Modeling of hydraulic autofrettage of thick-walled cylindrical shells taking into account elastoplastic anisotropy caused by the Baushinger effect

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The present work is aimed at developing a method for calculating residual stresses during autofrettage of cylindrical shells, allowing for elastic-plastic anisotropy caused by the Bauschinger effect. The proposed calculation method is based on the joint solution by the method of variable elasticity parameters of integral equations of equilibrium and compatibility of deformations, written in Euler coordinates for nonlinear deformation measures. The results of the work are in good agreement with the results of other authors obtained with similar initial data.

Толық мәтін

Рұқсат жабық

Авторлар туралы

S. Feoktistov

Komsomolsk-na-Amure State University

Хат алмасуға жауапты Автор.
Email: serg_feo@mail.ru
Ресей, Komsomolsk-na-Amure

I. Andrianov

Komsomolsk-na-Amure State University

Email: ivan_andrianov_90@mail.ru
Ресей, Komsomolsk-na-Amure

Lin Htet

Komsomolsk-na-Amure State University

Email: linhtetnaining513028@gmail.ru
Ресей, Komsomolsk-na-Amure

Әдебиет тізімі

  1. Fryer D.M., Fryer D.M., Harvey J.F. High Pressure Vessels. Harvey – Boston: Springer, 2012. 216 p.
  2. Shufen R., Shufen R., Dixit U.S. A review of theoretical and experimental research on various autofrettage processes // Pressure Vessel Technol. 2018. V. 140. № 5. P. 15.
  3. Малинин Н.Н. Прикладная теория пластичности и ползучести. М.: Машиностроение, 1975. 399 с.
  4. Kholdi M., Loghman A., Ashrafi H. Analysis of thick-walled spherical shells subjected to external pressure: Elastoplastic and residual stress analysis // Proc IMechE Part L: J Materials: Design and Applications. 2020. V. 234. № 1. P. 186–197.
  5. Huang X.P., Cheng C.W. Autofrettage analysis of thick-walled cylinder based on tensile-compressive curve of material // Key Engineering Materials. 2004. № 274–276. P. 1035–1040.
  6. Chen P.C. The Bauschinger and hardening effect on residual stresses in an autofrettaged thick-walled cylinder // Pressure Vessel Technol. 1986. V. 108. № 1. P. 108–112.
  7. Huang X.P. A general autofrettage model of a thick-walled cylinder based on tensile–compressive stress–strain curve of a material // Submitted to Journal of Strain Analysis for Engineering Design. 2005. V. 40. № 6. P. 599–607.
  8. Hu Z., Penumarthy C. Computer modeling and optimization of swage autofrettage process of a thick-walled cylinder incorporating Bauschinger effect // American Transactions on Engineering & Applied Sciences. 2014. V. 3. № 1. P. 31–63.
  9. Perl M., Perry J. An Experimental-Numerical Determination of the Three-Dimensional Autofrettage Residual Stress Field Incorporating Bauschinger Effects // Journal of Pressure Vessel Technology. 2006. V. 128. № 2. P. 173–178.
  10. Hu Z., Parker A.P. Swage autofrettage analysis – Current status and future prospects // International Journal of Pressure Vessels and Piping. 2019. № 171. P. 233–241.
  11. Zare H.R., Darijani H. A novel autofrettage method for strengthening and design of thick-walled cylinders // Mater. Des. 2016. № 105. P. 366–374.
  12. Zare H.R., Darijani H. Strengthening and design of the linear hardening thickwalle cylinders using the new method of rotational autofrettage // Int. J. Mech. Sci. 2017. № 124–125. P. 1–8.
  13. Kamal S.M. Estimation of optimum rotational speed for rotational autofrettage of disks incorporating Bauschinger effect // Mech. Base. Des. Struct. Mach. 2020. V. 50. № 7. P. 1–20. https://doi.org/10.1080/15397734.2020.1780608
  14. Moskvitin V.V. Plasticity under variable loading. Moscow: Moscow State University Publishing House, 1965. 263 p.
  15. Feoktistov S.I., Andrianov I.K. Analytical description of the Bauschinger effect using experimental data and the generalized Мasing principle // Materials Physics and Mechanics. 2024. V. 52, № 1. P. 49–59. https://doi.org/10.18149/MPM.5212024_5
  16. Adigamov R.R., Andreev V.A., Rogachev S.O., Fedotov E.S., Khadeev G.E., Yusupov V.S. Manifestation of the Bauschinger effect under alternating deformation // Ferrous metallurgy: News of universities. 2022. V. 65. № 7. P. 455–466.
  17. Pykhtunova S.V. On the issue of the Bauschinger effect // Quality in materials processing. 2015. V. 1. № 3. P . 75–77.
  18. Nigmatullin V.I. Experimental study of the influence of preliminary plastic deformation on the behavior of structural steels under reverse loading // Proceedings of the Central Research Institute named after academician A.N. Krylov. 2011. № 60. P. 119–132.
  19. Perry J., Perl M., Shneck R., Haroush S. The Influence of the Bauschinger Effect on the Yield Stress, Young’s Modulus, and Poisson’s Ratio of a Gun Barrel Steel // Journal of Pressure Vessel Technology. 2006. № 128. P. 179–184. https://doi.org/10.1115/1.2172962
  20. Dell H.D., Eliseev V.V., Shapievskaya V.A. Experimental Study of the Bauschinger Effect for Anisotropic Metals // Mechanics of Solids. 2014. V. 49. № 5. P. 561–567.
  21. Parker A.P. Characterization of Steels Using a Revised Kinematic Hardening Model Incorporating Bauschinger Effect // Journal of Pressure Vessel Technology. 2003. № 125. P. 277–281. https://doi.org/10.1115/1.1593071
  22. Hu Z., Parker A.P. Implementation and validation of true material constitutive model for accurate modeling of thick-walled cylinder swage autofrettage // International Journal of Pressure Vessels and Piping. 2021. V. 191. P. 1–10.
  23. Faghih S., Jahed H., Behravesh S. Variable Material Properties Approach: A Review on Twenty Years of Progress // Journal of Pressure Vessel Technol. 2018. V. 140. № 5. P. 050803. https://doi.org/10.1115/1.4039068 URL: https://asmedigitalcollection.asme.org/pressurevesseltech/article-abstract/140/5/050803/366265/Variable-Material-Properties-Approach-A-Review-on?redirectedFrom=fulltext (дата обращения: 01.03.2024)
  24. Jahed H., Dubey R.N. An Axisymmetric Method of ElasticPlastic Analysis Capable of Predicting Residual Stress Field, ASME Journal of Pressure Vessel Technology. 1997. V. 119. № 3. P. 264–273.
  25. Birger I.A. Round plates and shells of revolution. Moscow: Oborongiz, 1961. 368 p.
  26. Birger I.A., Mavlyutov R.R. Strength of materials. Moscow: Nauka, 1986. 560 p.
  27. Pisarenko G.S., Mozharovsky N.S. Equations and boundary value problems of the theory of plasticity and creep. Kyiv: Nauk. Dumka, 1981. 496 p.
  28. Kryzhevich G.B., Filatov A.R. Model of elastic-plastic deformation of aluminum alloys and criteria for low-cycle fatigue of structures // Proceedings of the Krylov State Research Center. 2018. Special issue № 2. P. 85–95.
  29. Feoktistov S.I., Andrianov I.K. Method for calculating the forming limit of a pipe blank under expansion taking into account nonlinear plasticity // Journal of Applied Mechanics and Technical Physics. 2023. V. 64. № 4. P. 721–727. https://doi.org/10.1134/s0021894423040193]
  30. Durban D. Large strain solution for pressurized elasto/plastic tubes // Journal of Applied Mechanics, Transactions ASME. 1979. V. 46. № 1. P 228–230. https://doi.org/10.1115/1.3424511
  31. Durban D. A finite strain axially-symmetric solution for elastic tubes // International Journal of Solids and Structures. 1988. V. 24. № 7. P. 675–682. https://doi.org/10.1016/0020-7683(88)90016-9
  32. Durban D. Finite straining of pressurized compressible elastoplastic tubes // International Journal of Engineering Science. 1988. V. 26. № 9. P. 939–950. https://doi.org/10.1016/0020-7225(88)90023-7
  33. Durban D., Kubi M. A General Solution for the Pressurized Elastoplastic Tube. Journal of Applied Mechanics. 1992. V. 59. № 1. P. 20–26. https://doi.org/10.1115/1.2899431
  34. Feoktistov S.I., Andrianov I.K. Compatibility equations of logarithmic deformations in Euler coordinates for solving axisymmetric metal forming processes // Scientific notes of Komsomolsk-on-Amur State Technical University. 2021. V. 7. № 55. P. 26–30.
  35. Durban D., Kubi M. A General Solution for the Pressurized Elastoplastic Tube // Journal of Applied Mechanics. 1992. V. 59. № 1. P. 20–26. https://doi.org/10.1115/1.2899431
  36. Feoktistov S.I., Andrianov I.K., Htet L. Modeling the stress-strain state of thick-walled cylindrical shells taking into account the physical nonlinearity of the material // Scientific notes of Komsomolsk-on-Amur State Technical University. 2022. V. 3. № 59. P. 12–20.
  37. Andrianov I.K., Feoktistov S.I. Inverse problem of elastic-plastic deformation of a free thick-walled cylindrical shell taking into account the nonlinear law of hardening // Problems of Strength and Plasticity. 2024. № 86. P. 259–269. https://doi.org/10.32326/1814-9146-2024-86-3-259-269
  38. Smirnov-Alyaev G.A. Theory of auto-bonding of cylinders. M.: Oborongiz, 1940. 284 p.
  39. Troiano E., Underwood J.H., Parker A.P. Finite Element Investigation of Bauschinger Effect in High-Strength A723 Pressure Vessel Steel // Journal of Pressure Vessel Technology. 2006. № 128. P. 185–189. https://doi.org/10.1115/1.2172616

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Typical deformation diagram of high-strength steels under uniaxial tension-compression.

Жүктеу (73KB)
3. Fig. 2. Change in the Bauschinger effect coefficient (a) and elastic modulus (b) during unloading-compression depending on the magnitude of the previous deformation under loading ei′ for steel A723-1130.

Жүктеу (78KB)
4. Fig. 3. Deformation diagrams of steel A723-1130 under uniaxial tension, subsequent unloading and compression for different levels of deformation si [MPa].

Жүктеу (166KB)
5. Fig. 4. Deformation diagram for isotropic and kinematic hardening models: 1 – direct loading, 2 – reverse loading (isotropic hardening); 3 – reverse loading (kinematic hardening) [24]. si[MPa].

Жүктеу (122KB)
6. Fig. 5. Comparison of the results of calculating the circumferential stresses sq′ in the loaded state (4, 5, 6) and residual circumferential stresses sq0 (1, 2, 3) for isotropic hardening at paut = 1720 MPa; Soverstr = 0.47: 1, 4 – according to the methodology of this study, 2, 5 – by the finite element method [24], 3, 6 – by the method of variable material properties [24].

Жүктеу (87KB)
7. Fig. 6. Comparison of the results of calculating the residual radial sr0 (4, 5, 6) and axial sz0 stresses for isotropic hardening (1, 2, 3) at paut = 1720 MPa; Soverstr = 0.47: 1, 4 – according to the methodology of this study, 2, 5 – by the finite element method [24], 3, 6 – by the method of variable material properties [24].

Жүктеу (99KB)
8. Fig. 7. Comparison of the results of calculating the circumferential stresses sq′ in the loaded state (4, 5, 6) and residual circumferential stresses sq0 (1, 2, 3) for kinematic hardening at paut = 1720 MPa; Soverstr = 0.47: 1, 4 – according to the methodology of this study, 2, 5 – by the finite element method [24], 3, 6 – by the method of variable material properties [24].

Жүктеу (90KB)
9. Fig. 8. Comparison of the results of calculating the residual radial sr0 (4, 5, 6) and axial sz0 stresses for kinematic hardening (1, 2, 3) at paut = 1720 MPa; Soverstr = 0.47: 1, 4 – according to the methodology of this study, 2, 5 – by the finite element method [24], 3, 6 – by the method of variable material properties [24].

Жүктеу (99KB)
10. Fig. 9. Comparison of the results of calculating the circumferential stresses sq′ in the loaded state (4, 5, 6) and residual circumferential stresses sq0 (1, 2, 3) for isotropic hardening at paut = 1679 MPa; Soverstr = 0.44: 1, 4 – according to the methodology of this study, 2, 5 – by the finite element method [24], 3, 6 – by the method of variable material properties [24].

Жүктеу (80KB)
11. Fig. 10. Comparison of the results of calculating the residual radial sr0 (4, 5, 6) and axial sz0 stresses (1, 2, 3) for isotropic hardening at paut = 1679 MPa; Soverstr = 0.44: 1, 4 – according to the methodology of this study, 2, 5 – by the finite element method [24], 3, 6 – by the method of variable material properties [24].

Жүктеу (93KB)
12. Fig. 11. Comparison of the results of calculating the circumferential stresses sq′ in the loaded state (4, 5, 6) and residual circumferential stresses sq0 (1, 2, 3) for kinematic hardening at paut = 1679 MPa; Soverstr = 0.44: 1, 4 – according to the methodology of this study, 2, 5 – by the finite element method [24], 3, 6 – by the method of variable material properties [24].

Жүктеу (82KB)
13. Fig. 12. Comparison of the results of calculating the residual radial sr0 (4, 5, 6) and axial stresses sz0 (1, 2, 3) for kinematic hardening at paut = 1679 MPa; Soverstr = 0.44: 1, 4 – according to the methodology of this study, 2, 5 – by the finite element method [24], 3, 6 – by the method of variable material properties [24].

Жүктеу (87KB)
14. Fig. 13. Circumferential residual stresses sq0 obtained by different calculation methods at R0 /r0 = 2; Soverstr = 0.7: 1 – according to the methodology of this study, 2 – by the method of variable material properties [39], 3 – by the finite element method in the case of plane deformation [39], 4 – by the finite element method in the case of plane stress state [39]. sq0[MPa], r[mm].

Жүктеу (99KB)
15. Fig. 14. Circumferential residual stresses sq0 obtained by different calculation methods at R0 /r0 = 2.25; Soverstr = 0.7: 1 – according to the methodology of this study, 2 – by the method of variable material properties [39], 3 – by the finite element method in the case of plane deformation [39], 4 – by the finite element method in the case of plane stress state [39]. sq0[MPa], r[mm].

Жүктеу (114KB)
16. Fig. 15. Relative change in the elastic modulus –E during unloading-compression across the shell thickness for different values ​​of the plastic region during autofrettage for R0 /r0 = 2: 1 – Soverstr = 0.1; 2 – Soverstr = 0.3; 3 – Soverstr = 0.5; 4 – Soverstr = 0.7; 5 – Soverstr = 0.9; 6 – Soverstr = 1.0.

Жүктеу (110KB)
17. Fig. 16. Relative change in the elastic modulus –E during unloading-compression across the shell thickness for different values ​​of the plastic region during autofrettage for R0 /r0 = 3: 1 – Soverstr = 0.1; 2 – Soverstr = 0.3; 3 – Soverstr = 0.5; 4 – Soverstr = 0.7; 5 – Soverstr = 0.9; 6 – Soverstr = 1.0.

Жүктеу (115KB)
18. Fig. 17. Relative change in the yield strength siY = aY siY during unloading-compression across the shell thickness for different values ​​of the plastic region during autofrettage for R0 /r0 = 2: 1 – Soverstr = 0.1; 2 – Soverstr = 0.3; 3 – Soverstr = 0.5; 4 – Soverstr = 0.7; 5 – Soverstr = 0.9; 6 – Soverstr = 1.0.

Жүктеу (115KB)
19. Fig. 18. Relative change in the yield strength siY = aY siY during unloading-compression across the shell thickness for different values ​​of the plastic region during autofrettage for R0 /r0 = 3: 1 – Soverstr = 0.1; 2 – Soverstr = 0.3; 3 – Soverstr = 0.5; 4 – Soverstr = 0.7; 5 – Soverstr = 0.9; 6 – Soverstr = 1.0.

Жүктеу (115KB)
20. Fig. 19. Distribution of residual circumferential stresses sq0 across the shell thickness for different values ​​of the plastic region during autofrettage for R0 /r0 = 2: 1 – Soverstr = 0.1; 2 – Soverstr = 0.3; 3 – Soverstr = 0.5; 4 – Soverstr = 0.7; 5 – Soverstr = 0.9; 6 – Soverstr = 1.0. sq0 [MPa].

Жүктеу (141KB)
21. Fig. 20. Distribution of residual circumferential stresses sq0 across the shell thickness for different values ​​of the plastic region during autofrettage for R0 /r0 = 3: 1 – Soverstr = 0.1; 2 – Soverstr = 0.3; 3 – Soverstr = 0.5; 4 – Soverstr = 0.7; 5 – Soverstr = 0.9; 6 – Soverstr = 1.0. sq0 [MPa].

Жүктеу (123KB)
22. Fig. 21. Change in compressive residual circumferential stresses sq0|r = r on the inner surface of the shell with a change in the size of the plastic region during autofrettage for R0 /r0 = 2. sq0|r = r [MPa].

Жүктеу (60KB)
23. Fig. 22. Change in compressive residual circumferential stresses sq0|r = r on the inner surface of the shell with a change in the size of the plastic region during autofrettage for R0 /r0 = 3. sq0|r = r [MPa].

Жүктеу (58KB)

© Russian Academy of Sciences, 2025