Thermosensitive TRP-Ion Channels Gene Expression in the Spleen in Normo- and Hypertensive Rats. Effect of the Cold and the Peripheral TRPM8 Ion Channel Activation
- 作者: Evtushenko A.A.1, Voronova I.P.1, Kozyreva T.V.1
-
隶属关系:
- Scientific Research Institute of Neurosciences and Medicine
- 期: 卷 111, 编号 5 (2025)
- 页面: 744-760
- 栏目: EXPERIMENTAL ARTICLES
- URL: https://kazanmedjournal.ru/0869-8139/article/view/686275
- DOI: https://doi.org/10.31857/S0869813925050063
- EDN: https://elibrary.ru/TNSLRF
- ID: 686275
如何引用文章
详细
Arterial hypertension leads to changes in the functioning of various organism systems, including the immune system. TRP-ion channels are increasingly attracting attention as targets for the correction of visceral organs, including for therapeutic purposes. The gene expression of the thermosensitive TRP-ion channels (TRPM8, TRPA1, TRPV1, TRPV2, TRPV3 and TRPV4) was studied in the immunocompetent organ, the spleen, using quantitative RT-PCR in normotensive and hypertensive animals under normal conditions, during cooling, and stimulation of the peripheral cold-sensitive ion channel TRPM8. The investigated genes express differently in the spleen of animals of both lines. The expression of cold-sensitive ion channel genes TRPM8 and TRPA1 is reduced in the spleen of hypertensive rats. This is consistent with obtained data on the decrease expression of the TRPM8 ion channel gene in the hypothalamus of hypertensive animals. Deep cooling of the organism, as well as activation of the peripheral (cutaneous) TRPM8-ion channel by menthol, lead to increase expression of the TRPA1 and TRPV1 ion channels genes in the spleen of hypertensive rats, without affecting the expression of genes in normotensive animals. Considering that the ion channels TRPA1 and TRPV1 are involved in inflammation processes, this may indicate a change in the nature of inflammatory reactions in hypertensive animals when organism is exposed to cold. The obtained data expand knowledge about the representation of thermosensitive TRP-ion channels in immunocompetent organs and may indicate a change in the immune status of organism with arterial hypertension.
全文:

作者简介
A. Evtushenko
Scientific Research Institute of Neurosciences and Medicine
编辑信件的主要联系方式.
Email: evtushenkoaa@neuronm.ru
俄罗斯联邦, Novosibirsk
I. Voronova
Scientific Research Institute of Neurosciences and Medicine
Email: evtushenkoaa@neuronm.ru
俄罗斯联邦, Novosibirsk
T. Kozyreva
Scientific Research Institute of Neurosciences and Medicine
Email: evtushenkoaa@neuronm.ru
俄罗斯联邦, Novosibirsk
参考
- Harrison DG, Guzik TJ, Lob HE, Madhur MS, Marvar PJ, Thabet SR, Vinh A, Weyand CM (2011) Inflammation, immunity, and hypertension. Hypertension 57(2): 132–140. https://doi.org/10.1161/HYPERTENSIONAHA.110.163576
- Schiffrin EL (2013) The immune system: Role in hypertension. Can J Cardiol 29(5): 543–548. https://doi.org/10.1016/j.cjca.2012.06.009
- Mian MO, Paradis P, Schiffrin EL (2014) Innate immunity in hypertension. Curr Hypertens Rep 16(2): 413. https://doi.org/10.1007/s11906-013-0413-9
- Trott DW, Harrison DG (2014) The immune system in hypertension. Adv Physiol Educ 38(1): 20. https://doi.org/10.1152/advan.00063.2013
- Rodriguez-Iturbe B, Pons H, Johnson RJ (2017) Role of the Immune System in Hypertension. Physiol Rev 97(3): 1127–1164. https://doi.org/10.1152/physrev.00031.2016
- Nguyen BA, Alexander MR, Harrison DG (2024) Immune mechanisms in the pathophysiology of hypertension. Nat Rev Nephrol 20(8): 530–540. https://doi.org/10.1038/s41581-024-00838-w
- Singh MV, Chapleau MW, Harwani SC, Abboud FM (2014) The immune system and hypertension. Immunol Res 59(1-3): 243–253. https://doi.org/10.1007/s12026-014-8548-6
- Lu X, Crowley SD (2022) The Immune System in Hypertension: A Lost Shaker of Salt 2021 Lewis K. Dahl Memorial Lecture. Hypertension 79(7): 1339–1347. https://doi.org/10.1161/HYPERTENSIONAHA.122.18554
- Rapp JP (2000) Genetic analysis of inherited hypertension in the rat. Physiol Rev 80: 135–172. https://doi.org/10.1152/physrev.2000.80.1.135
- Ryazanova MA, Plekanchuk VS, Prokudina OI, Makovka YV, Alekhina TA, Redina OE, Markel AL (2023) Animal Models of Hypertension (ISIAH Rats), Catatonia (GC Rats), and Audiogenic Epilepsy (PM Rats) Developed by Breeding. Biomedicines 11(7): 1814. https://doi.org/10.3390/biomedicines11071814
- Markel AL (1992) Development of a new strain of rats with inherited stress-induced arterial hypertension. In: Sassard J, Libbey J (eds) Genetic Hypertension. Colloque INSERM. London. 218: 405–407.
- Markel AL, Redina OE, Gilinsky MA, Dymshits GM, Kalashnikova EV, Khvorostova YuV, Fedoseeva LA, Jacobson GS (2007) Neuroendocrine profiling in inherited stress-induced arterial hypertension rat strain with stress-sensitive arterial hypertension. J Endocrinol 195: 439–450. https://doi.org/10.1677/JOE-07-0254
- Цейликман ВЭ, Козочкин ДА, Маркель АЛ, Вязовский ИА, Гиенко ИА, Колесникова АА, Афанасьев ОА, Лифшиц РИ (2008) Влияние повторных стрессорных воздействий на иммунную реактивность и монооксигсназную активность печени нормотензивных и гипертензивных крыс. Рос физиол журн им ИМ Сеченова 94(5): 574–580. [Tseylikman VE, Kozochkin DA, Markel AL, Vyazovsky IA, Gienko IA, Kolesnikova AA, Afanasyev AA, Lifshits RI (2008) Influence of repeated stress on immune responsiveness and monooxigenase activity of normotensive and hypertensive rats. Russ J Physiol 94(5): 574–580. (In Russ)].
- Shurlygina AV, Melnikova EV, Panteleeva NG, Tenditnik MV, Dushkin MI, Khrapova MV, Trufakin VA (2013) Effects of Experimental Desynchronosis on the Organs of Immune System in WAG and ISIAH Rats. Bull Exp Biol Med 155: 659–662. https://doi.org/10.1007/s10517-013-2219-9
- Елисеева ЛС (2005) Особенности иммунных реакций у крыс с наследственной артериальной гипертензией (НИСАГ) в норме и при охлаждении. Бюл сибирск мед 4: 99. [Eliseeva LS (2005) Features of immune reactions in rats with hereditary arterial hypertension (ISIAH) under normal conditions and during cooling. Bull Sibirsk Med 4: 99. (In Russ)].
- Kozyreva TV, Eliseeva LS, Khramova GM (2011) Arterial hypertension changes the effects of cold and calcium on immune response. J Exp Integr Med 1(4): 243–248. https://doi.org/10.5455/jeim.280911.or.013
- Kozyreva TV, Khramova GM, Eliseeva LS (2012) The influence of TRPM8 ion channel activation on immune response at different temperature conditions. J Therm Biol 37: 648–653. https://doi.org/10.1016/j.jtherbio.2012.08.005
- Kozyreva TV, Khramova GM, Voronova IP, Evtushenko AA (2016) The influence of cooling and TRPM8 ion channel activation on the level of pro-inflammatory cytokines in normotensive and hypertensive rats. J Therm Biol 61: 119–124. https://doi.org/10.1016/j.jtherbio.2016.09.004
- Wang Y, Wang DH (2006) A novel mechanism contributing to development of Dahl salt-sensitive hypertension: Role of the transient receptor potential vanilloid type 1. Hypertension 47: 609–614. https://doi.org/10.1161/01.HYP.0000197390.10412.c4
- Firth AL, Remillard CV, Yuan JX (2007) TRP channels in hypertension. Biochim Biophys Acta 1772(8): 895–906. https://doi.org/10.1016/j.bbadis.2007.02.009
- Menè P, Punzo G, Pirozzi N (2013) TRP channels as therapeutic targets in kidney disease and hypertension. Curr Top Med Chem 13(3): 386–397. https://doi.org/10.2174/1568026611313030013
- Jesus RLC, Araujo FA, Alves QL, Dourado KC, Silva DF (2023) Targeting temperature-sensitive transient receptor potential channels in hypertension: Far beyond the perception of hot and cold. J Hypertens 41(9): 1351–1370. https://doi.org/10.1097/HJH.0000000000003487
- Clapham DE (2003) TRP channels as cellular sensors. Nature 426: 517–524. https://doi.org/10.1038/nature02196
- Toth BI, Olah A, Szöllosi AG, Biro T (2014) TRP channels in the skin. Br J Pharmacol 171(10): 2568–2581. https://doi.org/10.1111/bph.12569
- Wyatt A, Wartenberg P, Candlish M, Krasteva-Christ G, Flockerzi V, Boehm U (2017) Genetic strategies to analyze primary TRP channel-expressing cells in mice. Cell Calcium 67: 91–104. https://doi.org/10.1016/j.ceca.2017.05.009
- Zhang M, Ma Y, Ye X, Zhang N, Pan L, Wang B (2023) TRP (transient receptor potential) ion channel family: Structures, biological functions and therapeutic interventions for diseases. Signal Transduct Target Ther 8(1): 261. https://doi.org/10.1038/s41392-023-01464-x
- Yan Q, Gao C, Li M, Lan R, Wei S, Fan R, Cheng W (2024) TRP Ion Channels in Immune Cells and Their Implications for Inflammation. Int J Mol Sci 25(5): 2719. https://doi.org/10.3390/ijms25052719
- Jordt SE, McKemy DD, Julius D (2003) Lessons from peppers and peppermint: The molecular logic of thermosensation. Curr Opin Neurobiol 13(4): 487–492. https://doi.org/10.1016/s0959-4388(03)00101-6
- Tominaga M, Kashio M (2024) Thermosensation and TRP Channels. In: Tominaga M, Takagi M (eds) Thermal Biology. Advances in Experimental Medicine and Biology. Springer. Singapore. 1461. https://doi.org/10.1007/978-981-97-4584-5_1
- Caterina MJ, Pang Z (2016) TRP Channels in Skin Biology and Pathophysiology. Pharmaceuticals (Basel) 9(4): 77. https://doi.org/10.3390/ph9040077
- Parenti A, De Logu F, Geppetti P, Benemei S (2016) What is the evidence for the role of TRP channels in inflammatory and immune cells? Br J Pharmacol 173(6): 953–969. https://doi.org/10.1111/bph.13392
- Gouin O, L'Herondelle K, Lebonvallet N, Le Gall-Ianotto C, Sakka M, Buhé V, Plée-Gautier E, Carré JL, Lefeuvre L, Misery L, Le Garrec R (2017) TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: Pro-inflammatory response induced by their activation and their sensitization. Protein Cell 8(9): 644–661. https://doi.org/10.1007/s13238-017-0395-5
- Khalil M, Alliger K, Weidinger C, Yerinde C, Wirtz S, Becker C, Engel MA (2018) Functional Role of Transient Receptor Potential Channels in Immune Cells and Epithelia. Front Immunol 9: 174. https://doi.org/10.3389/fimmu.2018.00174
- Schwartz ES, La JH, Scheff NN, Davis BM, Albers KM, Gebhart GF (2013) TRPV1 and TRPA1 antagonists prevent the transition of acute to chronic inflammation and pain in chronic pancreatitis. J Neurosci 33: 5603–5611. https://doi.org/10.1523/JNEUROSCI.1806-12.2013
- McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416(6876): 52–58. https://doi.org/10.1038/nature719
- Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P et al. (2002) A TRP channel that senses cold stimuli and menthol. Cell 108: 705–715. https://doi.org/10.1016/s0092-8674(02)00652-9
- Kozyreva TV, Khramova GM (2020) Effects of activation of skin ion channels TRPM8, TRPV1, and TRPA1 on the immune response. Comparison with effects of cold and heat exposure. J Therm Biol 93: 102729. https://doi.org/10.1016/j.jtherbio.2020.102729
- Voronova IP, Tuzhikova AA, Markel AL, Kozyreva TV (2015) Inherited stress-induced hypertension associates with altered gene expression of thermosensitive TRP ion channels in hypothalamus. J Exp Integr Med 5: 149–156.
- Voronova IP, Tuzhikova AA, Kozyreva TV (2013) Gene expression of thermosensitive TRP ion channels in the rat brain structures: Effect of adaptation to cold. J Therm Biol 38: 300–304. https://doi.org/10.1016/j.jtherbio.2013.03.009
- Evtushenko AA, Voronova IP, Kozyreva TV (2023) Effect of Long-Term Adaptation to Cold and Short-Term Cooling on the Expression of the TRPM2 Ion Channel Gene in the Hypothalamus of Rats. Curr Issues Mol Biol 45(2): 1002–1011. https://doi.org/10.3390/cimb45020065
- Evtushenko AA, Orlov IV, Voronova IP, Kozyreva TV (2024) Functional Changes in Aqp4 Gene Expression in the Rat Hypothalamus under Different Drinking Regimens and Arterial Hypertension. J Evol Biochem Physiol 60(2): 734–743. https://doi.org/10.1134/S0022093024020224
- Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Ann Biochem 162: 156–159. https://doi.org/10.1006/abio.1987.9999
- Lewis SM, Williams A, Eisenbarth SC (2019) Structure and function of the immune system in the spleen. Sci Immunol 4(33): eaau6085. https://doi.org/10.1126/sciimmunol.aau6085
- Sanchez JF, Krause JE, Cortright DN (2001) The distribution and regulation of vanilloid receptor VR1 and VR1 5' splice variant RNA expression in rat. Neuroscience 107(3): 373–381. https://doi.org/10.1016/s0306-4522(01)00373-6
- Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398(6726): 436–441. https://doi.org/ 10.1038/18906
- Kanzaki M, Zhang YQ, Mashima H, Li L, Shibata H, Kojima I (1999) Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nat Cell Biol (3): 165–170. https://doi.org/10.1038/11086
- Kowase T, Nakazato Y, Yoko-O H, Morikawa A, Kojima I (2002) Immunohistochemical localization of growth factor-regulated channel (GRC) in human tissues. Endocr J 49(3): 349–355. https://doi.org/10.1507/endocrj.49.349
- Kozyreva TV, Eliseeva LS, Khramova GM, Voronova IP, Evtushenko AA (2019) TRPM8 ion channel in neuro-immune regulation of antigen binding function of spleen cells. Trends Med 19: 3. https://doi.org/10.15761/tim.1000191
- Kunert-Keil C, Bisping F, Krüger J, Brinkmeier H (2006) Tissue-specific expression of TRP channel genes in the mouse and its variation in three different mouse strains. BMC Genomics 7: 159. https://doi.org/10.1186/1471-2164-7-159
- Inada H, Iida T, Tominaga M (2006) Different expression patterns of TRP genes in murine B and T lymphocytes. Biochem Biophys Res Commun 350(3): 762–767. https://doi.org/10.1016/j.bbrc.2006.09.111
- Bertin S, Aoki-Nonaka Y, de Jong PR, Nohara LL, Xu H, Stanwood SR, Srikanth S, Lee J, To K, Abramson L, Yu T, Han T, Touma R, Li X, González-Navajas JM, Herdman S, Corr M, Fu G, Dong H, Gwack Y, Franco A, Jefferies WA, Raz E (2014) The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4⁺ T cells. Nat Immunol 15(11): 1055–1063. https://doi.org/10.1038/ni.3009
- Nagata K, Duggan A, Kumar G, García-Añoveros J (2005) Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J Neurosci 25(16): 4052–4061. https://doi.org/10.1523/JNEUROSCI.0013-05.2005
- Sahoo SS, Majhi RK, Tiwari A, Acharya T, Kumar PS, Saha S, Kumar A, Goswami C, Chattopadhyay S (2019) Transient receptor potential ankyrin1 channel is endogenously expressed in T cells and is involved in immune functions. Biosci Rep 39(9): BSR20191437. https://doi.org/10.1042/BSR20191437
- Naert R, López-Requena A, Talavera K (2021) TRPA1 Expression and Pathophysiology in Immune Cells. Int J Mol Sci 22(21): 11460. https://doi.org/10.3390/ijms222111460
- Majhi RK, Sahoo SS, Yadav M, Pratheek BM, Chattopadhyay S, Goswami C (2015) Functional expression of TRPV channels in T cells and their implications in immune regulation. FEBS J 282(14): 2661–2681. https://doi.org/10.1111/febs.13306
- Kim CS, Kawada T, Kim BS, Han IS, Choe SY, Kurata T, Yu R (2003) Capsaicin exhibits anti-inflammatory property by inhibiting IkB-a degradation in LPS-stimulated peritoneal macrophages. Cell Signal 15(3): 299–306. https://doi.org/10.1016/s0898-6568(02)00086-4
- Yamashiro K, Sasano T, Tojo K, Namekata I, Kurokawa J, Sawada N, Suganami T, Kamei Y, Tanaka H, Tajima N, Utsunomiya K, Ogawa Y, Furukawa T (2010) Role of transient receptor potential vanilloid 2 in LPS-induced cytokine production in macrophages. Biochem Biophys Res Commun 398(2): 284–289. https://doi.org/10.1016/j.bbrc.2010.06.082
- Kajiya H, Okamoto F, Nemoto T, Kimachi K, Toh-Goto K, Nakayana S, Okabe K (2010) RANKL-induced TRPV2 expression regulates osteoclastogenesis via calcium oscillations. Cell Calcium 48(5): 260–269. https://doi.org/10.1016/j.ceca.2010.09.010
- Santoni G, Farfariello V, Liberati S, Morelli MB, Nabissi M, Santoni M, Amantini C (2013) The role of transient receptor potential vanilloid type-2 ion channels in innate and adaptive immune responses. Front Immunol 4: 34. https://doi.org/10.3389/fimmu.2013.00034
- Heiner I, Eisfeld J, Lückhoff A (2003) Role and regulation of TRP channels in neutrophil granulocytes. Cell Calcium 33(5-6): 533–540. https://doi.org/10.1016/s0143-4160(03)00058-7
- Nagasawa M, Nakagawa Y, Tanaka S, Kojima I (2007) Chemotactic peptide fMetLeuPhe induces translocation of the TRPV2 channel in macrophages. J Cell Physiol 210(3): 692–702. https://doi.org/10.1002/jcp.20883
- Link TM, Park U, Vonakis BM, Raben DM, Soloski MJ, Caterina MJ (2010) TRPV2 has a pivotal role in macrophage particle binding and phagocytosis. Nat Immunol 11(3): 232–239. https://doi.org/10.1038/ni.1842
- Voets T, Owsianik G, Janssens A, Talavera K, Nilius B (2007) TRPM8 voltage sensor mutants reveal a mechanism for integrating thermal and chemical stimuli. Nat Chem Biol 3: 174–182. https://doi.org/10.1038/nchembio862
- Kozyreva TV, Kozaruk VP, Tkachenko EY, Kchramova GM (2010) Agonist of TRPM8 channel menthol facilitates the initiation of thermoregulatory responses to external cooling. J Therm Biol 35: 428–434. https://doi.org/10.1016/j.jtherbio.2010.09.004
- Voronova IP, Khramova GM, Evtushenko AA, Kozyreva TV (2022) Effect of Skin Ion Channel TRPM8 Activation by Cold and Menthol on Thermoregulation and the Expression of Genes of Thermosensitive TRP Ion Channels in the Hypothalamus of Hypertensive Rats. Int J Mol Sci 23(11): 6088. https://doi.org/10.3390/ijms23116088
- Kozyreva TV, Kozaruk VP, Meyta ES (2019) Effect of the Peripheral Trpm8 Ion Channel Activation on the Cardiovascular Parameters. Int Arch Clin Pharmacol 5: 019. https://doi.org/10.23937/2572-3987.1510019
- Hanson DF (1993) Fever and the immune response. The effects of physiological temperatures on primary murine splenic T-cell responses in vitro. J Immunol 151: 436–448.
- Kozyreva TV, Eliseeva LS (2000) Immune response in cold exposures of different types. J Therm Biol 25(5): 401-404. https://doi.org/10.1016/s0306-4565(99)00113-8
- Castellani JW, M Brenner IK, Rhind SG (2002) Cold exposure: Human immune responses and intracellular cytokine expression. Med Sci Sports Exerc 34(12): 2013–2020. https://doi.org/10.1097/00005768-200212000-00023
- McFarlin BK, Mitchell JB (2003) Exercise in hot and cold environments: Differential effects on leukocyte number and NK cell activity. Aviat Space Environ Med 74(12): 1231–1236.
- Liu C, Yavar Z, Sun Q (2015) Cardiovascular response to thermoregulatory challenges. Am J Physiol Heart Circ Physiol 309(11): 1793–1812. https://doi.org/10.1152/ajpheart.00199.2015
- Casas ALF, Santos GMD, Chiocheti NB, de Andrade M (2016) Effects of Temperature Variation on the Human Cardiovascular System: A Systematic Review. In: Leal FW, Azeiteiro U, Alves F (eds) Climate Change and Health. Climate Change Management. Springer. Cham. https://doi.org/10.1007/978-3-319-24660-4_5
- Salas MM, Hargreaves KM, Akopian AN (2009) TRPA1-mediated responses in trigeminal sensory neurons: Interaction between TRPA1 and TRPV1. Eur J Neurosci 29: 1568–1578. https://doi.org/10.1111/j.1460-9568.2009.06702.x
- Patil MJ, Jeske NA, Akopian AN (2010) Transient receptor potential V1 regulates activation and modulation of transient receptor potential A1 by Ca2+. Neuroscience 171: 1109–1119. https://doi.org/10.1016/j.neuroscience.2010.09.031
- Andrei SR, Sinharoy P, Bratz IN, Damron DS (2016) TRPA1 is functionally co-expressed with TRPV1 in cardiac muscle: Co-localization at z-discs, costameres and intercalated discs. Channels (Austin) 10(5): 395–409. https://doi.org/10.1080/19336950.2016.1185579
- Wang C, Jin X, Zhang Q, Wang H, Ji H, Zhou Y, Zhu C, Yang Y, Yu G, Tang Z (2023) TRPV1 and TRPA1 channels interact to mediate cold hyperalgesia in mice. Br J Anaesth 131(5): e167–e170. https://doi.org/10.1016/j.bja.2023.08.010
- Xu H, Blair NT, Clapham DE (2005) Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. J Neurosci 25: 8924–8937. https://doi.org/10.1523/JNEUROSCI.2574-05.2005
- Xiao B, Dubin AE, Bursulaya B, Viswanath V, Jegla TJ, Patapoutian A (2008) Identification of transmembrane domain 5 as a critical molecular determinant of menthol sensitivity in mammalian TRPA1 channels. J Neurosci 28: 9640–9651. https://doi.org/10.1523/JNEUROSCI.2772-08.2008
- Takaishi M, Uchida K, Suzuki Y, Matsui H, Shimada T, Fujita F, Tominaga M (2016) Reciprocal effects of capsaicin and menthol on thermosensation through regulated activities of TRPV1 and TRPM8. J Physiol Sci 66(2): 143–155. https://doi.org/10.1007/s12576-015-0427-y
- Nguyen THD, Itoh SG, Okumura H, Tominaga M (2021) Structural basis for promiscuous action of monoterpenes on TRP channels. Commun Biol 4(1): 293. https://doi.org/10.1038/s42003-021-01776-0
- Macpherson LJ, Hwang SW, Miyamoto T, Dubin AE, Patapoutian A, Story GM (2006) More than cool: Promiscuous relationships of menthol and other sensory compounds. Mol Cell Neurosci 32: 335–343.
- Karashima Y, Damann N, Prenen J, Talavera K, Segal A, Voets T, Nilius B (2007) Bimodal action of menthol on the transient receptor potential channel TRPA1. J Neurosci 27: 9874–9884. https://doi.org/10.1523/JNEUROSCI.2221-07.2007
- Zhang Z, Wu X, Zhang L, Mao A, Ma X, He D (2020) Menthol relieves acid reflux inflammation by regulating TRPV1 in esophageal epithelial cells. Biochem Biophys Res Commun 17: S0006-291X(20)30318-1. https://doi.org/10.1016/j.bbrc.2020.02.050
- Chung MK, Wang S (2011) Cold suppresses agonist-induced activation of TRPV1. J Dent Res 90: 1098–1102. https://doi.org/10.1177/0022034511412074
- Wang S, Lee J, Ro JY, Chung MK (2012) Warmth suppresses and desensitizes damage-sensing ion channel TRPA1. Mol Pain 8: 22. https://doi.org/10.1186/1744-8069-8-22
- Harrington AM, Hughes PA, Martin CM, Yang J, Castro J, Isaacs NJ, Blackshaw AL, Brierley SM (2011) A novel role for TRPM8 in visceral afferent function. Pain 152(7): 1459–1468. https://doi.org/10.1016/j.pain.2011.01.027
- Yamaguchi T, Uchida K, Yamazaki J (2023) Canine, mouse, and human transient receptor potential ankyrin 1 (TRPA1) channels show different sensitivity to menthol or cold stimulation. J Vet Med Sci 85(12): 1301–1309. https://doi.org/10.1292/jvms.23-0327
补充文件
