Dynamics of a Wind Turbine with Two Moving Masses Using the Galloping Effect

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A wind power plant is considered using the galloping effect, which includes two elastically connected translationally moving bodies: one is a square prism with a permanent magnet rigidly attached to it, and the other is a material point. Electricity is generated by the movement of a magnet in a coil. The influence of the system parameters on the wind speed at which galloping oscillations occur is analyzed. It is shown that a proper choice of parameters makes it possible to significantly expand the range of wind speeds at which periodic regimes exist, in comparison with a system containing one moving body. Approximations are obtained for the amplitudes and frequencies of the limit cycles arising in the system. The evolution of these cycles with a change in the stiffness of the spring between the bodies is studied. It is established that, for certain values of the parameters, the simultaneous existence of two attracting periodic solutions is possible. Conditions are obtained under which the power generated by such a system is greater than the power generated by a system with one moving mass.

Sobre autores

Yu. Selyutsky

Research Institute of Mechanics, Lomonosov Moscow State University

Autor responsável pela correspondência
Email: seliutski@imec.msu.ru
Moscow, 119192 Russia

Bibliografia

  1. Den Hartog J.P. Transmission line vibration due to sleet // Trans. AIEE. 1932. V. 51. P. 1074–1086.
  2. Parkinson G.V., Brooks N.P.H. On the aeroelastic instability of bluff cylinders // ASME. J. Appl. Mech. 1961. V. 28. № 2. P. 252–258. https://doi.org/10.1115/1.3641663
  3. Parkinson G.V., Smith J.D. The square prism as an aeroelastic non-linear oscillator // Quart. J. Mech. Appl. Math. 1964. V. 17. № 2. P. 225–239. https://doi.org/10.1093/qjmam/17.2.225
  4. Luo S.C., Chew Y.T., Ng Y.T. Hysteresis phenomenon in the galloping oscillation of a square cylinder // J. Fluids Struct. 2003. V. 18. № 1. P. 103–118. https://doi.org/10.1016/S0889-9746(03)00084-7
  5. Oka S., Ishihara T. Numerical study of aerodynamic characteristics of a square prism in a uniform flow // J. Wind Eng. Ind. Aerodyn. 2009. V. 97. P. 548–559. https://doi.org/10.1016/j.jweia.2009.08.006
  6. Люсин В.Д., Рябинин А.Н. О галопировании призм в потоке газа или жидкости // Тр. ЦНИИ им. ак. А.Н. Крылова. 2010. Вып. 53(337). С. 79–84.
  7. Bearman P.W., Gartshore I.S., Maull D.J., Parkinson G.V. Experiments on flow-induced vibration of a square-section cylinder // J. Fluids Struct. 1987. V. 1. № 1. P. 19–34. https://doi.org/10.1016/s0889-9746(87)90158-7
  8. Sarioglu M., Akansu Y.E., Yavuz T. Flow around a rotatable square cylinder-plate body // AIAA J. 2006. Vol. 44. №. 5. P. 1065–1072. https://doi.org/10.2514/1.18069
  9. Gao G.-Z., Zhu L.-D. Nonlinear mathematical model of unsteady galloping force on a rectangular 2:1 cylinder // J. Fluids Struct. 2017. V. 70. P. 47–71. https://doi.org/10.1016/j.jfluidstructs.2017.01.013
  10. Abdel-Rohman M. Design of tuned mass dampers for suppression of galloping in tall prismatic structures // J. Sound Vibr. 1994. V. 171. № 3. P. 289–299. https://doi.org/10.1006/jsvi.1994.1121
  11. Gattulli V., Di Fabio F., Luongo A. Simple and double Hopf bifurcations in aeroelastic oscillators with tuned mass dampers // J. Franklin Inst. 2001. V. 338. P. 187–201. https://doi.org/10.1016/S0016-0032(00)00077-6
  12. Selwanis M.M., Franzini G.R., Beguin C., Gosselin F.P. Wind tunnel demonstration of galloping mitigation with a purely nonlinear energy sink // J. Fluids Struct. 2021. V. 100. P. 103169. https://doi.org/10.1016/j.jfluidstructs.2020.103169
  13. Barrero-Gil A., Alonso G., Sanz-Andres A. Energy harvesting from transverse galloping // J. Sound Vibr. 2010. V. 329. P. 2873–2883. https://doi.org/10.1016/J.JSV.2010.01.028
  14. Dai H.L., Abdelkefi A., Javed U., Wang L. Modeling and performance of electromagnetic energy harvesting from galloping oscillations // Smart Mater. Struct. 2015. V. 24. № 4. P. 045012. https://doi.org/10.1088/0964-1726/24/4/045012
  15. Hemon P., Amandolese X., Andrianne T. Energy Harvesting from Galloping of Prisms: A Wind Tunnel Experiment // J. Fluids & Struct. 2017. V. 70. P. 390–402. https://doi.org/10.1016/j.jfluidstructs.2017.02.006
  16. Javed U., Abdelkefi A., Akhtar I. An improved stability characterization for aeroelastic energy harvesting applications // Comm. Nonlin. Sci. Num. Simul. 2016. V. 36. P. 252–265. https://doi.org/10.1016/j.cnsns.2015.12.001
  17. Wang K.F., Wang B.L., Gao Y., Zhou J.Y. Nonlinear analysis of piezoelectric wind energy harvesters with different geometrical shapes // Arch. Appl. Mech. 2020. V. 90. P. 721–736. https://doi.org/10.1007/s00419-019-01636-8
  18. Zhao D., Hu X., Tan T., Yan Zh., Zhang W. Piezoelectric galloping energy harvesting enhanced by topological equivalent aerodynamic design // Energy Conv. Manag. 2020. V. 222. P. 113260. https://doi.org/10.1016/j.enconman.2020.113260
  19. Vicente-Ludlam D., Barrero-Gil A., Velazquez A. Enhanced mechanical energy extraction from transverse galloping using a dual mass system // J. Sound Vibr. 2015. V. 339. P. 290–303. https://doi.org/10.1016/j.jsv.2014.11.034
  20. Karlicic D., Cajic M., Adhikari S. Dual-mass electromagnetic energy harvesting from galloping oscillations and base excitation // J. Mech. Eng. Sci. 2021. V. 235. № 20. P. 4768–4783. https://doi.org/10.1177/0954406220948910
  21. Dosaev M. Interaction between internal and external friction in rotation of vane with viscous filling // Appl. Math. Mod. 2019. V. 68. P. 21–28. https://doi.org/10.1016/j.apm.2018.11.002
  22. Saettone S., Taskar B., Regener P.B., Steen S., Andersen P. A comparison between fully-unsteady and quasi-steady approach for the prediction of the propeller performance in waves // Appl. Ocean Res. 2020. Vol. 99. P. 102011. https://doi.org/10.1016/j.apor.2019.102011
  23. Abohamer M.K., Awrejcewicz J., Starosta R., Amer T.S., Bek M.A. Influence of the motion of a spring pendulum on energy-harvesting devices // Appl. Sci. 2021. V. 11. P. 8658. https://doi.org/10.3390/app11188658
  24. Selyutskiy Y.D. Potential forces and alternation of stability character in non-conservative systems // Appl. Math. Mod. 2021. Vol. 90. P. 191–199. https://doi.org/10.1016/j.apm.2020.08.070
  25. Lazarus A., Thomas O. A harmonic-based method for computing the stability of periodic solutions of dynamical systems // Comptes Rendus Mecanique. 2021. V. 338. № 9. P. 510–517. https://doi.org/10.1016/j.crme.2010.07.020
  26. Климина Л.А. Метод формирования асинхронных автоколебаний в механической системе с двумя степенями свободы // ПММ. 2021. Т. 85. № 2. С. 152–171. https://doi.org/10.31857/S0032823521020065

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (100KB)
3.

Baixar (36KB)
4.

Baixar (91KB)
5.

Baixar (194KB)
6.

Baixar (194KB)

Declaração de direitos autorais © Ю.Д. Селюцкий, 2023