Diffusion-drift model of the surface glow discharge in supersonic gas flow
- Authors: Surzhikov S.Т.1
-
Affiliations:
- Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences
- Issue: No 1 (2024)
- Pages: 145-162
- Section: Articles
- URL: https://kazanmedjournal.ru/1024-7084/article/view/672141
- DOI: https://doi.org/10.31857/S1024708424010119
- EDN: https://elibrary.ru/sdctpi
- ID: 672141
Cite item
Abstract
The two-dimensional electrogasdynamic problem of anomalous glow discharge on the surface of a sharp plate in supersonic flow of a perfect gas is solved using the system of Navier-Stokes equations to describe thermogasdynamic processes in the boundary layer and the two-temperature two-fluid diffusion-drift model of gas-discharge plasma to determine the electrodynamic structure of the discharge. The near-electrode regions of space charge and the external electrical circuit consisting of a power source and an ohmic resistance are taken into account. The influence of the magnetic field which is transverse to gas flow and has the induction of up to 0.03 T on the structure of boundary layer and glow discharge is studied. The electrogasdynamic structure of anomalous near-surface discharges is studied numerically over a wide range of gas flow velocities (M = 5–20), the free-stream pressures (p = 0.6–5 Torr), the electrode voltages, and the electric currents through the discharges. The electrodynamic structure of the gas-plasma flow near the electrodes and the effect of the glow discharge on the pressure and temperature distributions along the surface of the plate are also studied.
Full Text

About the authors
S. Т. Surzhikov
Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences
Author for correspondence.
Email: surg@ipmnet.ru
Russian Federation, Moscow
References
- Суржиков С.Т., Шэнг Дж.С. Вязкое взаимодействие на плоской пластине с поверхностным разрядом в магнитном поле // Теплофизика высоких температур. 2005. Т. 43. № 1. С. 21–31.
- Суржиков С.Т. Гиперзвуковое обтекание острой пластины и двойного клина с электромагнитным актюатором // Изв. РАН. Механика жидкости и газа. 2020. № 6. С. 106–120.
- Суржиков С.Т. Сверхзвуковое обтекание заостренной пластины с поверхностным аномальным тлеющим разрядом в магнитном поле // Изв. РАН. Механика жидкости и газа. 2023. № 6. С. 144–167.
- Kimmel R.L., Hayes J.R., Menart J.A., Shang J. Effect of surface plasma discharge on boundary layers at Mach 5 // AIAA Paper 2004-509. 2004. 10 p.
- Menart J., Shang J.S., Kimmel R., Hayes J. Effects of Magnetic Fields on Plasmas Generated in a Mach 5 Wind Tunnel // AIAA Paper 2003-4165. 2003. 13 p.
- Райзер Ю.П., Суржиков С.Т. Двумерная структура нормального тлеющего разряда и роль диффузии в формировании катодного и анодного пятен // Теплофизика высоких температур. 1988. Т. 25. № 3. С. 428–435.
- Суржиков С.Т. Физическая механика газовых разрядов. М.: МГТУ, 2006. 640 с. (Surzhikov S.T. Theoretical and Computational Physics of Gas Discharge Phenomena. A Mathematical Introduction. De Gruyter: Berlin, 2020, 537 p.)
- Куликовский А.Г., Любимов Г.А. Магнитная гидродинамика. М.: Логос, 2005. 325 с.
- Shang J.S., Surzhikov S.T., Kimmel R., Gaitonde D., Menart J., Hayes J. Mechanisms of plasma actuators for hypersonic flow control // Progress in Aerospace Sciences. 2005. V. 41. P. 642.
- Гершман Б.Н., Ерухимов Л.М., Яшин Ю.Я. Волновые явления в ионосфере и космической плазме. М.: Наука, 1984. 392 с.
- Райзер Ю.П. Физика газового разряда. М.: Наука, 1987. 591 с.
- Браун С. Элементарные процессы в плазме газового разряда. М.: Гос. изд-во лит-ры в обл. атом. науки и техники, 1961. 323 с. (Brown S.C. Basic Data of Plasma Physics. Technology Press of M.I.T. and Wiley, 1966)
- Суржиков С.Т. Сравнительный анализ параметров нормального и аномального тлеющих разрядов постоянного тока // Физика плазмы. 2022. Т. 48. № 11. С. 1102–1114.
- Битюрин В.А., Бочаров А.Н., Попов Н.А. Численное моделирование электрического разряда в сверхзвуковом потоке // Изв. РАН. МЖГ. 2008. № 4. С. 160–172.
Supplementary files
