Gas Phase Composition and Fluorine Atom Kinetics in SF6 Plasma

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The model-based study of SF6 plasma composition in respect to both neutral and charged components in a wide range of electron density was carried out. The key plasma chemical processes determining steady-state densities if fluorine atoms under conditions of low- and high-density plasmas were figured out. It was shown that optimized (reduced by the exclusion of non-effective reactions) kinetic schemes provide the satisfactory agreement between modeling results and experimental data from literature sources.

Full Text

Restricted Access

About the authors

A. V. Myakonkikh

Valiev Institute of Physics and Technology RAS

Author for correspondence.
Email: miakonkikh@ftian.ru
Russian Federation, Moscow

V. O. Kuzmenko

Valiev Institute of Physics and Technology RAS

Email: miakonkikh@ftian.ru
Russian Federation, Moscow

A. M. Efremov

Valiev Institute of Physics and Technology RAS; Molecular Electronics Research Institute (MERI)

Email: miakonkikh@ftian.ru
Russian Federation, Moscow; Zelenograd

K. V. Rudenko

Valiev Institute of Physics and Technology RAS

Email: miakonkikh@ftian.ru
Russian Federation, Moscow

References

  1. Wolf S., Tauber R. N., Silicon Processing for the VLSI Era. Volume 1. Process Technology, New York: Lattice Press, 2000. ISBN0961672161, 9780961672164
  2. Nojiri K. Dry etching technology for semiconductors, Tokyo: Springer International Publishing, 2015. ISBN978–3–319–10294–8
  3. Krasnikov G. Ya. Vozmozhnosti mikroelektronnyh tehnologii s topologicheskimi razmerami menee 5 nm // Nanoindustriya, 2020, V. 13, No. S5–1(102), pp. 13–19. https://doi.org/10.22184/1993–8578.2020.13.5s.13.19
  4. Seidman L. A., Formation of three-dimensional structures in the silicon carbide substrates by plasma-chemical etching // Russian Microelectronics, 2016, Vol. 45, pp. 545–558. https://doi.org/10.1134/S1063739716080138
  5. Osipov A. A., Aleksandrov S. E., Solov’ev Yu. V., Uvarov A. A., Osipov A. A. // Etching of SiC in Low Power Inductively-Coupled Plasma, Russian Microelectronics, 2018, Vol. 47, No. 6, pp. 427–433. https://doi.org/10.1134/S1063739719010074
  6. Rudenko K. V., Myakon’kikh A. V., Orlikovsky A. A., Plasma etching of poly-Si/SiO2/Si structures: Langmuir-probe and optical-emission-spectroscopy monitoring // Russian Microelectronics, 2007, Vol. 36, No 3, pp. 179–192. https://doi.org/10.1134/S1063739707030079
  7. Lieberman M. A., Lichtenberg A. J., Principles of plasma discharges and materials processing, New York: John Wiley & Sons Inc., 1994. ISBN9780471720010
  8. Kay E., Coburn J., Dilks A., Plasma chemistry of fluorocarbons as related to plasma etching and plasma polymerization // In: Veprek S., Venugopalan M. (eds) Plasma Chemistry III. Topics in Current Chemistry, vol. 94, Berlin, Heidelberg: Springer, 1980. https://doi.org/10.1007/BFb0048585
  9. Stoffels W. W., Stoffels E., Tachibana K., Polymerization of fluorocarbons in reactive ion etching plasmas // J. Vac. Sci. Tech. A., 1998, vol. 16, pp. 87–95. https://doi.org/10.1116/1.581016
  10. Standaert T.E.F.M., Hedlund C., Joseph E. A., Oehrlein G. S., Dalton T. J., Role of fluorocarbon film formation in the etching of silicon, silicon dioxide, silicon nitride, and amorphous hydrogenated silicon carbide // J. Vac. Sci. Technol. A., 2004, vol. 22, pp. 53–60. https://doi.org/10.1116/1.1626642
  11. Schaepkens M., Standaert T. E. F. M., Rueger N. R., Sebel P. G. M., Oehrlein G. S., Cook J. M., Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism // J. Vac. Sci. Technol. A., 1999, vol. 17, pp. 26–37. https://doi.org/10.1116/1.582108
  12. Oehrlein G. S. et al., Future of plasma etching for microelectronics: Challenges and opportunities // J. Vac. Sci. Technol. B., 2024, vol. 42, pp. 041501(1–53). https://doi.org/10.1116/6.0003579
  13. Dussart R., Tillocher T., Lefaucheux P., Boufnichel M., Plasma cryogenic etching of silicon: from the early days to today’s advanced technologies // J. Phys. D: Appl. Phys., 2014, vol. 47, pp. 123001(1–27). https://doi.org/10.1088/0022–3727/47/12/123001
  14. Rudenko M. K., Myakon’kikh A. V., Lukichev V. F., Monte Carlo Simulation of Defects of a Trench Profile in the Process of Deep Reactive Ion Etching of Silicon // Russian Microelectronics, 2019, Vol. 48, No. 3, pp. 157–166. https://doi.org/10.1134/S1063739719030090
  15. Kokkoris G., Panagiotopoulos A., Goodyear A., Cooke M., Gogolides E., A global model for SF6 plasmas coupling reaction kinetics in the gas phase and on the surface of the reactor walls // J. Phys. D: Appl. Phys., 2009, vol. 42, pp. 055209(1–15). https://doi.org/10.1088/0022–3727/42/5/055209
  16. Lallement L., Rhallabi A., Cardinaud C., Peignon-Fernandez M. C., Alves L. L., Global model and diagnostic of a low-pressure SF6/Ar inductively coupled plasmа // Plasma Sources Sci. Technol., 2009, vol. 18, pp. 025001 (1–10). https://doi.org/10.1088/0963–0252/18/2/025001
  17. Mao M., Wang Y. N., Bogaerts A. Numerical study of the plasma chemistry in inductively coupled SF6 and SF6/Ar plasmas used for deep silicon etching applications // J. Phys. D: Appl. Phys., 2011, vol. 44, pp. 435202(1–15). https://doi.org/10.1088/0022–3727/44/43/435202
  18. Yang W., Zhao S.-X., Wen D.-Q., Liu W., Liu Y.-X., Li X.-C., Wang Y.-N. F-atom kinetics in SF6/Ar inductively coupled plasmas, J. Vac. Sci. Technol. A., 2016, vol. 34, pp. 031305(1–12). https://doi.org/10.1116/1.4945003
  19. Ryan K. R., Plumb I. C., A model for the etching of silicon in SF6/O2 plasmas // Plasma Chem. Plasma Proc., 1990, vol. 10(2), pp. 207–229. https://doi.org/10.1007/BF01447127
  20. Pateau A., Rhallabi A., Fernandez M.-C., Boufni-chel M., Roqueta F., Modeling of inductively coupled plasma SF6/O2/Ar plasma discharge: Effect of O2 on the plasma kinetic properties // J. Vac. Sci. Technol. A., 2014, vol. 32, pp. 021303(1–10). https://doi.org/10.1116/1.4853675
  21. Christophorou L. G., Olthoff J. K., Electron interactions with SF6, J. Phys. Chem. Ref. Data, 2000, vol. 29(3), pp. 267–330. https://doi.org/10.1063/1.1288407
  22. Chantry P. J., A simple formula for diffusion calculations involving wall reflection and low density // J. Appl. Phys., 1987, vol. 62, pp. 1141–1148. https://doi.org/10.1063/1.339662
  23. Hsu C. C., Nierode M. A., Coburn J. W., Graves D. B., Comparison of model and experiment for Ar, Ar/O2 and Ar/O2/Cl2 inductively coupled plasmas // J. Phys. D: Appl. Phys., 2006, vol. 39(15), pp. 3272–3284. https://doi.org/10.1088/0022–3727/39/15/009
  24. Tinck S., Boullart W., Bogaerts A. Modeling Cl2/O2/Ar inductively coupled plasmas used for silicon etching: effects of SiO2 chamber wall coating // Plasma Sources Sci. Technol., 2011, vol. 20, pp. 045012(1–13). https://doi.org/10.1088/0963–0252/20/4/045012
  25. Lee C., Lieberman M. A., Global model of Ar, O2, Cl2, and Ar/O2 high-density plasma discharges // J. Vac. Sci. Technol. A., 1995, vol. 13, pp. 368–380. https://doi.org/10.1116/1.579366
  26. Efremov A., Lee J., Kwon K.-H., A comparative study of CF4, Cl2 and HBr + Ar inductively coupled plasmas for dry etching applications // Thin Solid Films, 2017, vol. 629, pp. 39–48. https://doi.org/10.1016/j.tsf.2017.03.035
  27. Efremov A. M., Murin D. B., Kwon K.-H., Concerning the Effect of Type of Fluorocarbon Gas on the Output Characteristics of the Reactive-Ion Etching Process // Russian Microelectronics, 2020, vol. 49, No. 3, pp. 157–165. https://doi.org/10.1134/S1063739720020031
  28. Lopaev D. V., Volynets A. V., Zyryanov S. M., Zotovich A. I., Rakhimov A. T. Actinometry of O, N and F atoms // J. Phys. D: Appl. Phys. 2017. V. 50. pp. 075202 (1–17). https://doi.org/10.1088/1361–6463/50/7/075202
  29. Donnelly V. M., Reactions of fluorine atoms with silicon, revisited, again // J. Vac. Sci. Technol. A., 2017, vol. 35, pp. 05C202(1–9). https://doi.org/10.1116/1.4983922

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Rate constants of reactions under the action of electron impact involving SF6 molecules leading to the formation of neutral (a) and charged (b) products. In Fig. b): solid lines - ionization, dashed lines - sticking. The numerical labels on the solid curves correspond to the reaction number in Tables 1 and 2.

Download (105KB)
3. Fig. 2. Concentrations of neutral particles (a) and kinetics of fluorine atom formation (b) at = 3 eV. The numerical labels on the solid curves in Fig. b) correspond to the reaction number in Tables 1 and 2, with the number in parentheses reflecting the value of the parameter “x” in the SFx formula. The dotted line shows the total rate of atom formation.

Download (124KB)
4. Fig. 3. Comparison of calculated (dashed line) and experimental (solid line + symbols) concentrations of fluorine atoms from [15] (a) and [16] (b). Both experimental curves in Fig. a) correspond to the same conditions of plasma excitation, but were obtained at different values of the actinometric coefficient.

Download (60KB)
5. Fig. 4. Concentrations of positive (a) and negative (b) ions at = 3 eV. The dotted line shows the total concentration.

Download (109KB)

Copyright (c) 2024 Russian Academy of Sciences