J. Math. Sci. 2018. V. 234. № 4. P. 470–484. https://doi.org/10.1007/s10958-018-4023-6
  7. Romanov I.V., Shamaev A.S. Exact bounded boundary controllability of vibrations of a two-dimensional membrane // Dokl. Math. 2016. V. 94. № 2. P. 607–610. https://doi.org/10.7868/S0869565216250071
  8. Romanov I., Shamaev A. Suppression of oscillations of thin plate by bounded control acting to the boundary // J. of Computer&Syst. Sci. Int. 2020. V. 59. № 3. P. 371–380. https://doi.org/10.1134/S1064230720030144
  9. Romanov I., Shamaev A. Exact bounded boundary controllability to rest for the two-dimensional wave equation // J. of Optimiz. Theory&Appl. 2021. V. 188. № 3. P. 925–938. https://doi.org/10.1007/s10957-021-01817-y
  10. Ivanov S., Pandolfi L. Heat equation with memory: lack of controllability to rest // J. of Math. Anal.&Appl. 2009. V. 355. № 1. P. 1–11. https://doi.org/10.1016/j.jmaa.2009.01.008
  11. Akulenko L.D. Bringing an elastic system to a given state by means of a force boundary impact // JAMM. 1981. V. 45. № 6. P. 1095–1103.
  12. Mikhailov V.P. Partial Differential Equations. Moscow: Mir, 1978. 396 p.
  13. Eidus D.M. Some inequalities for eigenfunctions // Dokl. AN USSR. 1956. V. 107. № 6, P. 796–798. [in Russian]
  14. Kondratiev V.A., Egorov Yu.V. Some estimates for eigenfunctions of an elliptic operator // Vestn. MSU, Ser. 1, Math.&Mech. 1985. № 4. P. 32–34. [in Russian]
  15. Pontryagin L. S., Boltyanskii V.G., Gamkrelidze R.V. Mishchenko E.F. The Mathematical Theory of Optimal Processes. N.Y.; London: Wiley, 1962. 360 p.
  16. Levin B.Ya. Distribution of zeros of entire functions. N.Y.: Amer. Math. Soc., Providence, 1980. 523 p.
  17. Romanov I.V. Investigation of controllability for some dynamic systems with distributed parameters described by integro-differential equations // J. of Comp.&Syst. Sci. Int. 2022. V. 61. № 2. P. 191–194. https://doi.org/10.31857/S0002338822020123
  18. Oskolkov A.P. Initial-boundary value problems for equations of motion of Kelvin–Voight fluids and Oldroyd fluids. Boundary value problems of mathematical physics. Part 13 // in: Proc. Steklov Inst. Math. 1989. V. 179. P. 137–182.
  19. Egorova A.A., Shamaev A.S. Problem of the boundary control of oscillations of a sample of a layered two-phase composite material // J. of Computer&Syst. Sci. Int. 2023. V. 62. № 4. P. 666–674. https://doi.org/10.31857/S0002338823040030
  20. Bobyleva T.N., Gusev I.A., Shamaev A.S. Limited and smooth controls of oscillations in systems given by differential and integrodifferential equations // Mechanics of Solids, Allerton Press Inc. (United States). 2023. V. 58. № 8. P. 2818–2825. https://doi.org/10.3103/S0025654423080058

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025