Parameters of formation of coatings obtained by detonation spraying of spherical titanium on concrete

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The possibility of obtaining photocatalytic coatings by detonation spraying on a concrete substrate is considered. A study was conducted to select the optimal parameters for detonation spraying of titanium spherical powder on the surface of heavy concrete. The analysis of the results of experimental studies of a series of 25 concrete samples with coatings obtained at different spraying parameters was performed using X-ray phase analysis and evaluation of photocatalytic activity by the degree of degradation of methylene blue in the solution. The presence of four phases in the coatings was established: titanium, anatase, rutile and titanium monoxide. It was found that at spraying distances less than 100 mm and speeds less than 1000 mm/min, the process becomes unstable, causing destruction of the concrete surface layer due to dehydration of crystal hydrates. Increasing the spraying distance to more than 130 mm and speeds more than 1600 mm/min helps to reduce the content of anatase and rutile due to a decrease in the thermal effect of the detonation process. A correlation was found between the increase in the content of these phases and the enhancement of photocatalytic activity, which is consistent with the data on the effect of phase composition on the photocatalytic properties of materials. A rational spraying mode was established – the distance to the substrate is 120 mm, the spraying speed is 1500 mm/min.

全文:

受限制的访问

作者简介

D. Podgornyi

Belgorod State Technological University named after V.G. Shukhov

编辑信件的主要联系方式.
Email: dan_podgor@mail.ru

Postgraduate Student 

俄罗斯联邦, 308012, Belgorod, Kostyukova str., 46

D. Bondarenko

Belgorod State Technological University named after V.G. Shukhov

Email: di_bondarenko@mail.ru

Candidate of Sciences (Engineering) 

俄罗斯联邦, 308012, Belgorod, Kostyukova str., 46

V. Strokova

Belgorod State Technological University named after V.G. Shukhov

Email: vvstrokova@gmail.com

Doctor of Sciences (Engineering) 

俄罗斯联邦, 308012, Belgorod, Kostyukova str., 46

V. Sirota

Belgorod State Technological University named after V.G. Shukhov

Email: zmas36@mail.ru

Candidate of Sciences (Physical and Mathematical) 

俄罗斯联邦, 308012, Belgorod, Kostyukova str., 46

D. Prokhorenkov

Belgorod State Technological University named after V.G. Shukhov

Email: dmpro@rambler.ru

Postgraduate Student

俄罗斯联邦, 308012, Belgorod, Kostyukova str., 46

参考

  1. Bondarenko D.O., Podgornyi D.S., Strokova V.V. Thermal and gas-dynamic methods of applying functional coatings. Prospects of detonation spraying. Stroitel’nye Materialy [Construction Materials]. 2024. No. 5, pp. 48–69. (In Russian). EDN: IOSHCO. https://doi.org/10.31659/0585-430X-2024-824-5-48-69
  2. Sarcinella A., Frigione M. Sustainable and bio-based coatings as actual or potential treatments to protect and preserve concrete. Coatings. 2023. Vol. 13. Iss. 1. 44. EDN: IXCMMN. https://doi.org/10.3390/coatings13010044
  3. Zhao H., Wang Q., Shang R., Li S. Development, challenges, and applications of concrete coating technology: Exploring paths to enhance durability and standardization. Coatings. 2025. Vol. 15. Iss. 4. 409. https://doi.org/10.3390/coatings15040409
  4. Thissen P., Bogner A., Dehn F. Surface treatments on concrete: an overview on organic, inorganic and nano-based coatings and an outlook about surface modification by rare-earth oxides. RSC Sustainability. 2024. Vol. 2. Iss. 8, pp. 2092–2124. EDN: JESCAI. https://doi.org/10.1039/d3su00482a
  5. Fotovvati B., Namdari N., Dehghanghadikolaei A. On coating techniques for surface protection: A Review. Journal of Manufacturing and Materials Processing. 2019. Vol. 3. Iss. 1. 28. https://doi.org/10.3390/jmmp3010028
  6. Aljibori H.S., Alamiery A., Kadhum A.A.H. Advances in corrosion protection coatings: A comprehensive review. International Journal of Corrosion and Scale Inhibition. 2023. Vol. 12. Iss. 4, pp. 1476–1520. EDN: DTRQJQ. https://doi.org/10.17675/2305-6894-2023-12-4-6
  7. Sørensen P.A., Kiil S., Dam-Johansen K., Weinell C.E. Anticorrosive coatings: A review. Journal of Coatings Technology and Research. 2009. Vol. 6. Iss. 2, pp. 135–176. EDN: MKTYRR. https://doi.org/10.1007/s11998-008-9144-2
  8. Bondarenko N.I., Bessmertny V.S., Borisov I.N., Timoshenko T.I., Burshina N.A. Concretes with protective and decorative coatings based on aluminate cements, melted by a plasma jet. Vestnik of BSTU named after V.G. Shukhov. 2016. No. 2, pp. 181–185. (In Russian). EDN: VHIKDZ
  9. Bondarenko D.O., Bessmertny V.S., Strokova V.V., Bondarenko N.I. Processes of formation of liquacia, thermodiffusion and evaporation in facing composite material in plasmochemical modification. Vestnik of BSTU named after V.G. Shukhov. 2018. No. 7, pp. 65–70. (In Russian). EDN: UWALBO. https://doi.org/10.12737/article_5b4f02bd57c851.94144673
  10. Smurov I., Ulianitsky V. Computer controlled detonation spraying: a spraying process upgraded to advanced applications. Surface Effects and Contact Mechanics X. 2011. Vol. 10, pp. 265–276. EDN: RHDRGJ. https://doi.org/10.2495/SECM110231
  11. Sirota V.V., Zaitsev S.V., Limarenko M.V., Prokhorenkov D.S., Churikov A.S. Effect of powder morphology on the structure and properties of Al2O3 based coatings obtained by detonation spraying. Construction Materials and Products. 2024. Vol. 7 (5). 7. EDN: CJDCLA. https://doi.org/10.58224/2618-7183-2024-7-5-7
  12. Ulianitsky V.Yu., Shtertser A.A., Batraev I.S., Rybin D.K. Fabrication of layered ceramic-metal composites by detonation spraying. Ceramics International. 2020. Vol. 46. Iss. 17, pp. 27903–27908. EDN: PAVTPA. https://doi.org/10.1016/j.ceramint.2020.07.225
  13. Liu T., Qiu Y., Liu Y., Liu Z., Deng Z., Guo Z., Wang F., Liu Y., Yu C., Wang S., Wang X. Fabrication and characterization of multilayer YSZ thermal barrier coating by detonation spraying and atmospheric plasma spraying. Ceramics International. 2025. https://doi.org/10.1016/j.ceramint.2025.04.246
  14. Moghaddam A.O., Mikhailov D., Shaburova N., Polyakova M., Pashkeev K., Solizoda I.A., Iarushina D., Samodurova M., Trofimov E. Detonation spraying of boron-doped off-stoichiometric (Fe20Co23.9Ni20Cr15)(Al20Ti1.1) chemically complex intermetallic alloys. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2025. Vol. 710. 136291. EDN: VKLNSE. https://doi.org/10.1016/j.colsurfa.2025.136291
  15. Batraev I.S., Ulianitsky V.Yu., Rybin D.K., Dudina D.V., Shtertser A.A., Ukhina A.V. Deposition of binderless B4C coatings by detonation spraying. Materials Letters. 2025. Vol. 387. 138264. EDN: QNLXEJ. https://doi.org/10.1016/j.matlet.2025.138264
  16. Sirota V.V., Savotchenko S.E., Strokova V.V., Bondarenko D.O., Podgorny D.S. Influence of the technological conditions of detonation coatings application on their phase composition. Nanotechnologies in Construction. 2024. Vol. 16. Iss. 5, pp. 404–414. EDN: LOONGJ. https://doi.org/10.15828/2075-8545-2024-16-5-404-414
  17. Sirota V.V., Savotchenko S.E., Strokova V.V., Vashchilin V.S., Podgornyi D.S., Limarenko M.V., Kovaleva M.G. Effect of irradiation intensity on the rate of photocatalysis of TiO2 coatings obtained by detonation spraying. International Journal of Applied Ceramic Technology. 2024. Vol. 21. Iss. 5, pp. 3335–3345. EDN: WOOKMW. https://doi.org/10.1111/ijac.14782
  18. Podgorny D.S., Bondarenko D.O., Strokova V.V., Skiba A.A. Properties of titanium powders intended for detonation spraying on concrete. Regional’naya Arkhitektura i Stroitel’stvo. 2023. No. 4 (57), pp. 41–48. (In Russian). EDN: GUCMUJ
  19. Balapure A., Ganesan R. Anatase versus Triphasic TiO2: Near-identical synthesis and comparative structure-sensitive photocatalytic degradation of methylene blue and 4-chlorophenol. Journal of Colloid and Interface Science. 2021. Vol. 581, pp. 205–217. EDN: RSBKGK. https://doi.org/10.1016/j.jcis.2020.07.096
  20. Eddy D.R., Permana M.D., Sakti L.K., Sheha G.A.N., Solihudin, Hidayat S., Takei T., Kumada N., Rahayu I. Heterophase polymorph of TiO2 (anatase, rutile, brookite, TiO2 (B)) for efficient photocatalyst: fabrication and activity. Nanomaterials. 2023. Vol. 13. Iss. 4. 704. EDN: JEXLTZ. https://doi.org/10.3390/nano13040704
  21. Eddy D.R., Sheha G.A.N., Permana M.D., Saito N., Takei T., Kumada N., Irkham, Rahayu I., Abe I., Sekine Y., Oyumi T., Izumi Y. Study on triphase of polymorphs TiO2 (anatase/rutile/brookite) for boosting photocatalytic activity of metformin degradation. Chemosphere. 2024. Vol. 351. 141206. EDN: KWAAAK https://doi.org/10.1016/j.chemosphere.2024.141206

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Coatings obtained by detonation spraying of titanium powder on a concrete substrate under different spraying modes (distance/speed): a – original sample; b – sample after sandblasting; c – 40/400; d – 40/800; e – 60/800; f – 80/800; g – 100/800; h – 120/1000; i – 120/1000 (after sandblasting)

下载 (410KB)
3. Fig. 2. Surface structure of concrete sample before (a) and after (b) spraying the coating

下载 (504KB)
4. Fig. 3. Surface structure of concrete sample with preliminary sandblasting (a) and after (b) spraying of coating

下载 (555KB)
5. Fig. 4. Ti–TiOx coatings obtained by detonation spraying of metallic titanium under different conditions

下载 (318KB)
6. Fig. 5. X-ray phase spectra of coatings, grouped into series by spraying speed 1000–2000 mm/min with a step of 250 with a difference by spraying distance (d): a – d=120 mm; b – d=140 mm; c – d=160 mm; d – d=180 mm; e – d=200 mm

下载 (594KB)
7. Fig. 6. Heat maps of X-ray phase analysis results depending on the spraying mode, content: a – titanium; b – anatase; c – rutile; d – TiO

下载 (1MB)
8. Fig. 7. Heat map of the results of the study of photocatalytic effect from the spraying

下载 (949KB)

版权所有 © ООО РИФ "СТРОЙМАТЕРИАЛЫ", 2025