Instantaneous Average Structure of a Supersonic Underexped Jet

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The instantaneous and average structure of a supersonic underexpanded jet is studied numerically and experimentally. The photos obtained in experiments with different exposure times and the Pitot pressure measurements are compared with the results of the numerical modeling performed using an implicit large-eddy method. We note that the jet flow instability, disturbance growth, and transition to turbulence lead to the situation, in which the instantaneous flow structure can be considerably different from the average structure. The flow pattern observable in the calculations is in good agreement with that presented in the experimental photos obtained with short exposure times. Both calculated and experimental data indicate that an important role in the jet flow dynamics is played by large-scale vortex structures that exist against the background of small-scale turbulence. The calculated and experimental Pitot pressure distributions are similar with each other, up to a certain distance from the nozzle exit section. Further downstream, the experimental and calculated Pitot pressures start to increase rapidly but the calculations predict the onset of this growth at a greater distance from the nozzle than it is observable in the experiments.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Zapryagaev

Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: zapr@itam.nsc.ru
Ресей, Novosibirsk

I. Kavun

Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences

Email: zapr@itam.nsc.ru
Ресей, Novosibirsk

N. Kiselev

Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences

Email: zapr@itam.nsc.ru
Ресей, Novosibirsk

A. Kudryavtsev

Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences

Email: alex@itam.nsc.ru
Ресей, Novosibirsk

A. Pivovarov

Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences

Email: zapr@itam.nsc.ru
Ресей, Novosibirsk

D. Khotyanovsky

Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences

Email: khotyanovsky@itam.nsc.ru
Ресей, Novosibirsk

Әдебиет тізімі

  1. Абрамович Г.Н., Гиршович Т.А., Крашенинников С.Ю. и др. Теория турбулентных струй. М.: Наука, 1984. 716 с.
  2. Дулов В.Г., Лукьянов Г.А. Газодинамика процессов истечения. Новосибирск: Наука, 1984. 320 с.
  3. Авдуевский В.С., Ашратов Э.А., Иванов А.В., Пирумов У.Г. Газодинамика сверхзвуковых неизобарических струй. М.: Машиностроение, 1989. 231с.
  4. Zapryagaev V.I., Kudryavtsev A.N., Lokotko A.V., Solotchin A.V., Pavlov A.A., Hadjadj A. An experimental and numerical study of a supersonic–jet shock–wave structure // West–East High Speed Flow Fields. Aerospace applications from high subsonic to hypersonic regime / Ed. by Zeitoun D.E., Périaux J., Désidéri J.A., Marini M. Barcelona. CIMNE, 2003. P. 346–351.
  5. Трошин А.И., Запрягаев В.И., Киселев Н.П. Расчетно-экспериментальное исследование сверхзвуковой слабонедорасширенной струи // Труды ЦАГИ. 2013. Вып. 2710. С. 111–120.
  6. Troshin A.I. Application and modification of a Reynolds stress model in problems of jets outflow // Proceedings of 17th Int. Conf. on the Methods of Aerophysical Research (ICMAR-2014, Russia, Novosibirsk, 30 Jun. 6 Jul., 2014) / Ed. by V.M. Fomin. Novosibirsk: ITAM SB RAS, 2014. Paper № 206. 8 p.
  7. Трошин А.И. Полуэмпирическая модель турбулентности для описания высокоскоростных слоев смешения и струй, не основанная на гипотезе Буссинеска: Дисс. … канд. физ.-мат. наук. Жуковский: ЦАГИ, 2014. 168 c.
  8. Гарбарук А.В., Стрелец М.Х., Травин А.К., Шур М.Л. Современные подходы к моделированию турбулентности. СПб: Изд-во Политехн. ун-та, 2016. 234 с.
  9. Shur M.L., Spalart P.R., Strelets M.Kh. Noise prediction for underexpanded jets in static and flight conditions // AIAA J. 2011. V. 49. № 9. P. 2000–2017.
  10. Любимов Д.А. Разработка и применение метода высокого разрешения для расчета струйных течений методом моделирования крупных вихрей // ТВТ. 2012. Т. 50. №3. С. 450–466.
  11. Duben A.P., Kozubskaya T.K. Evaluation of quasi-one-dimensional unstructured method for jet noise prediction // AIAA J. 2019. V. 57.№ 12. P. 5142–5155.
  12. Босняков С.М., Волков А.В., Дубень А.П. и др. Сравнение двух вихреразрешающих методик повышенной точности на неструктурированных сетках применительно к моделированию струйного течения из двухконтурного сопла // Матем. моделирование. 2019. Т. 31. №10. С. 130–144.
  13. Запрягаев В.И., Киселев Н.П., Пивоваров А.А. Газодинамическая структура осесимметричной сверхзвуковой недорасширенной струи. // Известия АН. Механика жидкости и газа. 2015. № 1. С. 95–107.
  14. Волков К.Н., Запрягаев В.И., Емельянов В.Н., Губанов Д.А., Кавун И.Н., Киселев Н.П., Тетерина И.В., Яковчук М.С. Визуализация данных физического и математического моделирования в газовой динамике / под ред. Волкова К.Н., Емельянова В.Н. М: Физматлит, 2018. 360 c.
  15. Zapryagaev V., Kavun I., Kiselev N. Flow feature in supersonic non-isobaric jet near the nozzle edge // Aerospace. 2022.V. 9. № 7. P. 379–393.
  16. Yule A.J. Large-scale structure in the mixing layer of a round jet // J. Fluid Mech. 1978. V. 89. Pt. 3. P. 413–432.
  17. Wicker R.B., Eaton J.K. Near field of a coaxial jet with and without axial excitation // AIAA J. 1994. V. 32. №3. P. 542–546.
  18. Липатов И.И., Тугазаков Р.Я. Механизм образования берстинга при обтекании узкой пластины сверхзвуковым потоком газа // ПМТФ. 2022. Т. 63. № 2. С.37–47.
  19. Implicit Large Eddy Simulation / Ed. by Grinstein F.F., Margolin L.G., Rider W.J. Cambridge et al.: Cambridge Univ. Press, 2007. 546 p.
  20. Shershnev A.A., Kudryavtsev A.N., Kashkovsky A.V., Khotyanovsky D.V. HyCFS, a high-resolution shock-capturing code for numerical simulation on hybrid computational clusters // AIP Conf. Proc. 2016. V. 1770. 030076. 11 p.
  21. Jiang G.S., Shu C.-W. Efficient implementation of weighted ENO schemes // J. Comput. Phys. 1996. V. 126. P. 202–228.
  22. Кудрявцев А.Н., Поплавская Т.В., Хотяновский Д.В. Применение схем высокого порядка точности при моделировании нестационарных сверхзвуковых течений // Математическое моделирование. 2007. Т. 19. №7. С. 39–55.
  23. Hadjadj A., Kudryavtsev A. Computation and flow visualization in high-speed aerodynamics // J. Turbulence. 2005. V. 6. №16. 25 p.
  24. Курант Р., Фридрихс К. Сверхзвуковое течение и ударные волны. М.: Изд-во иностр. литер. 1950. 427 с.
  25. Рылов А.И. К вопросу о невозможности регулярного отражения стационарной ударной волны от оси симметрии // Прикл. мат. и механ. 1990. Т. 54. №2. С. 245–249.
  26. Мельников Д.А. Отражение скачков уплотнения от оси симметрии // Изв. АН СССР. Механ. и машиностр. 1962. №3. С. 24–30.
  27. Khotyanovsky D.V., Kudryavtsev A.N., Ovsyannikov A.Yu. A comparative study of accuracy of shock capturing schemes for simulation of shock/acoustic wave interactions // Int. J. Aeroacoustics. 2014. V. 13. № 3 — 4. P. 261–274.
  28. Chuvakhov P.V. Shock-capturing anomaly in the interaction of unsteady disturbances with a stationary shock // AIAA J. 2021. V. 59. № 8. P. 3241–3251.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Schlieren photograph of supersonic jet expulsion from an axisymmetric convergent nozzle of 30 mm diameter at Npr = 5 with 10 ms exposure (a) and 3 µs exposure (b).

Жүктеу (159KB)
3. Fig. 2. Photographs of the flow structure obtained by laser knife method with 10 ns exposure at two different moments of time (a, b) in the diametral plane of a supersonic jet flowing from an axisymmetric convergent nozzle of 60 mm diameter at Npr = 5.

Жүктеу (323KB)
4. Fig. 3. Supersonic jet flow from an axisymmetric convergent nozzle with a diameter of 30 mm at Npr = 9: Schlieren photograph with a long exposure time (a) and a photograph obtained by the laser knife method (b).

Жүктеу (292KB)
5. Fig. 4. Numerical schlieren visualisation in the y = 0 plane of an under-expanded jet, Npr = 5, flowing from a circular nozzle: full instantaneous flow pattern (a), instantaneous flow pattern near the nozzle (b), mean flow near the nozzle (c).

Жүктеу (366KB)
6. Fig. 5. Distributions of Pitot pressure related to the pressure in the forechamber along the jet axis in the experiment (symbols) and in the calculation (solid curve) at Npr = 5.

Жүктеу (68KB)
7. Fig. 6. Pitot pressure profiles in experiment (square symbols) and in calculation (solid curves) at Npr = 5 at cross sections x / D = 0.833 (a), 1.5 (b) and 3.5 (c).

Жүктеу (104KB)

© Russian Academy of Sciences, 2024