Features of the dynamics of a rotating shaft with nonlinear models of internal damping and elasticity

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper analyzes the influence of nonlinear (cubic) internal damping (in the Kelvin–Feucht model) and cubic nonlinearity of elastic forces on the dynamics of a rotating flexible shaft with a distributed mass. The shaft is modeled by a Bernoulli–Euler rod using the Green function, the discretization and reduction of the problem of rotating shaft dynamics to an integral equation are performed. It is revealed that in such a system there is always a branch of limited periodic movements (self-oscillations) at a supercritical rotation speed. In addition, with low internal damping, the periodic branch continues into the subcritical region: when the critical velocity is reached, the subcritical Poincare–Andronov–Hopf bifurcation is realized and there is an unstable branch of periodic movements, below the branch of stable periodic self-oscillations (the occurrence of hysteresis with a change in rotation speed). With an increase in the internal friction coefficient, the hysteresis phenomenon disappears and at a critical rotation speed, a soft excitation of self-oscillations of the rotating shaft occurs through the supercritical Poincare–Andronov–Hopf bifurcation.

全文:

受限制的访问

作者简介

А. Azarov

Bauman Moscow State Technical University

编辑信件的主要联系方式.
Email: 13azarov.ru@gmail.com
俄罗斯联邦, Moscow

A. Gouskov

Bauman Moscow State Technical University; Mechanical Engineering Research Institute of RAN

Email: gouskov_am@mail.ru
俄罗斯联邦, Moscow; Moscow

G. Panovko

Mechanical Engineering Research Institute of RAN

Email: gpanovko@yandex.ru
俄罗斯联邦, Moscow

参考

  1. Bolotin V. Nonconservative problems of the theory of elastic stability. M.: Nauka, 1961 (in Russian).
  2. Ding Q., Cooper J., Leung A. Hopf bifurcation analysis of a rotor/seal system // J. Sound Vibr. 2002. V. 252. № 5. P. 817–833. https://doi.org/10.1006/jsvi.2001.3711
  3. Karpenko E.V., Pavlovskaia E.E. Bifurcation analysis of a preloaded Jeffcott rotor // Chaos, Sol. Fract. 2003. V. 15. № 2. P. 407–416. https://doi.org/10.1016/S0960-0779(02)00107-8
  4. Ehrich F. Observations of subcritical, superharmonic and chaotic response in rotor dynamics // Vibr. Acous. 1992. № 114. P. 93–114. https://doi.org/10.1115/1.2930240
  5. Kimpbal A. Internal friction as a cause of shaft whirling // Phil. Mag. 1925. V. 49. P. 724–727.
  6. Newkirk B.L. Saft wipping // General Electric Rev. 1924. V. 27. № 3. P. 169–178.
  7. Genta G. et al. Vibration dynamics and control. NY: Springer, 2009.
  8. Li Y. et al. Dynamic modelling and vibration analysis of a bolted spigot joint structure considering mating interface friction: simulation and experiment // Nonlinear Dynamics. 2024. P. 1–24. https://doi.org/10.1007/s11071-024-09365-6
  9. Schwarz U. Continuum mechanics / Heilenberg University, 2023. URL: https://www.thphys.uni-heidelberg.de/~biophys/PDF/Skripte/Script_Continuum_Mechanics.pdf (date of application 01.04.2024).
  10. Lewandowski R., Chorążyczewski B. Identification of the parameters of the Kelvin–Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers // Computers & Structures. 2010. V. 88. № 1–2. P. 1–17.
  11. Hetzler H., Boy F. Internal dissipation and self-excited ocillations in rotating machinery: internal friction vs. internal viscous damping // International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC 2017). 2017.
  12. Azarov A.A., Gouscov A.M., Panovko G.Y. Dynamics of a flexible disk rotor under a point contact with discrete viscoelastic oscillation limiters // J. Mach. Manufac. Reliability. 2023. № 1. P. 26–37. https://doi.org/10.31857/S0235711923010029
  13. Panovko Y.G. Internal friction in oscillations of elastic systems. M.: Fizmatgiz, 1960 (in Russian).
  14. Svetlitsky V.A. Mechanics of rods. M.: Vyshaya Shkola, 1987 (in Russian).

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Calculation scheme of a rotating shaft: 1 – precession trajectory, 2 – direction of rotation.

下载 (13KB)
3. Fig. 2. Argand diagram in the range of rotation speeds.

下载 (15KB)
4. Fig. 3. Displacements of the middle node at the supercritical speed at , , : (a) , ; (b) , ; (c) , .

下载 (41KB)
5. Fig. 4. Bifurcation diagram along the upper periodic branch, A – limit point, B – subcritical bifurcation ( , , , , ).

下载 (22KB)
6. Fig. 5. Precession of the cross-section of the rod corresponding to the middle node.

下载 (9KB)
7. Fig. 6. Distribution of the average value of the precession coefficient along the upper stable branch ( , , , , ).

下载 (15KB)
8. Fig. 7. Trajectories of collocation nodes during steady motion (black lines) and the shape of the curved axis (red lines) ( , , , , , ).

下载 (19KB)
9. Fig. 8. Dependence of and on the coefficient (a); distribution of the amplitudes of the displacements of the middle node during subcritical (b) and supercritical (c) bifurcations ( , , , ).

下载 (44KB)

版权所有 © Russian Academy of Sciences, 2024