Gas suction effect on the crossflow instability in flow past a swept wing

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The results of the swept wing boundary layer stability investigation are presented for the case, when the wing surface has a region of gas suction through the wall normal to the surface, while the wing is in Mach number 2 flow. In the flow regime considered the predominant boundary layer instability type is the crossflow instability. The gas suction effect on the development of unstable modes in the boundary layer is investigated using the linear stability theory and direct numerical modeling. The numerical modeling of laminar (undisturbed) flow fields with regions of gas suction and disturbed flow fields is carried out by integrating Navier–Stokes equations. An analysis within the framework of the linear stability theory is performed using the eN-method. The suction region location is varied with conservation of the integral intensity. It is shown that the mode instability growth can be considerably suppressed at the expense of an optimal disposition of the suction region.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Novikov

Zhukovski Central Aerohydrodynamic Institute; Moscow Institute of Physics and Technology

Email: obraz.ao@mipt.ru
Ресей, Zhukovski, Moscow region, 140180; Moscow region, 141170

A. Obraz

Zhukovski Central Aerohydrodynamic Institute; Moscow Institute of Physics and Technology

Email: obraz.ao@mipt.ru
Ресей, Zhukovski, Moscow region, 140180; Moscow region, 141170

D. Timokhin

Moscow Institute of Physics and Technology

Хат алмасуға жауапты Автор.
Email: obraz.ao@mipt.ru
Ресей, Moscow region, 141170

Әдебиет тізімі

  1. Устинов М.В. Управление ламинарно-турбулентным переходом на стреловидном крыле с помощью микрорельефа поверхности // Изв. РАН МЖГ. 2018. № 6. С. 43–54.
  2. Joslin R.D. Overview of Laminar Flow Control // NASA Tech. Pap. NASA/TP-1998-208705, 1998.
  3. Balakumar P., Hall P. Optimum Suction Distribution for Transition Control // Theor. Comput. Fluid Dyn. 1999. V. 13. P. 1–19. https://doi.org/10.1007/s001620050109
  4. Reynolds G.A., Saric W.S. Experiments on the Stability of the Flat-Plate Boundary Layer with Suction // AIAA J. 1986. V. 24. P. 202–207. https://doi.org/10.2514/3.9246
  5. Smith B.A. F-16XL flights could aid in HSCT design // Aviat. Week and Space Technol. Oct. 23, 1995. P. 42–44.
  6. Schülein E. Experimental Investigation of Laminar Flow Control on a Supersonic Swept Wing by Suction // 4th Flow Control Conference, 23–26 June 2008, Seattle, Washington. AIAA 2008–4208. https://doi.org/10.2514/6.2008-4208
  7. Hein S., Schülein E., Hanifi A., Sousa J., Arnal D. Laminar Flow Control by Suction at Mach 2. // CEAS/KATnet II Conference on Key Aerodynamic Technologies, 2009.
  8. Balakumar P. Control of Supersonic Boundary Layers Using Steady Suction // 36th AIAA Fluid Dynamics Conference and Exhibit. 2006. Conference Paper 20060022120.
  9. Новиков А.В., Образ А.О., Тимохин Д.А. Влияние отсоса пограничного слоя на неустойчивость поперечного течения на сверхзвуковом скользящем крыле // Уч. зап. ЦАГИ. 2023. Т. LIV. № 2. C. 16–23.
  10. Егоров И.В., Новиков А.В., Фёдоров А.В. Прямое численное моделирование ламинарно-турбулентного перехода при гиперзвуковых скоростях потока на супер-ЭВМ // ЖВМиМФ. 2017. Т. 57. № 8. С. 1347–1373. https://doi.org/10.7868/S0044466917080063
  11. Obraz A.O., Fedorov A.V. The high-speed flow stability (HSFS) software package for stability analysis of compressible boundary layers // TsAGI Sci. J. 2017. V. 48. P. 223–242. https://doi.org/10.1615/TsAGISciJ.2017022797
  12. Padhye A.R., Nayfeh A.H. Nonparallel stability of three-dimensional flows // AIAA Pap. 1981. Р. 81–1281.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024