Diffusion-drift model of the surface glow discharge in supersonic gas flow

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The two-dimensional electrogasdynamic problem of anomalous glow discharge on the surface of a sharp plate in supersonic flow of a perfect gas is solved using the system of Navier-Stokes equations to describe thermogasdynamic processes in the boundary layer and the two-temperature two-fluid diffusion-drift model of gas-discharge plasma to determine the electrodynamic structure of the discharge. The near-electrode regions of space charge and the external electrical circuit consisting of a power source and an ohmic resistance are taken into account. The influence of the magnetic field which is transverse to gas flow and has the induction of up to 0.03 T on the structure of boundary layer and glow discharge is studied. The electrogasdynamic structure of anomalous near-surface discharges is studied numerically over a wide range of gas flow velocities (M = 5–20), the free-stream pressures (p = 0.6–5 Torr), the electrode voltages, and the electric currents through the discharges. The electrodynamic structure of the gas-plasma flow near the electrodes and the effect of the glow discharge on the pressure and temperature distributions along the surface of the plate are also studied.

Full Text

Restricted Access

About the authors

S. Т. Surzhikov

Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Author for correspondence.
Email: surg@ipmnet.ru
Russian Federation, Moscow

References

  1. Суржиков С.Т., Шэнг Дж.С. Вязкое взаимодействие на плоской пластине с поверхностным разрядом в магнитном поле // Теплофизика высоких температур. 2005. Т. 43. № 1. С. 21–31.
  2. Суржиков С.Т. Гиперзвуковое обтекание острой пластины и двойного клина с электромагнитным актюатором // Изв. РАН. Механика жидкости и газа. 2020. № 6. С. 106–120.
  3. Суржиков С.Т. Сверхзвуковое обтекание заостренной пластины с поверхностным аномальным тлеющим разрядом в магнитном поле // Изв. РАН. Механика жидкости и газа. 2023. № 6. С. 144–167.
  4. Kimmel R.L., Hayes J.R., Menart J.A., Shang J. Effect of surface plasma discharge on boundary layers at Mach 5 // AIAA Paper 2004-509. 2004. 10 p.
  5. Menart J., Shang J.S., Kimmel R., Hayes J. Effects of Magnetic Fields on Plasmas Generated in a Mach 5 Wind Tunnel // AIAA Paper 2003-4165. 2003. 13 p.
  6. Райзер Ю.П., Суржиков С.Т. Двумерная структура нормального тлеющего разряда и роль диффузии в формировании катодного и анодного пятен // Теплофизика высоких температур. 1988. Т. 25. № 3. С. 428–435.
  7. Суржиков С.Т. Физическая механика газовых разрядов. М.: МГТУ, 2006. 640 с. (Surzhikov S.T. Theoretical and Computational Physics of Gas Discharge Phenomena. A Mathematical Introduction. De Gruyter: Berlin, 2020, 537 p.)
  8. Куликовский А.Г., Любимов Г.А. Магнитная гидродинамика. М.: Логос, 2005. 325 с.
  9. Shang J.S., Surzhikov S.T., Kimmel R., Gaitonde D., Menart J., Hayes J. Mechanisms of plasma actuators for hypersonic flow control // Progress in Aerospace Sciences. 2005. V. 41. P. 642.
  10. Гершман Б.Н., Ерухимов Л.М., Яшин Ю.Я. Волновые явления в ионосфере и космической плазме. М.: Наука, 1984. 392 с.
  11. Райзер Ю.П. Физика газового разряда. М.: Наука, 1987. 591 с.
  12. Браун С. Элементарные процессы в плазме газового разряда. М.: Гос. изд-во лит-ры в обл. атом. науки и техники, 1961. 323 с. (Brown S.C. Basic Data of Plasma Physics. Technology Press of M.I.T. and Wiley, 1966)
  13. Суржиков С.Т. Сравнительный анализ параметров нормального и аномального тлеющих разрядов постоянного тока // Физика плазмы. 2022. Т. 48. № 11. С. 1102–1114.
  14. Битюрин В.А., Бочаров А.Н., Попов Н.А. Численное моделирование электрического разряда в сверхзвуковом потоке // Изв. РАН. МЖГ. 2008. № 4. С. 160–172.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Calculation scheme of the problem.

Download (169KB)
3. Fig. 2. Pressure in the boundary layer, Torr (a), velocity component normal to the surface Vy = v/V∞ (b) and temperature, K in the boundary layer (c) at p = 0.6 Torr, M = 5, e = 1500 V.

Download (275KB)
4. Fig. 3. Electron concentration ZE = ne/n0 at p = 0.6 Torr, M = 5, e = 1500 V: (a) Bz = 0, (b) Bz = +0.01 T, (c) Bz = –0.01 T.

Download (318KB)
5. Fig. 4. Concentration of ions ZI = ni/n0 at p = 0.6 Torr, M = 5, e = 1500 V: (a) Bz = 0, (b) Bz = +0.01 T, (c) Bz = –0.01 T.

Download (300KB)
6. Fig. 5. Electric field strength modulus (Efield M = |E|) at p = 0.6 Torr, M = 5, e = 1500 V; (a) Bz = 0, (b) Bz = +0.01 T, (c) Bz = –0.01 T.

Download (293KB)
7. Fig. 6. Vector of electric field strength near the cathode (a, c) and anode (b, d) at p = 0.6 Torr, e = 1500 V, M = 5: (a) Bz = +0.01 T, (b) Bz = –0.01 T, (c) Bz = +0.01 T, (d) Bz = –0.01 T.

Download (763KB)
8. Fig. 7. Volume ionization rate at p = 0.6 Torr, M = 5, e = 1500 V: (a) Bz = 0, (b) Bz = +0.01 T, (c) Bz = –0.01 T.

Download (262KB)
9. Fig. 8. Volumetric power of Joule heat release (QEJ = QJ) at p = 0.6 Torr, M = 5, e = 1500 V: (a) Bz = 0, (b) Bz = +0.01 T, (c) Bz = –0.01 T .

Download (252KB)
10. Fig. 9. Pressure in the boundary layer, Torr (a), the velocity component normal to the surface Vy = v/V∞ (b) and temperature, K, in the boundary layer (c) at p = 0.6 Torr, M = 5, e = 1500 V, Bz = +0.01 T.

Download (282KB)
11. Fig. 10. Distribution of pressure coefficients (solid curve) and friction at p = 0.6 Torr, M = 5, e = 1500 V; (a) Bz = +0.01 T, (b) Bz = –0.01 T.

Download (170KB)
12. Fig. 11. Electron concentration (ZE = ne/n0) in an anomalous glow discharge at p = 5 Torr, M = 10, ε = 1000 V: Bz = +0.03 (a), Bz = –0.03 T (b).

Download (155KB)
13. Fig. 12. Ion concentration (ZI = ni /n0) in an abnormal glow discharge at p = 5 Torr, M = 10, ε = 1000 V: Bz = +0.03 (a), Bz = –0.03 T (b).

Download (157KB)
14. Fig. 13. The modulus of the electric field strength (Efield M = |E|) in an anomalous glow discharge at p = 5 Torr, M = 10, ε = 1000 V: Bz = +0.03 (a), Bz = –0.03 T (b).

Download (135KB)
15. Fig. 14. Electric potential (FI = j/e) in an anomalous glow discharge and the vector field of electric field strength at p = 5 Torr, M = 10, ε = 1000 V: Bz = +0.03 (a), Bz = –0.03 T (b).

Download (250KB)
16. Fig. 15. Joule heat release power (QEJ = QJ) in an abnormal glow discharge at p = 5 Torr, M = 10, ε = 1000 V: Bz = +0.03 (a), Bz = –0.03 T (b).

Download (143KB)
17. Fig. 16. Pressure in the boundary layer in Torr (a) and temperature, K, in the boundary layer (b) at p = 5 Torr, M = 10, ε = 1000 V, Bz = –0.03 T.

Download (164KB)
18. Fig. 17. Distribution of pressure coefficients (solid curve) and friction at p = 5 Torr, M = 10, e = 1000 V, Bz = –0.03 T.

Download (113KB)

Copyright (c) 2024 Russian Academy of Sciences