Features of microstructure formation during continuous aging in granulable nickel-based alloys

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The influence of continuous aging on the microstructure of the granulated heat-resistant nickel-based alloy EP741NP is considered. The use of continuous aging made it possible to increase the density of γ´-phase particles, reducing their size and the degree of coagulation inside the grains, and to strengthen the boundaries with carbide and boride compounds.

Full Text

Restricted Access

About the authors

D. S. Eliseev

«GIREDMET»

Author for correspondence.
Email: Tugor123@yandex.ru
Russian Federation, Moskow

References

  1. Reed, R.C. The superalloys (Fundamentals and applications) / R.C. Reed. – UK : Cambridge Academ., 2008. 392 p.
  2. Donachie, M.J. Superalloys : Metals handbook desk edition / M.J. Donachie, S.J. Donachie ; 2nd ed. – ASM Intern., 1999. 414 p.
  3. Pollock, T. Nickel-based superalloys for advanced turbine engines : chemistry, microstructure, and properties / T. Pollock, S. Tin // J. Propulsion and Power. 2006. V.22. №2. P.361–374.
  4. Mughrabi, H. Microstructural aspects of high temperature deformation of monocrystalline nickel base superalloys : some open problems / H. Mughrabi // Mater. Sci. Tech. 2009. V.25. №2. P.191–204.
  5. Морозова, Г.И. Феномен γ´-фазы в жаропрочных никелевых сплавах / Г.И. Морозова // ДАН. 1992. Т.325. №6. С.1193–1197 – (Morozova, G.I. Phenomenon of γ´-phases in heat-resistant nickel alloys / G.I. Morozova // Reports of the Academy of Sciences. 1992. V.325. №6. P.1193–1197.)
  6. Safari, J. On the heat treatment of Rene-80 nickel-base superalloy / J. Safari, S. Nategh // J. Mater. Proc. Tech. 2006. V.176. P.240–250.
  7. Monajati, H. The influence of heat treatment conditions on γ´ characteristics in Udimet 720 / H. Monajati, M. Jahazi, R. Bahrama, S. Yue // Mater. Sci. Eng. : A. 2004. V.373. P.286–293.
  8. Fuchs, G.E. Solution heat treatment response of a third generation single crystal Ni-base superalloy / G.E. Fuchs // Mater. Sci. Eng. : A. 2001. V.300. P.52–60.
  9. Miller, M.K. Stability of г´ precipitates in a PWA1480 alloy / M.K. Miller, S.S. Babu, J.M. Vitek // Intermetalic. 2007. V.15. P.757–766.
  10. John, H.S. Thermal characterization of a Ni-based superalloy / H.S. John, A. Ramon, L.M. Jose // Thermochimica Acta. 2002. V.392–393. P.295–298.
  11. Lu, H. Effects of heat treatment on the microstructure and properties of a cast nickel-based high-Cr superalloy / Lu H., Yang M., Zhou L., Ma, Z., Cui B., Yin F., Li D. // Metals. 2022. V.12. №12. Art.2176. https://doi.org/10.3390/met12122176
  12. Li, J. Effect of solution cooling rate on microstructure evolution and mechanical properties of Ni-based superalloy ATI718Plus / J. Li, R. Ding, Q. Guo, C. Li, Y. Liu, Z. Wang, H. Li, C. Liu // Mater. Sci. Eng. : A. 2021. V.812. Art.141113. https://doi.org/10.1016/j.msea.2021.141113
  13. Dye, D. Characterization and modeling of quenching-induced residual stresses in the nickel-based superalloy IN718 / D. Dye, K.T. Conlon, R.C. Reed // Met. Mater. Trans. A. 2004. V.35. P.1703–1713.
  14. Mao, J. Quench cracking characterization of superalloys using fracture mechanics approach / J. Mao, K.-M. Chang, D.U. Furrer // Superalloy, Proceeding of 9th international symposium on superalloys, Seven Springs. 2000. P.109–116.
  15. Mao, J. An investigation on quench cracking behavior of superalloy Udimet 720LI using a fracture mechanics approach / J. Mao, V.L. Keefer, K.-M. Chang, D. Furrer // J. Mater. Eng. Perform. 2000. V.9. №2. P.204–214.
  16. Milenkovic, S. Effect of the cooling rate on microstructure and hardness of MAR-M247 Ni-based superalloy/ S. Milenkovic, I. Sabirov, J. Llorca // Mater. Lett. 2012. V.73. P.216–219.
  17. Papadaki, C. On the dependence of γ´ precipitate size in a nickel-based superalloy on the cooling rate from super-solvus temperature heat treatment / C. Papadaki, W. Li, A.M. Korsunsky // Materials. 2018. V.11. Art.1528. https://doi.org/10.3390/ma11091528
  18. Masoumi, F. Kinetics and mechanisms of γ´ reprecipitation in a Ni-based superalloy/ F. Masoumi, D. Shahriari, M. Jahazi [et al.] // Sci. Reports. 2016. V.6. Art.28650. https://doi.org/10.1038/srep28650
  19. Sajjadi, S.A. Effects of cooling rate on the microstructure and mechanical properties of the Ni-base superalloy UDIMET 500 / S.A. Sajjadi, H.R. Elahifar, H. Farhangi // J. Alloys Comp. 2008. V.455. №1–2. P.215–220.
  20. Bassini, E. Study of the effects of aging treatment on Astroloy processed via hot isostatic pressing / E. Bassini, G. Cattano, G. Marchese, S. Biamino, D. Ugues, M. Lombardi, G. Vallillo, B. Picque // Materials. 2019. V.12. Art.1517. https://doi.org/10.3390/ma12091517
  21. Perez, M. Implementation of classical nucleation and growth theories for precipitation / M. Perez, M. Dumont, D. Acevedo-Reyes // Acta Materialia. 2008. V.56. P.2119–2132.
  22. Пат. RU 2433201. Способ термической обработки сплавов на никелевой основе / Еременко В.И., Фаткуллин О.Х., Фурашов А.С., Фаткуллин С.И., Щукарев А.К. ; 10.11.2011. – (Pat. RU 2433201. Eremenko V.I., Fatkullin O. Kh., Furashov A.S., Fatkullin S.I., Shchukarev A.K. Method of heat treatment of nickel-based alloys ; 10.11.2011.)
  23. Garosshen, T.J. Low temperature carbide precipitation in a nickel base superalloy / T.J. Garosshen, G.P. McCarthy // Met. Trans. A. 1985. V.16. P.1213–1223.
  24. Kvapilova, M. Creep behaviour and life assessment of a cast nickel – base superalloy MAR-M247 / M. Kvapilova, J. Dvorak, P. Kral, K. Hrbacek, V. Sklenicka // High Temperature Mater. Processes. 2019. V.38. V.590–600.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of heat treatment cycles: a – first temperature cycle 293 → 1483 → 293 → 1183 → → 973 → 1073 → 293; b – second temperature cycle 293 → 1483 → 293 → 1143 → → 923 → 1023 → 293; c – third temperature cycle 293 → 1483 → 293 → 1183 → → 293 → 1023 → 293 → 973 → 293; – ⋅ – solvus line Ts (temperature of complete dissolution). Temperature is given in Kelvin

Download (355KB)
3. Fig. 2. General view and microstructure of samples made of EP741NP alloy at ×2000 magnification that underwent heat treatment in different modes: a, b – first temperature cycle; c, d – second temperature cycle; e, f – third temperature cycle

Download (11MB)
4. Fig. 3. Microstructure of EP741NP alloy samples at ×4000 magnification after heat treatment in different modes: a, c – first temperature cycle; b, d – second temperature cycle; e, f – third temperature cycle

Download (9MB)
5. Fig. 4. Microstructure of EP741NP alloy samples at ×8000 magnification after heat treatment in different modes: a, b – first temperature cycle; c, d – second temperature cycle; e, f – third temperature cycle

Download (6MB)
6. Fig. 5. Topology of the formed phases in the microstructure of samples made of EP741NP alloy at ×8000 magnification that underwent heat treatment in different modes: a – first temperature cycle; b – second temperature cycle; c – third temperature cycle

Download (5MB)

Copyright (c) 2025 Russian Academy of Sciences