Quantum-chemical study of alkyl- and alkenyladamantanes formation by ionic alkylation with olefins
- 作者: Baranov N.I.1, Bagrii E.I.2, Safir R.E.1, Cherednichenko A.G.1, Bozhenko K.V.1, Maximov A.L.2
-
隶属关系:
- Peoples’ Friendship University of Russia
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
- 期: 卷 65, 编号 2 (2024)
- 页面: 116-124
- 栏目: ARTICLES
- URL: https://kazanmedjournal.ru/0453-8811/article/view/660324
- DOI: https://doi.org/10.31857/S0453881124020021
- EDN: https://elibrary.ru/DXUZVI
- ID: 660324
如何引用文章
详细
In B3LYP-D3(BJ)/6-311++G** approximation thermodynamic parameters of formation reactions (total energy at 0 К, enthalpy and the Gibbs free energy at temperature 298.15 К and pressure 101325 Pa) are assessed for the products of ionic alkylation of adamantane and lower alkyladamantanes with ethylene and propylene. Aluminium chloride was used as acid catalyst model. Quantum-chemical calculations demonstrate the influence of methyl groups in adamantanes and olefin molecular weight on energetics of formation of relevant alkyl- and alkenyladamantanes.
全文:

作者简介
N. Baranov
Peoples’ Friendship University of Russia
编辑信件的主要联系方式.
Email: 1042182094@rudn.ru
俄罗斯联邦, Miklukho-Maklaya str., 6, Moscow, 117198
E. Bagrii
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Email: 1042182094@rudn.ru
俄罗斯联邦, Leninsky Avenue, 29, Moscow, 119991
R. Safir
Peoples’ Friendship University of Russia
Email: 1042182094@rudn.ru
俄罗斯联邦, Miklukho-Maklaya str., 6, Moscow, 117198
A. Cherednichenko
Peoples’ Friendship University of Russia
Email: 1042182094@rudn.ru
俄罗斯联邦, Miklukho-Maklaya str., 6, Moscow, 117198
K. Bozhenko
Peoples’ Friendship University of Russia
Email: 1042182094@rudn.ru
俄罗斯联邦, Miklukho-Maklaya str., 6, Moscow, 117198
A. Maximov
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Email: 1042182094@rudn.ru
俄罗斯联邦, Leninsky Avenue, 29, Moscow, 119991
参考
- Ishizone T., Goseki R. // Polym. J. 2018.V. 50. № 9. P. 805. https://doi.org/10.1038/s41428-018-0081-3
- Harvey B.G., Harrison K.W., Davis M.C., Chafin A.P., Baca, J., Merriman W.W. // Energy Fuels. 2016. V. 30. № 12. P. 10171. https://doi.org/10.1021/acs.energyfuels.6b01865
- Muthyala R.S., Sheng S., Carlson K.E., Katzenellenbogen B.S., Katzenellenbogen J.A. // J. Med. Chem. 2003. V. 46. № 9. P. 1589. https://doi.org/10.1021/jm0204800
- Min J., Guillen V.S., Sharma A., Zhao Y., Ziegler Y., Gong P., Mayne C.G., Srinivasan S., Kim S.H., Carlson K.E., Nettles K.W., Katzenellenbogen B.S., Katzenellenbogen J.A. // J. Med. Chem. 2017. V. 60. № 14. P. 6321. https://doi.org/10.1021/acs.jmedchem.7b00585
- Robello D.R. // J. Appl. Polym. Sci. 2012. V. 127. № 1. P. 96. https://doi.org/10.1002/app.37802
- Yang M., Zeng Z., Lam J.W.Y., Fan J., Pu K., Tang B.Z. // Chem. Soc. Rev. 2022. V. 51. № 21. P. 8815. https://doi.org/10.1039/d2cs00228k
- Li X., Yin C., Liew S.S., Lee C.-S., Pu K. // Adv. Funct. Mater. 2021. V. 31. № 46. P. 2106154. https://doi.org/10.1002/adfm.202106154
- Zhang Y., Yan C., Wang C., Guo Z., Liu X., Zhu W.-H. // Angew. Chem. Int. Edit. 2020. V. 59. № 23. P. 9059. https://doi.org/10.1002/anie.202000165
- Li J., Hu Y., Li Z., Liu W., Deng T., Li J. // Anal. Chem. 2021. V. 93. № 30. P. 10601. https://doi.org/10.1021/acs.analchem.1c01804
- Shelef O., Gutkin S., Feder D., Ben-Bassat A., Mandelboim M., Haitin Y., Ben-Tal N., Bacharach E., Shabat D. // Chem. Sci. 2022. V. 13. № 42. P. 12348. https://doi.org/10.1039/D2SC03460C
- Багрий Е.И. Адамантаны: получение, свойства, применение. Москва: Наука, 1989. 264 с.
- Thomaston J.L., Samways M.L., Konstantinidi A., Ma C., Hu Y., Macdonald H.E.B., Wang J., Essex J.W., DeGrado W.F., Kolocouris A. // Biochemistry. 2021. V. 60. № 32. P. 2471. https://doi.org/10.1021/acs.biochem.1c00437
- Vu B.D., Ba N.M.H., Pham V.H., Phan D.C. // ACS Omega. 2020. V. 5. № 26. P. 16085. https://doi.org/10.1021/acsomega.0c01589
- Bräse S., Waegell B., de Meijere A. // Synthesis. 1998. № 2. P. 148. https://doi.org/10.1055/s-1998-2013
- Ikeda Y., Nakamura T., Yorimitsu H., Oshima K. // J. Am. Chem. Soc. 2002. V. 124. № 23. P. 6514. https://doi.org/10.1021/ja026296l
- Fokin A.A., Butova E.D., Barabash A.V., Huu N.N., Tkachenko B.A., Fokina N.A., Schreiner P.R.// Synth. Commun. 2013. V. 43. № 13. P. 1772. https://doi.org/10.1080/00397911.2012.667491
- Савельева С.А., Леонова М.В., Баймуратов М.Р., Климочкин Ю.Н. // Журнал органической химии. 2018. Т. 54. № 7. С. 994. (Savel’eva S.A., Leonova M.V., Baimuratov M.R., and Klimochkin Y.N. // Russ. J. Org. Chem. 2018. V. 54. № 7. P. 996.) https://doi.org/10.1134/S1070428018070047
- Amaoka Y., Nagatomo M., Watanabe M., Tao K., Kamijo S., Inoue, M. // Chem. Sci. 2014. V.5. № 11. P. 4339. https://doi.org/10.1039/C4SC01631A
- Cao H., Kuang Y., Shi X., Wong K.L., Tan B.B., Kwan J.M.C., Liu X., Wu J. // Nat. Commun. 2020. V. 11. Article № 1956. https://doi.org/10.1038/s41467-020-15878-6
- Santiago A.N., Basso S.M., Toledo C.A., Rossi R.A. // New J. Chem. 2005. V. 29. № 7. P. 875. https://doi.org/10.1039/B418305C
- Zhao J.-F., Wang H., Wang H.-B., Tian Q.-Q., Zhang Y.-Q., Feng H.-T., He W. // Org. Chem. Front. 2023. V. 10. № 2. P. 348. https://doi.org/10.1039/D2QO01614A
- Baimuratov M.R., Leonova M.V., Shiryaev V.A., Klimochkin Y.N. // Tetrahedron Lett. 2016. V. 57. № 48. P. 5317. https://doi.org/10.1016/j.tetlet.2016.10.059
- Islam S.M., Poirier R.A. // J. Phys. Chem. A. 2008. V. 112. № 1. P. 152. https://doi.org/10.1021/jp077306d
- Sen A., Mehta G., Ganguly B. // Tetrahedron. 2011. V. 67. № 20. P. 3754. https://doi.org/10.1016/j.tet.2011.02.022
- Kozuch S., Zhang X., Hrovat D.A., Hrovat D.A., Borden W.T. // J. Am. Chem. Soc. 2013. V. 135. № 46. P. 17274. https://doi.org/10.1021/ja409176u
- Багрий Е.И., Борисов Ю.А., Колбановский Ю.А., Максимов А.Л. // Нефтехимия. 2019. Т. 59. № 1. C. 64. https://doi.org/10.1134/S0028242119010064 (Bagrii, E.I., Borisov, Y.A., Kolbanovskii, Y.A., and Maksimov, A.L. // Pet. Chem. 2019. V. 59. P. 66.) https://doi.org/10.1134/S0965544119010067)
- Barca G.M.J., Bertoni C., Carrington L., Datta D., De Silva N., Deustua J.E., Fedorov D.G., Gour J.R., Gunina A.O., Guidez E., Harville T., Irle S., Ivanic J., Kowalski K., Leang S.S. et all. // J. Chem. Phys. 2020. V. 152. № 15. P. 154102. https://doi.org/10.1063/5.0005188
- Candian A., Bouwman J., Hemberger P., Bodi A., Tielens A.G.G.M. // Phys. Chem. Chem. Phys. 2018. V. 20. № 8. P. 5399. https://doi.org/10.1039/C7CP05957D
- Wu J.I., van Eikema Hommes N.J.R., Lenoir D., Bachrach S.M. // J. Phys. Org. Chem. 2019. V. 32. № 9. P. e3965. https://doi.org/10.1002/poc.3965
- Bachrach S.M. // J. Phys. Org. Chem. 2018. V. 31. № 7. P. e3840. https://doi.org/10.1002/poc.3840
- Zhuk T.S., Koso T., Pashenko A.E., Hoc N.T., Rodionov V.N., Serafin M., Schreiner P.R., Fokin A.A. // J. Am. Chem. Soc. 2015. V. 137. № 20. P. 6577. https://doi.org/10.1021/jacs.5b01555
- Chemcraft – графическая программа для визуализации квантово-химических расчетов. https://www.chemcraftprog.com (дата обращения: 07.09.2023).
- Olah G.A., Prakash G.K.S., Shih J.G., Krishnamurthy V.V., Mateescu G.D., Liang G., Sipos G., Buss V., Gund T.M., Schleyer P.v.R. // J. Am. Chem. Soc. 1985. V. 107. № 9. P. 2764. https://doi.org/10.1021/ja00295a032
- Баранов Н.И., Сафир Р.Е., Багрий Е.И., Боженко К.В., Чередниченко А.Г. // Нефтехимия. 2020. T. 60. № 5. C. 644. https://doi.org/10.31857/S0028242120050044 (Baranov N.I., Safir R.E., Bagrii E.I., Bozhenko K.V., and Cherednichenko A.G. // Petrol. Chemistry. 2020. V. 60. № 9. P. 1033.) https://doi.org/10.1134/S0965544120090042
补充文件
