CONVERTION OF WAVE MODES UPON REFLECTION AT THE BOUNDARY BETWEEN ELASTIC HALF-SPACES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

It is known that an incident bulk P-wave propagating in a homogeneous isotropic halfspace, being reflected from the plane boundary, may exhibit a mode conversion into shear S-wave without the formation of reflected P-waves. The mode conversion takes place, when the incident wave hits the boundary at some critical angles, which depend upon Poisson’s ratio. Herein, it is revealed that the Jeffreys solution for the mode conversion angles needs in in corrections, mainly because of spurious roots, appeared at solving a specially constructed eighth-order polynomial for the P-wave reflection coefficient. The developed approach allowed us to construct a bi-cubic polynomial and obtain analytical expressions for its roots, and to find correct values for angles of incidence, at which the mode conversion occurs.

About the authors

A. I. Karakozova

Moscow State University of Civil Engineering

Email: karioca@mail.ru
Москва, Россия

S. V. Kuznetsov

Moscow State University of Civil Engineering; Institute of Mechanics of the Russian Academy of Sciences named after A.Yu. Ishlinsky

Author for correspondence.
Email: karioca@mail.ru
Москва, Россия; Москва, Россия

References

  1. Knott C.G. Reflexion and refraction of elastic waves, with seismological applications // Phil. Mag. 1915. V. 5. № 3. P. 48–64. https://doi.org/10.1785/BSSA0050030163A
  2. Zoeppritz K. Über Reflexion und Durchgang seismischer Wellen durch Unstetigkeitsflächen // Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse. 1919. VIIb. P. 66–84.
  3. Aki K., Richards P.G. Quantitative Seismology: Theory and Methods. Vol. 1. San Francisco: Freeman Co. 1980. 557 p.
  4. Gurtin M.E. The Linear Theory of Elasticity. In: Truesdell C. (eds.) Linear Theories of Elasticity and Thermoelasticity. Berlin, Heidelberg: Springer. 1972. 296 p.
  5. Ben-Menahem A., Singh S.J. Seismic Waves and Sources. Berlin: Springer-Verlag. 1981. 1102 p.
  6. Miklowitz J. Wave Propagation in Solids. N.Y.: ASME. 1969. 183 p.
  7. Burridge R., Lapwood E.R., Knopoff L. First motions from seismic sources near a free surface // Bull. Seism. Soc. Am. 1964. № 54. P. 1889–1913. https://doi.org/10.1785/BSSA05406A1889
  8. Cagniard L. Reflection and Refraction of Progressive Seismic Waves. // Physics today. 1963. V. 16. № 2. P. 64. https://doi.org/10.1063/1.3050759
  9. Dragoni M., Gasperini M. On the localization of seismic events // La Rivista del Nuovo Cimento (1978–1999). 1982. № 5. P. 1–28. https://doi.org/10.1007/BF02740882
  10. Cerveny V. et al. Theory of seismic head waves // Am. J. Phys. 1973. V. 41. № 5. P. 755–757. https://doi.org/10.1119/1.1987374
  11. Cerveny V., Ravindra R. Theory of Seismic Head Waves. Toronto: Univ. Toronto Press. 1971. 312 p. https://doi.org/10.3138/9781442652668
  12. Datta S., Bhowmick A.N. Head waves in two-dimensional seismic models // Geophys. Prospect. 1969. V. 17. № 4. P. 419–432. https://doi.org/10.1111/j.1365-2478.1969.tb01987.x
  13. Ferrand A. et al. Modelling of waves propagation on irregular surfaces using ray tracing and GTD approaches: Application to head waves simulation in TOFD inspections for NDT // J. Phys. Conf. Ser. 2014. V. 498. № 1. P. 012011. https://doi.org/10.1088/1742-6596/498/1/012011
  14. Hojjati M.H., Honarvar H. An investigation of the relationship between subsurface and head waves by finite element modeling // NDT & E. 2016. № 31. P. 319–330. https://doi.org/10.1080/10589759.2015.1066786
  15. Levin F.K., Ingram J.D. Head waves from a bed of finite thickness // Geophys. 1962. № 27. P. 753–765. https://doi.org/10.1190/1.1439096
  16. Nakamura Y. Multi-reflected head waves in a single-layered medium // Geophys. 1966. № 31. P. 927–939. https://doi.org/10.1190/1.1439824
  17. Jeffreys H. The reflexion and refraction of elastic waves // Roy. Astro. Soc. Mon. Nat. Geophys. Suppl. 1926. № 1. P. 321–334. https://doi.org/10.1111/j.1365-246X.1926.tb05380.x
  18. Arenberg D.L. Ultrasonic solid delay lines // J. Acoust. Soc. Am. 1948. V. 20. № 1. P. 1–26. https://doi.org/10.1121/1.1906343
  19. Kolsky H. Stress waves in solids // J. Sound Vibr. 1964. № 1. P. 88–110. https://doi.org/10.1016/0022-460X(64)90008-2
  20. Kuhn G.J., Lutsch A. Elastic wave mode conversion at a solid-solid boundary with transverse slip // J. Acoust. Soc. Am. 1961. № 33. P. 949–954. https://doi.org/10.1121/1.1908861
  21. Macelwane J.B., Sohon F.W. Introduction to Theoretical Seismology: Geodynamics. N.Y.: Wiley. 1932. 366 p. https://doi.org/10.1190/1.1439471
  22. Chai Y., Yang X., Li Y. Full mode-converting transmission between longitudinal and bending waves in plates and beams // J. Sound Vibr. 2023. № 564. P. 117890. https://doi.org/10.1016/j.jsv.2023.117890
  23. Ilyashenko A.V. et al. Theoretical aspects of applying Love and SH-waves to nondestructive testing of stratified media // Russ. J. Nondestruct. Test. 2017. № 53. P. 597–603. https://doi.org/10.1134/S1061830917090078
  24. Li S. et al. Explicit/implicit multi-time step co-simulation in unbounded medium with Rayleigh damping and application for wave barrier // Eur. J. Env. Civil Eng. 2020. № 24. P. 2400–2421. https://doi.org/10.1080/19648189.2018.1506826
  25. Lee J. et al. Perfect transmission of elastic waves obliquely incident at solid–solid interfaces // Extreme Mech. Lett. 2022. № 51. P. 101606. https://doi.org/10.1016/j.eml.2022.101606
  26. Lee W. et al. Polarization-independent full mode-converting elastic metasurfaces // Int. J. Mech. Sci. 2024. № 266. P. 108975. https://doi.org/10.1016/j.ijmecsci.2024.108975
  27. Terentjeva E.O. et al. Planar internal Lamb problem: Waves in the epicentral zone of a vertical power source // Acoust. Phys. 2015. V. 61. № 3. P. 356–367. https://doi.org/10.1134/S1063771015030112
  28. Su X., Lu Zh., Norris A. Elastic metasurfaces for splitting SV-and P-waves in elastic solids // J. Appl. Phys. 2018. V. 123. № 9. P. 091701. https://doi.org/10.1063/1.5007731
  29. Xie K., Wang Y. & Fu T. Dynamic response of axially functionally graded beam with longitudinal–transverse coupling effect // Aerospace Sci. Technol. 2019. №85. P. 85–95. https://doi.org/10.1016/j.ast.2018.12.004
  30. Zhu R., Liu X.N. & Huang G.L. Study of anomalous wave propagation and reflection in semi-infinite elastic metamaterials // Wave Motion. 2015. №55. P. 73–83. https://doi.org/10.1016/j.wavemoti.2014.12.007
  31. Hansen S.C., Cally P.S., Donea A.-C. On mode conversion, reflection, and transmission of magnetoacoustic waves from above in an isothermal stratified atmosphere // Mon. Not. Roy. Astron. Soc. 2016. № 456. P. 1826–1836. https://doi.org/10.1093/mnras/stv2770
  32. Kuznetsov S.V. “Forbidden” planes for Rayleigh waves // Quart. Appl. Math. 2002. № 60. P. 87–97. https://doi.org/10.1090/qam/1878260
  33. Kuznetsov S.V. Love waves in stratified monoclinic media // Quart. Appl. Math. 2004. № 62. P. 749–766. https://doi.org/10.1090/qam/2104272
  34. Kuznetsov S.V. Love waves in layered anisotropic media // J. Appl. Math. Mech. 2006. № 70. P. 116–127. https://doi.org/10.1016/j.jappmathmech.2006.03.004
  35. Riedel M., Theilen F. AVO investigation of shallow marine sediments // Geophys. Prosp. 2001. № 49. P. 198–212. https://doi.org/10.1046/j.1365-2478.2001.00246.x
  36. De Ponti J. et al. Selective mode conversion and rainbow trapping via graded elastic waveguides // Phys. Rev. Appl., 2021. № 16. P. 034028. https://doi.org/10.1103/PhysRevApplied.16.034028
  37. Kaplunov J., Prikazchikov D., Prikazchikova L. & Sergushova O. The lowest vibration spectra of multi-component structures with contrast material properties // J. Sound Vibr. 2019. № 445. P. 132–147. https://doi.org/10.1016/j.jsv.2019.01.013
  38. Kaplunov J., Prikazchikova L. & Alkinidri M. Antiplane shear of an asymmetric sandwich plate // Continuum Mech. Thermodyn., 2021. V. 33. № 4. P. 1247–1262. https://doi.org/10.1007/s00161-021-00969-6
  39. Liu D., Peng P. Complete mode conversion of elastic waves by utilizing hexapole resonances in a double-scatterers structure // EPL. 2024. № 146. P. 12001. https://doi.org/10.1209/0295-5075/ad2ba5
  40. Kuznetsov S.V. Closed form analytical solution for dispersion of Lamb waves in FG plates // Wave Motion. 2019. № 84. P. 1–7. https://doi.org/10.1016/j.wavemoti.2018.09.018
  41. Li S. et al. Hybrid asynchronous absorbing layers based on Kosloff damping for seismic wave propagation in unbounded domains // Comp. Geotech. 2019. № 109. P. 69–81. https://doi.org/10.1016/j.compgeo.2019.01.019
  42. Li S. et al. Benchmark for three-dimensional explicit asynchronous absorbing layers for ground wave propagation and wave barriers // Comp. Geotech. 2021. № 131. P. 103808. https://doi.org/10.1016/j.compgeo.2020.103808
  43. Dudchenko A.V. et al. Vertical wave barriers for vibration reduction // Arch. Appl. Mech. 2021. № 91. P. 257–276. https://doi.org/10.1007/s00419-020-01768-2
  44. Tancock S., Arabul E., Dahnoun N. A review of new time-to-digital conversion techniques // IEEE Trans. Instr. Measur. 2019. № 68. P. 3406–3417. https://doi.org/10.1109/TIM.2019.2936717

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences