Цитогенетические нарушения в зависимости от гиперметилирования промоторов генов у облученных лиц: итоги исследований
- Авторы: Кузьмина Н.С.1,2, Лаптева Н.Ш.1, Рубанович А.В.1
-
Учреждения:
- Институт общей генетики им. Н.И. Вавилова Российской академии наук
- Федеральный исследовательский центр химической физики им. Н.Н. Семенова Российской академии наук
- Выпуск: Том 64, № 4 (2024)
- Страницы: 339-350
- Раздел: Радиационная генетика
- URL: https://kazanmedjournal.ru/0869-8031/article/view/661071
- DOI: https://doi.org/10.31857/S0869803124040014
- EDN: https://elibrary.ru/LONKJR
- ID: 661071
Цитировать
Аннотация
Подытожены результаты изучения гиперметилирования промоторов совокупности генов клеточного цикла (RASSF1A, р16/INK4A, р14/ARF, р53, АТМ), антиоксидантной защиты (GSTP1, SOD3), эстрогенового рецептора (ESR1) у лиц, подвергшихся хроническому или фракционированному облучению в диапазоне малых и средних доз (101 чел., 24–78 лет: ликвидаторы аварии на Чернобыльской АЭС и взрослые жители территорий, загрязненных радионуклидами, 135–688 кБк/м2), в аспекте связи этих эпигенетических модификаций с цитогенетическим статусом индивида. Множественный регрессионный анализ показал, что частота как простых, так и сложных обменных аберраций хромосомного типа ассоциирована со статусом метилирования совокупности изученных генов (β = 0.504, р = 1.9E-7 и β = 0.349, р = 3.6E-4 соответственно), но не с возрастом (β = –0.122, р = 0.178 и β = 0.153, р = 0.109). В целом продемонстрированы высокозначимые различия между группами облученных лиц, имеющих разный эпигенетический статус (число гиперметилированных генов), по всем рассмотренным цитогенетическим показателям, за исключением аберраций хроматидного типа (Н-критерий Краскела–Уоллиса: p = 2E-4 и p = 5E-8 для суммарной частоты цитогенетических нарушений и перестроек хромосомного типа соответственно). Уровень цитогенетических нарушений хромосомного типа возрастает с увеличением количества метилированных генов у облученных индивидов. Полученные данные могут указывать на общие закономерности в механизмах индукции и сохранении на протяжении многих лет рассмотренных генетических и эпигенетических эффектов радиации.
Ключевые слова
Полный текст

Об авторах
Нина Станиславовна Кузьмина
Институт общей генетики им. Н.И. Вавилова Российской академии наук; Федеральный исследовательский центр химической физики им. Н.Н. Семенова Российской академии наук
Автор, ответственный за переписку.
Email: nin-kuzmin@yandex.ru
ORCID iD: 0000-0002-2441-0122
Россия, Москва; Москва
Нелля Шамильевна Лаптева
Институт общей генетики им. Н.И. Вавилова Российской академии наук
Email: nellya912@yandex.ru
ORCID iD: 0009-0003-3385-5005
Россия, Москва
Александр Владимирович Рубанович
Институт общей генетики им. Н.И. Вавилова Российской академии наук
Email: rubanovich@vigg.ru
ORCID iD: 0000-0002-1251-8806
Россия, Москва
Список литературы
- Kuzmina N.S. Radiation-Induced DNA Methylation Disorders: In Vitro and In vitro Studies. Biol. Bull. 2021; 48(11):2015-2037. http://doi.org/10.1134/S1062359021110066
- Horvath S., Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 2018;19(6):371-384. http://doi.org/10.1038/s41576-018-0004-3
- Levine M.E., Lu A.T., Quach A. et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10(4):573-591. http://doi.org/10.18632/aging.101414
- McCrory C., Fiorito G., Hernandez B. et al. GrimAge Outperforms Other Epigenetic Clocks in the Prediction of Age-Related Clinical Phenotypes and All-Cause Mortality. J. Gerontol. A. Biol. Sci. Med. Sci. 2021;76(5):741-749. http://doi.org/10.1093/gerona/glaa286
- McCartney D.L., Hillary R.F., Stevenson A.J. et al. Epigenetic prediction of complex traits and death. Genome Biol. 2018;19(1):136. http://doi.org/10.1186/s13059-018-1514-1
- Kuzmina N.S., Lapteva N.Sh., Rubanovich A.B. Hypermethylation of genepromoters in peripheral blood leukocytes in humans long term after radiation exposure. Environ. Res. 2016;146:10-17. http://doi.org/10.1016/j.envres.2015.12.008
- Kuzmina N.S., Lapteva N.Sh., Rusinova G.G. et al. Gene hypermethylation in blood leukocytes in humans long term after radiation exposure — validation set.Environ. Poll. 2018;234:935-942. http://doi.org/10.1016/j.envpol.2017.12.039
- Kuzmina N.S., Lapteva N. Sh., Rubanovich A.V. Hypermethylation of Gene Promoters in Blood Leukocytes of Irradiated Individuals—Final Research Results. Russ. J. Genetics. 2022;58(11):1373–1384. http://doi.org/10.1134/S1022795422110060
- Isubakova D.S., Tsymbal O.S., Bronikovskaya E.V. et al. Methylation of promoters of apoptosis-related genes in blood lymphocytes of workers exposed to occupational external irradiation. Bull. Experim. Biol. Med. 202;171(3):357-361. http://doi.org/10.1007/s10517-021-05227-y
- Исубакова Д.С., Цымбал О.С., Литвяков Н.В. и др. Cвязь метилирования промоторов генов апоптоза в лимфоцитах крови с частотой хромосомных аберраций и дозой облучения. Экол. генетика. 2022;20(4):315-323. [Isubakova D.S., Tsymbal O.S., Litvyakov N.V. et al. Relationship between methylation of promoters of apoptosis genes in blood lymphocytes with the frequency of chromosomal aberrations and the dose of radiation. Ecological Genetics. 2022;20(4):315-323. (in Russ.)]. http://doi.org/10.17816/ecogen109119
- Blinova E.A., Nikiforov V.S., Kotikova A.I. et al. Methylation status of apoptosis genes and intensity of apoptotic death of peripheral blood lymphocytes in persons chronically exposed to radiation. Mol. Biol. 2022;56(6):993-1002. http://doi.org/10.1134/s002689332205003x
- Kuzmina N.S., Lapteva N.Sh., Rubanovich A.V. The association between hypermethylation of gene promoters and cytogenetic disturbances in humans exposed to radiation as a result of the Сhernobyl accident. Biol. Bull. 2021;48(12):2099–2104. http://doi.org/10.1134/S1062359021120086
- Сусков И.И., Агаджанян А.В., Кузьмина Н.С. и др. Проблема трансгенерационного феномена геномной нестабильности у больных детей разных возрастных групп после аварии на ЧАЭС. Радиац. биология. Радиоэкология. 2006;46(4):466-474. [Suskov I.I., Agadzhanyan A.V., Kuz’mina N.S. i dr. Problema transgeneratsionnogo fenomena genomnoy nestabil’nosti u bol’nykh detey raznykh vozrastnykh grupp posle avarii na ChAES = The problem of the transgeneration phenomenon of genome instability in sick children of different age groups after the accident at the Chernobyl nuclear power plant. Radiatsionnaya biologiya. Radioekologiya. 2006;46(4):466-474. (in Russ)].
- Сальникова Л.Е., Фомин Д.К., Елисова Т.В. и др. Изучение связи цитогенетических и эпидемиологических показателей с генотипами у ликвидаторов последствий аварии на ЧАЭС. Радиац. биология. Радиоэкология. 2008;48(3):303-312. [Sal’nikova L.Ye., Fomin D.K., Yelisova T.V. i dr. Izucheniye svyazi tsitogeneticheskikh i epidemiologicheskikh pokazateley s genotipami u likvidatorov posledstviy avarii na ChAES = Genotype Dependence of Cytogenetic and Epidemiological Characteristics in the Liquidators of the Accident at the ChNPP. Radiatsionnaya biologiya. Radioekologiya. 2008;48(3):303-312. (in Russ.)].
- Han Y., Franzen J., Stiehl T. et al. New targeted approaches for epigenetic age predictions. BMC Biol. 2020;18:71. http://doi.org/10.1186/s12915-020-00807-2
- https://soyuz.by/projects/ldfklr/programma-razrabotka-innovacionnyh-genogeograficheskih-i-genomnyh-tehnologiy-identifikacii-lichnosti-i-individualnyh-osobennostey-cheloveka-na-osnove-izucheniya-genofondov-regionov-soyuznogo-gosudarstva-dnk-identifikaciya)
- Averbeck D., Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int. J. Mol. Sci. 2021;22 (20):11047. http://doi.org/10.3390/ijms222011047
- Tričković J.F., Šobot A.V., Joksić I., Joksić G. Telomere fragility in radiology workers occupationally exposed to low doses of ionising radiation. Arh. Hig. Rad. Toksikol. 2022;73(1):23-30. http://doi.org/10.2478/aiht-2022-73-3609
- Chen B., Dai Q., Zhang Q. et al. The relationship among occupational irradiation, DNA methylation status, and oxidative damage in interventional physicians. Medicine (Baltimore). 2019;98(39):e17373. http://doi.org/10.1097/MD.0000000000017373
- Kamstra J.H., Hurem S., Martin L.M. et al. Ionizing radiation induces transgenerational effects of DNA methylation in zebrafish. Sci. Rep. 2018;8(1):15373. http://doi.org/10.1038/s41598-018-33817-w
- Laanen P., Saenen E., Mysara M. et al. Changes in DNA Methylation in Arabidopsis thaliana Plants Exposed Over Multiple Generations to Gamma Radiation. Front. Plant Sci. 2021;12:611783. http://doi.org/10.3389/fpls.2021.611783
- Rossnerova A., Izzotti A., Pulliero A. et al. The Molecular Mechanisms of Adaptive Response Related to Environmental Stress. Int. J. Mol. Sci. 2020;21(19): 7053. http://doi.org/10.3390/ijms21197053
- Jiménez-Garza O., Ghosh M., Barrow T.M., Godderis L. Toxicomethylomics revisited: A state-of-the-science review about DNA methylation modifications in blood cells from workers exposed to toxic agents. Front. Public Health. 2023;11: 1073658. http://doi.org/10.3389/fpubh.2023.1073658
- Yang C., Gu L., Deng D. Distinct susceptibility of induction of methylation of p16ink4a and p19arf CpG islands by X-radiation and chemical carcinogen in mice. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2014;768:42-50. http://doi.org/10.1016/j.mrgentox.2014.04.012
- Xing C., Wang Q., Tian H. et al. Hypermethylation and downregulation of tumor suppressor gene p16 in benzene poisoning. Wei Sheng Yan Jiu. 2012;41(2):247-50. (in Chinese).
- Yang P., Ma J., Zhang B. et al. CpG site-specific hypermethylation of p16INK4a in peripheral blood lymphocytes of PAH-exposed workers. Cancer Epidemiol. Biomarkers Prev. 2012;21(1):182–90. http://doi.org/10.1158/1055-9965.EPI-11-0784
- Hou L., Zhang X., Zheng Y. et al. Altered methylation in tandem repeat element and elemental component levels in inhalable air particles. Environ. Mol. Mutagen. 2014;55(3):256-65. http://doi.org/10.1002/em.21829
- Kovatsi L., Georgiou E., Ioannou A. et al. p16 promoter methylation in Pb2+ -exposed individuals. Clin. Toxicol. (Phila). 2010;48(2):124-8. http://doi.org/10.3109/15563650903567091
- Yu L.B., Tu Y.T., Huang J.W. et al. Hypermethylation of CpG islands is associated with increasing chromosomal damage in chinese lead-exposed workers. Environ. Mol. Mutagen. 2018;59(6):549-556. http://doi.org/10.1002/em.22194
- Wang Y., Duan X., Zhang Y. et al. DNA methylation and telomere damage in occupational people exposed to coal tar pitch. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2015;33(7):507-11. (in Chinese).
- Yang J., Chen W., Li X. et al. Relationship between urinary nickel and methylation of p15, p16 in workers exposed to nickel. J. Occup. Environ. Med. 2014; 56(5):489-92. http://doi.org/10.1097/JOM.0000000000000168
- Rusiecki J.A., Beane Freeman L.E., Bonner M.R. et al. High pesticide exposure events and DNA methylation among pesticide applicators in the agricultural health study. Environ. Mol. Mutagen. 2017;58(1):19-29. http://doi.org/10.1002/em.22067
- Devóz P.P., Reis M.B.D., Gomes W.R. et al. Adaptive epigenetic response of glutathione (GSH)-related genes against lead (Pb)-induced toxicity, in individuals chronically exposed to the metal. Chemosphere. 2021;269:128758. http://doi.org/10.1016/j.chemosphere.2020.128758
- Pavanello S., Pesatori A.C., Dioni L. et al. Shorter telomere length in peripheral blood lymphocytes of workers exposed to polycyclic aromatic hydrocarbons. Carcinogenesis. 2010;31(2):216-21. http://doi.org/10.1093/carcin/bgp278
Дополнительные файлы
