Thermosensitive TRP-Ion Channels Gene Expression in the Spleen in Normo- and Hypertensive Rats. Effect of the Cold and the Peripheral TRPM8 Ion Channel Activation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Arterial hypertension leads to changes in the functioning of various organism systems, including the immune system. TRP-ion channels are increasingly attracting attention as targets for the correction of visceral organs, including for therapeutic purposes. The gene expression of the thermosensitive TRP-ion channels (TRPM8, TRPA1, TRPV1, TRPV2, TRPV3 and TRPV4) was studied in the immunocompetent organ, the spleen, using quantitative RT-PCR in normotensive and hypertensive animals under normal conditions, during cooling, and stimulation of the peripheral cold-sensitive ion channel TRPM8. The investigated genes express differently in the spleen of animals of both lines. The expression of cold-sensitive ion channel genes TRPM8 and TRPA1 is reduced in the spleen of hypertensive rats. This is consistent with obtained data on the decrease expression of the TRPM8 ion channel gene in the hypothalamus of hypertensive animals. Deep cooling of the organism, as well as activation of the peripheral (cutaneous) TRPM8-ion channel by menthol, lead to increase expression of the TRPA1 and TRPV1 ion channels genes in the spleen of hypertensive rats, without affecting the expression of genes in normotensive animals. Considering that the ion channels TRPA1 and TRPV1 are involved in inflammation processes, this may indicate a change in the nature of inflammatory reactions in hypertensive animals when organism is exposed to cold. The obtained data expand knowledge about the representation of thermosensitive TRP-ion channels in immunocompetent organs and may indicate a change in the immune status of organism with arterial hypertension.

全文:

受限制的访问

作者简介

A. Evtushenko

Scientific Research Institute of Neurosciences and Medicine

编辑信件的主要联系方式.
Email: evtushenkoaa@neuronm.ru
俄罗斯联邦, Novosibirsk

I. Voronova

Scientific Research Institute of Neurosciences and Medicine

Email: evtushenkoaa@neuronm.ru
俄罗斯联邦, Novosibirsk

T. Kozyreva

Scientific Research Institute of Neurosciences and Medicine

Email: evtushenkoaa@neuronm.ru
俄罗斯联邦, Novosibirsk

参考

  1. Harrison DG, Guzik TJ, Lob HE, Madhur MS, Marvar PJ, Thabet SR, Vinh A, Weyand CM (2011) Inflammation, immunity, and hypertension. Hypertension 57(2): 132–140. https://doi.org/10.1161/HYPERTENSIONAHA.110.163576
  2. Schiffrin EL (2013) The immune system: Role in hypertension. Can J Cardiol 29(5): 543–548. https://doi.org/10.1016/j.cjca.2012.06.009
  3. Mian MO, Paradis P, Schiffrin EL (2014) Innate immunity in hypertension. Curr Hypertens Rep 16(2): 413. https://doi.org/10.1007/s11906-013-0413-9
  4. Trott DW, Harrison DG (2014) The immune system in hypertension. Adv Physiol Educ 38(1): 20. https://doi.org/10.1152/advan.00063.2013
  5. Rodriguez-Iturbe B, Pons H, Johnson RJ (2017) Role of the Immune System in Hypertension. Physiol Rev 97(3): 1127–1164. https://doi.org/10.1152/physrev.00031.2016
  6. Nguyen BA, Alexander MR, Harrison DG (2024) Immune mechanisms in the pathophysiology of hypertension. Nat Rev Nephrol 20(8): 530–540. https://doi.org/10.1038/s41581-024-00838-w
  7. Singh MV, Chapleau MW, Harwani SC, Abboud FM (2014) The immune system and hypertension. Immunol Res 59(1-3): 243–253. https://doi.org/10.1007/s12026-014-8548-6
  8. Lu X, Crowley SD (2022) The Immune System in Hypertension: A Lost Shaker of Salt 2021 Lewis K. Dahl Memorial Lecture. Hypertension 79(7): 1339–1347. https://doi.org/10.1161/HYPERTENSIONAHA.122.18554
  9. Rapp JP (2000) Genetic analysis of inherited hypertension in the rat. Physiol Rev 80: 135–172. https://doi.org/10.1152/physrev.2000.80.1.135
  10. Ryazanova MA, Plekanchuk VS, Prokudina OI, Makovka YV, Alekhina TA, Redina OE, Markel AL (2023) Animal Models of Hypertension (ISIAH Rats), Catatonia (GC Rats), and Audiogenic Epilepsy (PM Rats) Developed by Breeding. Biomedicines 11(7): 1814. https://doi.org/10.3390/biomedicines11071814
  11. Markel AL (1992) Development of a new strain of rats with inherited stress-induced arterial hypertension. In: Sassard J, Libbey J (eds) Genetic Hypertension. Colloque INSERM. London. 218: 405–407.
  12. Markel AL, Redina OE, Gilinsky MA, Dymshits GM, Kalashnikova EV, Khvorostova YuV, Fedoseeva LA, Jacobson GS (2007) Neuroendocrine profiling in inherited stress-induced arterial hypertension rat strain with stress-sensitive arterial hypertension. J Endocrinol 195: 439–450. https://doi.org/10.1677/JOE-07-0254
  13. Цейликман ВЭ, Козочкин ДА, Маркель АЛ, Вязовский ИА, Гиенко ИА, Колесникова АА, Афанасьев ОА, Лифшиц РИ (2008) Влияние повторных стрессорных воздействий на иммунную реактивность и монооксигсназную активность печени нормотензивных и гипертензивных крыс. Рос физиол журн им ИМ Сеченова 94(5): 574–580. [Tseylikman VE, Kozochkin DA, Markel AL, Vyazovsky IA, Gienko IA, Kolesnikova AA, Afanasyev AA, Lifshits RI (2008) Influence of repeated stress on immune responsiveness and monooxigenase activity of normotensive and hypertensive rats. Russ J Physiol 94(5): 574–580. (In Russ)].
  14. Shurlygina AV, Melnikova EV, Panteleeva NG, Tenditnik MV, Dushkin MI, Khrapova MV, Trufakin VA (2013) Effects of Experimental Desynchronosis on the Organs of Immune System in WAG and ISIAH Rats. Bull Exp Biol Med 155: 659–662. https://doi.org/10.1007/s10517-013-2219-9
  15. Елисеева ЛС (2005) Особенности иммунных реакций у крыс с наследственной артериальной гипертензией (НИСАГ) в норме и при охлаждении. Бюл сибирск мед 4: 99. [Eliseeva LS (2005) Features of immune reactions in rats with hereditary arterial hypertension (ISIAH) under normal conditions and during cooling. Bull Sibirsk Med 4: 99. (In Russ)].
  16. Kozyreva TV, Eliseeva LS, Khramova GM (2011) Arterial hypertension changes the effects of cold and calcium on immune response. J Exp Integr Med 1(4): 243–248. https://doi.org/10.5455/jeim.280911.or.013
  17. Kozyreva TV, Khramova GM, Eliseeva LS (2012) The influence of TRPM8 ion channel activation on immune response at different temperature conditions. J Therm Biol 37: 648–653. https://doi.org/10.1016/j.jtherbio.2012.08.005
  18. Kozyreva TV, Khramova GM, Voronova IP, Evtushenko AA (2016) The influence of cooling and TRPM8 ion channel activation on the level of pro-inflammatory cytokines in normotensive and hypertensive rats. J Therm Biol 61: 119–124. https://doi.org/10.1016/j.jtherbio.2016.09.004
  19. Wang Y, Wang DH (2006) A novel mechanism contributing to development of Dahl salt-sensitive hypertension: Role of the transient receptor potential vanilloid type 1. Hypertension 47: 609–614. https://doi.org/10.1161/01.HYP.0000197390.10412.c4
  20. Firth AL, Remillard CV, Yuan JX (2007) TRP channels in hypertension. Biochim Biophys Acta 1772(8): 895–906. https://doi.org/10.1016/j.bbadis.2007.02.009
  21. Menè P, Punzo G, Pirozzi N (2013) TRP channels as therapeutic targets in kidney disease and hypertension. Curr Top Med Chem 13(3): 386–397. https://doi.org/10.2174/1568026611313030013
  22. Jesus RLC, Araujo FA, Alves QL, Dourado KC, Silva DF (2023) Targeting temperature-sensitive transient receptor potential channels in hypertension: Far beyond the perception of hot and cold. J Hypertens 41(9): 1351–1370. https://doi.org/10.1097/HJH.0000000000003487
  23. Clapham DE (2003) TRP channels as cellular sensors. Nature 426: 517–524. https://doi.org/10.1038/nature02196
  24. Toth BI, Olah A, Szöllosi AG, Biro T (2014) TRP channels in the skin. Br J Pharmacol 171(10): 2568–2581. https://doi.org/10.1111/bph.12569
  25. Wyatt A, Wartenberg P, Candlish M, Krasteva-Christ G, Flockerzi V, Boehm U (2017) Genetic strategies to analyze primary TRP channel-expressing cells in mice. Cell Calcium 67: 91–104. https://doi.org/10.1016/j.ceca.2017.05.009
  26. Zhang M, Ma Y, Ye X, Zhang N, Pan L, Wang B (2023) TRP (transient receptor potential) ion channel family: Structures, biological functions and therapeutic interventions for diseases. Signal Transduct Target Ther 8(1): 261. https://doi.org/10.1038/s41392-023-01464-x
  27. Yan Q, Gao C, Li M, Lan R, Wei S, Fan R, Cheng W (2024) TRP Ion Channels in Immune Cells and Their Implications for Inflammation. Int J Mol Sci 25(5): 2719. https://doi.org/10.3390/ijms25052719
  28. Jordt SE, McKemy DD, Julius D (2003) Lessons from peppers and peppermint: The molecular logic of thermosensation. Curr Opin Neurobiol 13(4): 487–492. https://doi.org/10.1016/s0959-4388(03)00101-6
  29. Tominaga M, Kashio M (2024) Thermosensation and TRP Channels. In: Tominaga M, Takagi M (eds) Thermal Biology. Advances in Experimental Medicine and Biology. Springer. Singapore. 1461. https://doi.org/10.1007/978-981-97-4584-5_1
  30. Caterina MJ, Pang Z (2016) TRP Channels in Skin Biology and Pathophysiology. Pharmaceuticals (Basel) 9(4): 77. https://doi.org/10.3390/ph9040077
  31. Parenti A, De Logu F, Geppetti P, Benemei S (2016) What is the evidence for the role of TRP channels in inflammatory and immune cells? Br J Pharmacol 173(6): 953–969. https://doi.org/10.1111/bph.13392
  32. Gouin O, L'Herondelle K, Lebonvallet N, Le Gall-Ianotto C, Sakka M, Buhé V, Plée-Gautier E, Carré JL, Lefeuvre L, Misery L, Le Garrec R (2017) TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: Pro-inflammatory response induced by their activation and their sensitization. Protein Cell 8(9): 644–661. https://doi.org/10.1007/s13238-017-0395-5
  33. Khalil M, Alliger K, Weidinger C, Yerinde C, Wirtz S, Becker C, Engel MA (2018) Functional Role of Transient Receptor Potential Channels in Immune Cells and Epithelia. Front Immunol 9: 174. https://doi.org/10.3389/fimmu.2018.00174
  34. Schwartz ES, La JH, Scheff NN, Davis BM, Albers KM, Gebhart GF (2013) TRPV1 and TRPA1 antagonists prevent the transition of acute to chronic inflammation and pain in chronic pancreatitis. J Neurosci 33: 5603–5611. https://doi.org/10.1523/JNEUROSCI.1806-12.2013
  35. McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416(6876): 52–58. https://doi.org/10.1038/nature719
  36. Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P et al. (2002) A TRP channel that senses cold stimuli and menthol. Cell 108: 705–715. https://doi.org/10.1016/s0092-8674(02)00652-9
  37. Kozyreva TV, Khramova GM (2020) Effects of activation of skin ion channels TRPM8, TRPV1, and TRPA1 on the immune response. Comparison with effects of cold and heat exposure. J Therm Biol 93: 102729. https://doi.org/10.1016/j.jtherbio.2020.102729
  38. Voronova IP, Tuzhikova AA, Markel AL, Kozyreva TV (2015) Inherited stress-induced hypertension associates with altered gene expression of thermosensitive TRP ion channels in hypothalamus. J Exp Integr Med 5: 149–156.
  39. Voronova IP, Tuzhikova AA, Kozyreva TV (2013) Gene expression of thermosensitive TRP ion channels in the rat brain structures: Effect of adaptation to cold. J Therm Biol 38: 300–304. https://doi.org/10.1016/j.jtherbio.2013.03.009
  40. Evtushenko AA, Voronova IP, Kozyreva TV (2023) Effect of Long-Term Adaptation to Cold and Short-Term Cooling on the Expression of the TRPM2 Ion Channel Gene in the Hypothalamus of Rats. Curr Issues Mol Biol 45(2): 1002–1011. https://doi.org/10.3390/cimb45020065
  41. Evtushenko AA, Orlov IV, Voronova IP, Kozyreva TV (2024) Functional Changes in Aqp4 Gene Expression in the Rat Hypothalamus under Different Drinking Regimens and Arterial Hypertension. J Evol Biochem Physiol 60(2): 734–743. https://doi.org/10.1134/S0022093024020224
  42. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Ann Biochem 162: 156–159. https://doi.org/10.1006/abio.1987.9999
  43. Lewis SM, Williams A, Eisenbarth SC (2019) Structure and function of the immune system in the spleen. Sci Immunol 4(33): eaau6085. https://doi.org/10.1126/sciimmunol.aau6085
  44. Sanchez JF, Krause JE, Cortright DN (2001) The distribution and regulation of vanilloid receptor VR1 and VR1 5' splice variant RNA expression in rat. Neuroscience 107(3): 373–381. https://doi.org/10.1016/s0306-4522(01)00373-6
  45. Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398(6726): 436–441. https://doi.org/ 10.1038/18906
  46. Kanzaki M, Zhang YQ, Mashima H, Li L, Shibata H, Kojima I (1999) Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nat Cell Biol (3): 165–170. https://doi.org/10.1038/11086
  47. Kowase T, Nakazato Y, Yoko-O H, Morikawa A, Kojima I (2002) Immunohistochemical localization of growth factor-regulated channel (GRC) in human tissues. Endocr J 49(3): 349–355. https://doi.org/10.1507/endocrj.49.349
  48. Kozyreva TV, Eliseeva LS, Khramova GM, Voronova IP, Evtushenko AA (2019) TRPM8 ion channel in neuro-immune regulation of antigen binding function of spleen cells. Trends Med 19: 3. https://doi.org/10.15761/tim.1000191
  49. Kunert-Keil C, Bisping F, Krüger J, Brinkmeier H (2006) Tissue-specific expression of TRP channel genes in the mouse and its variation in three different mouse strains. BMC Genomics 7: 159. https://doi.org/10.1186/1471-2164-7-159
  50. Inada H, Iida T, Tominaga M (2006) Different expression patterns of TRP genes in murine B and T lymphocytes. Biochem Biophys Res Commun 350(3): 762–767. https://doi.org/10.1016/j.bbrc.2006.09.111
  51. Bertin S, Aoki-Nonaka Y, de Jong PR, Nohara LL, Xu H, Stanwood SR, Srikanth S, Lee J, To K, Abramson L, Yu T, Han T, Touma R, Li X, González-Navajas JM, Herdman S, Corr M, Fu G, Dong H, Gwack Y, Franco A, Jefferies WA, Raz E (2014) The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4⁺ T cells. Nat Immunol 15(11): 1055–1063. https://doi.org/10.1038/ni.3009
  52. Nagata K, Duggan A, Kumar G, García-Añoveros J (2005) Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J Neurosci 25(16): 4052–4061. https://doi.org/10.1523/JNEUROSCI.0013-05.2005
  53. Sahoo SS, Majhi RK, Tiwari A, Acharya T, Kumar PS, Saha S, Kumar A, Goswami C, Chattopadhyay S (2019) Transient receptor potential ankyrin1 channel is endogenously expressed in T cells and is involved in immune functions. Biosci Rep 39(9): BSR20191437. https://doi.org/10.1042/BSR20191437
  54. Naert R, López-Requena A, Talavera K (2021) TRPA1 Expression and Pathophysiology in Immune Cells. Int J Mol Sci 22(21): 11460. https://doi.org/10.3390/ijms222111460
  55. Majhi RK, Sahoo SS, Yadav M, Pratheek BM, Chattopadhyay S, Goswami C (2015) Functional expression of TRPV channels in T cells and their implications in immune regulation. FEBS J 282(14): 2661–2681. https://doi.org/10.1111/febs.13306
  56. Kim CS, Kawada T, Kim BS, Han IS, Choe SY, Kurata T, Yu R (2003) Capsaicin exhibits anti-inflammatory property by inhibiting IkB-a degradation in LPS-stimulated peritoneal macrophages. Cell Signal 15(3): 299–306. https://doi.org/10.1016/s0898-6568(02)00086-4
  57. Yamashiro K, Sasano T, Tojo K, Namekata I, Kurokawa J, Sawada N, Suganami T, Kamei Y, Tanaka H, Tajima N, Utsunomiya K, Ogawa Y, Furukawa T (2010) Role of transient receptor potential vanilloid 2 in LPS-induced cytokine production in macrophages. Biochem Biophys Res Commun 398(2): 284–289. https://doi.org/10.1016/j.bbrc.2010.06.082
  58. Kajiya H, Okamoto F, Nemoto T, Kimachi K, Toh-Goto K, Nakayana S, Okabe K (2010) RANKL-induced TRPV2 expression regulates osteoclastogenesis via calcium oscillations. Cell Calcium 48(5): 260–269. https://doi.org/10.1016/j.ceca.2010.09.010
  59. Santoni G, Farfariello V, Liberati S, Morelli MB, Nabissi M, Santoni M, Amantini C (2013) The role of transient receptor potential vanilloid type-2 ion channels in innate and adaptive immune responses. Front Immunol 4: 34. https://doi.org/10.3389/fimmu.2013.00034
  60. Heiner I, Eisfeld J, Lückhoff A (2003) Role and regulation of TRP channels in neutrophil granulocytes. Cell Calcium 33(5-6): 533–540. https://doi.org/10.1016/s0143-4160(03)00058-7
  61. Nagasawa M, Nakagawa Y, Tanaka S, Kojima I (2007) Chemotactic peptide fMetLeuPhe induces translocation of the TRPV2 channel in macrophages. J Cell Physiol 210(3): 692–702. https://doi.org/10.1002/jcp.20883
  62. Link TM, Park U, Vonakis BM, Raben DM, Soloski MJ, Caterina MJ (2010) TRPV2 has a pivotal role in macrophage particle binding and phagocytosis. Nat Immunol 11(3): 232–239. https://doi.org/10.1038/ni.1842
  63. Voets T, Owsianik G, Janssens A, Talavera K, Nilius B (2007) TRPM8 voltage sensor mutants reveal a mechanism for integrating thermal and chemical stimuli. Nat Chem Biol 3: 174–182. https://doi.org/10.1038/nchembio862
  64. Kozyreva TV, Kozaruk VP, Tkachenko EY, Kchramova GM (2010) Agonist of TRPM8 channel menthol facilitates the initiation of thermoregulatory responses to external cooling. J Therm Biol 35: 428–434. https://doi.org/10.1016/j.jtherbio.2010.09.004
  65. Voronova IP, Khramova GM, Evtushenko AA, Kozyreva TV (2022) Effect of Skin Ion Channel TRPM8 Activation by Cold and Menthol on Thermoregulation and the Expression of Genes of Thermosensitive TRP Ion Channels in the Hypothalamus of Hypertensive Rats. Int J Mol Sci 23(11): 6088. https://doi.org/10.3390/ijms23116088
  66. Kozyreva TV, Kozaruk VP, Meyta ES (2019) Effect of the Peripheral Trpm8 Ion Channel Activation on the Cardiovascular Parameters. Int Arch Clin Pharmacol 5: 019. https://doi.org/10.23937/2572-3987.1510019
  67. Hanson DF (1993) Fever and the immune response. The effects of physiological temperatures on primary murine splenic T-cell responses in vitro. J Immunol 151: 436–448.
  68. Kozyreva TV, Eliseeva LS (2000) Immune response in cold exposures of different types. J Therm Biol 25(5): 401-404. https://doi.org/10.1016/s0306-4565(99)00113-8
  69. Castellani JW, M Brenner IK, Rhind SG (2002) Cold exposure: Human immune responses and intracellular cytokine expression. Med Sci Sports Exerc 34(12): 2013–2020. https://doi.org/10.1097/00005768-200212000-00023
  70. McFarlin BK, Mitchell JB (2003) Exercise in hot and cold environments: Differential effects on leukocyte number and NK cell activity. Aviat Space Environ Med 74(12): 1231–1236.
  71. Liu C, Yavar Z, Sun Q (2015) Cardiovascular response to thermoregulatory challenges. Am J Physiol Heart Circ Physiol 309(11): 1793–1812. https://doi.org/10.1152/ajpheart.00199.2015
  72. Casas ALF, Santos GMD, Chiocheti NB, de Andrade M (2016) Effects of Temperature Variation on the Human Cardiovascular System: A Systematic Review. In: Leal FW, Azeiteiro U, Alves F (eds) Climate Change and Health. Climate Change Management. Springer. Cham. https://doi.org/10.1007/978-3-319-24660-4_5
  73. Salas MM, Hargreaves KM, Akopian AN (2009) TRPA1-mediated responses in trigeminal sensory neurons: Interaction between TRPA1 and TRPV1. Eur J Neurosci 29: 1568–1578. https://doi.org/10.1111/j.1460-9568.2009.06702.x
  74. Patil MJ, Jeske NA, Akopian AN (2010) Transient receptor potential V1 regulates activation and modulation of transient receptor potential A1 by Ca2+. Neuroscience 171: 1109–1119. https://doi.org/10.1016/j.neuroscience.2010.09.031
  75. Andrei SR, Sinharoy P, Bratz IN, Damron DS (2016) TRPA1 is functionally co-expressed with TRPV1 in cardiac muscle: Co-localization at z-discs, costameres and intercalated discs. Channels (Austin) 10(5): 395–409. https://doi.org/10.1080/19336950.2016.1185579
  76. Wang C, Jin X, Zhang Q, Wang H, Ji H, Zhou Y, Zhu C, Yang Y, Yu G, Tang Z (2023) TRPV1 and TRPA1 channels interact to mediate cold hyperalgesia in mice. Br J Anaesth 131(5): e167–e170. https://doi.org/10.1016/j.bja.2023.08.010
  77. Xu H, Blair NT, Clapham DE (2005) Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. J Neurosci 25: 8924–8937. https://doi.org/10.1523/JNEUROSCI.2574-05.2005
  78. Xiao B, Dubin AE, Bursulaya B, Viswanath V, Jegla TJ, Patapoutian A (2008) Identification of transmembrane domain 5 as a critical molecular determinant of menthol sensitivity in mammalian TRPA1 channels. J Neurosci 28: 9640–9651. https://doi.org/10.1523/JNEUROSCI.2772-08.2008
  79. Takaishi M, Uchida K, Suzuki Y, Matsui H, Shimada T, Fujita F, Tominaga M (2016) Reciprocal effects of capsaicin and menthol on thermosensation through regulated activities of TRPV1 and TRPM8. J Physiol Sci 66(2): 143–155. https://doi.org/10.1007/s12576-015-0427-y
  80. Nguyen THD, Itoh SG, Okumura H, Tominaga M (2021) Structural basis for promiscuous action of monoterpenes on TRP channels. Commun Biol 4(1): 293. https://doi.org/10.1038/s42003-021-01776-0
  81. Macpherson LJ, Hwang SW, Miyamoto T, Dubin AE, Patapoutian A, Story GM (2006) More than cool: Promiscuous relationships of menthol and other sensory compounds. Mol Cell Neurosci 32: 335–343.
  82. Karashima Y, Damann N, Prenen J, Talavera K, Segal A, Voets T, Nilius B (2007) Bimodal action of menthol on the transient receptor potential channel TRPA1. J Neurosci 27: 9874–9884. https://doi.org/10.1523/JNEUROSCI.2221-07.2007
  83. Zhang Z, Wu X, Zhang L, Mao A, Ma X, He D (2020) Menthol relieves acid reflux inflammation by regulating TRPV1 in esophageal epithelial cells. Biochem Biophys Res Commun 17: S0006-291X(20)30318-1. https://doi.org/10.1016/j.bbrc.2020.02.050
  84. Chung MK, Wang S (2011) Cold suppresses agonist-induced activation of TRPV1. J Dent Res 90: 1098–1102. https://doi.org/10.1177/0022034511412074
  85. Wang S, Lee J, Ro JY, Chung MK (2012) Warmth suppresses and desensitizes damage-sensing ion channel TRPA1. Mol Pain 8: 22. https://doi.org/10.1186/1744-8069-8-22
  86. Harrington AM, Hughes PA, Martin CM, Yang J, Castro J, Isaacs NJ, Blackshaw AL, Brierley SM (2011) A novel role for TRPM8 in visceral afferent function. Pain 152(7): 1459–1468. https://doi.org/10.1016/j.pain.2011.01.027
  87. Yamaguchi T, Uchida K, Yamazaki J (2023) Canine, mouse, and human transient receptor potential ankyrin 1 (TRPA1) channels show different sensitivity to menthol or cold stimulation. J Vet Med Sci 85(12): 1301–1309. https://doi.org/10.1292/jvms.23-0327

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Expression of cold-sensitive ion channel genes TRPA1 and TRPM8 in the spleen of normo- and hypertensive animals. (a) - Photo of PCR product bands of samples and standards for the investigated genes Trpa1, Trpm8 and housekeeping gene Ppia, where I - hypertensive NISAH (ISIAH) line, W - normotensive WAG line. (b) - The mRNA levels of Trpa1 and Trpm8 genes. Gene expression is represented as the number of copies of the investigated gene per 100 copies of the housekeeping gene Ppia. Individual values are represented by triangles in the figure. * - p < 0.05; ** - p < 0.01, significant differences between animals of the studied lines, Student's t-test.

下载 (233KB)
3. Fig. 2. Effect of slow deep cooling and peripheral TRPM8 ion channel activation by menthol on Trpv1 (a) and Trpa1 (b) gene expression in the spleen of hypertensive rats. Gene expression is presented as the number of copies of the investigated gene per 100 copies of the housekeeping gene Ppia. Individual values are represented by triangles in the figure. * - p < 0.05, significant difference from control group, One-Way ANOVA, post-hoc Fisher test.

下载 (124KB)

版权所有 © Russian Academy of Sciences, 2025